
CSE 451: Operating Systems
Autumn 2001

Lecture 2
Architectural Support for

Operating Systems

Brian Bershad
bershad@cs.washington.edu

310 Sieg Hall

4/8/2002 © 2002 Bershad 2

Today’s agenda

• Administrivia
– overloading, tweaked course schedule

• Architecture and OS’s
– what an OS needs from hardware

4/8/2002 © 2002 Bershad 3

Architecture affects the OS

• Operating system functionality is dictated, at least in
part, by the underlying hardware architecture
– includes instruction set (synchronization, I/O, …)
– also hardware components like MMU or DMA controllers

• Architectural support can vastly simplify (or
complicate!) OS tasks
– e.g.: early PC operating systems (DOS, MacOS) lacked

support for virtual memory, in part because at that time PCs
lacked necessary hardware support

4/8/2002 © 2002 Bershad 4

Architectural Features affecting OS’s

• These features were built primarily to support OS’s:
– timer (clock) operation
– synchronization instructions (e.g. atomic test-and-set)
– memory protection
– I/O control operations
– interrupts and exceptions
– protected modes of execution (kernel vs. user)
– protected instructions
– system calls (and software interrupts)

4/8/2002 © 2002 Bershad 5

Protected Instructions

• some instructions are restricted to the OS
– known as protected or privileged instructions

• e.g., only the OS can:
– directly access I/O devices (disks, network cards)

• why?

– manipulate memory state management
• page table pointers, TLB loads, etc.

• why?

– manipulate special ‘mode bits’
• interrupt priority level

• why?

– halt instruction
• why?

4/8/2002 © 2002 Bershad 6

OS Protection

• So how does the processor know if a protected
instruction should be executed?
– the architecture must support at least two modes of

operation: kernel mode and user mode
• VAX, x86 support 4 protection modes
• why more than 2?

– mode is set by status bit in a protected processor register
• user programs execute in user mode
• OS executes in kernel mode (OS == kernel)

• Protected instructions can only be executed in the
kernel mode
– what happens if user mode executes a protected instruction?

4/8/2002 © 2002 Bershad 7

Crossing Protection Boundaries

• So how do user programs do something privileged?
– e.g., how can you write to a disk if you can’t do I/O

instructions?

• User programs must call an OS procedure
– OS defines a sequence of system calls
– how does the user-mode to kernel-mode transition happen?

• There must be a system call instruction, which:
– causes an exception (throws a software interrupt), which

vectors to a kernel handler
– passes a parameter indicating which system call to invoke
– saves caller’s state (regs, mode bit) so they can be restored
– OS must verify caller’s parameters (e.g. pointers)
– must be a way to return to user mode once done

4/8/2002 © 2002 Bershad 8

A Kernel Crossing Illustrated

Netscape: read()

trap to kernel
mode; save app

state

find read()
handler in

vector table

restore app
state, return to

user mode,
resume

trap handler

read() kernel routine

4/8/2002 © 2002 Bershad 9

System Call Issues

• What would happen if kernel didn’t save state?
• Why must the kernel verify arguments?
• How can you reference kernel objects as arguments

or results to/from system calls?

4/8/2002 © 2002 Bershad 10

Memory Protection

• OS must protect user programs from each other
– maliciousness, ineptitude

• OS must also protect itself from user programs
– integrity and security
– what about protecting user programs from OS?

• Simplest scheme: base and limit registers
– are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

4/8/2002 © 2002 Bershad 11

More sophisticated memory protection

• coming later in the course
• virtual memory

– paging, segmentation
– page tables, page table pointers
– translation lookaside buffers (TLBs)

4/8/2002 © 2002 Bershad 12

OS control flow

• after the OS has booted, all entry to the kernel
happens as the result of an event
– event immediately stops current execution
– changes mode to kernel mode, event handler is called

• kernel defines handlers for each event type
– specific types are defined by the architecture

• e.g.: timer event, I/O interrupt, system call trap

– when the processor receives an event of a given type, it
• transfers control to handler within the OS
• handler saves program state (PC, regs, etc.)

• handler functionality is invoked

• handler restores program state, returns to program

4/8/2002 © 2002 Bershad 13

Interrupts and Exceptions

• Two main types of events: interrupts and exceptions
– exceptions are caused by software executing instructions

• e.g. the x86 ‘int’ instruction

• e.g. a page fault, write to a read-only page
• an expected exception is a “trap”, unexpected is a “fault”

– interrupts are caused by hardware devices
• e.g. device finishes I/O
• e.g. timer fires

4/8/2002 © 2002 Bershad 14

I/O Control

• Issues:
– how does the kernel start an I/O?

• special I/O instructions
• memory-mapped I/O

– how does the kernel notice an I/O has finished?
• polling
• interrupts

• Interrupts are basis for asynchronous I/O
– device performs an operation asynch to CPU
– device sends an interrupt signal on bus when done
– in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
• who populates the vector table, and when?

– CPU switches to address indicated by vector specified by
interrupt signal

4/8/2002 © 2002 Bershad 15

Timers

• How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
– use a hardware timer that generates a periodic interrupt
– before it transfers to a user program, the OS loads the timer

with a time to interrupt
• “quantum”: how big should it be set?

– when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next

• very interesting policy question: we’ll dedicate a class to it

• Should the timer be privileged?
– for reading or for writing?

4/8/2002 © 2002 Bershad 16

Synchronization

• Interrupts cause a wrinkle:
– may occur any time, causing code to execute that interferes

with code that was interrupted
– OS must be able to synchronize concurrent processes

• Synchronization:
– guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically
– one method: turn off interrupts before the sequence, execute

it, then re-enable interrupts
• architecture must support disabling interrupts

– another method: have special complex atomic instructions
• read-modify-write
• test-and-set
• load-linked store-conditional

