
CSE 451: Operating Systems
Spring 2002

Lecture 1
Course Introduction

and History

Brian Bershad
bershad@cs.washington.edu

319 Sieg Hall
Office Hourse: W,Th: 9:30-10:30

4/26/2002 © 2001 Bershad 2

CSE 451

• In this class we will learn:
– what are the major components to most OSs?
– how are the components structured?
– what are the most important (common?) interfaces?
– what policies are typically used in an OS?
– what algorithms are used to implement policies?

4/26/2002 © 2001 Bershad 3

Today’s agenda

• Administrivia
• The Really Big Picture

– An OS at 50,000 feet
– 13 Rules for Understanding Nearly Everything

• Some History
– batch systems, multiprogramming, time shared OS’s
– PCs, networked computers

4/26/2002 © 2001 Bershad 4

Course overview

• All of what you need to know will come from lectures, section
and the homeworks.

• Some of what you need to know will be on the course web page:
– http://www.cs.washington.edu/451

• Supplemental material is in the course text book
– Operating System Concepts, 6th Edition. Silberschatz, Galvin and

Gagne.
• Available at Amazon. Or try to buy/borrow from someone last quarter.

• Short, weekly, quizzes will be given in section
– Do well on these and you’ll do well on the exams.

• Zero tolerance for cheating
• “Special” admits – need to see Crystal Eney in the undergrad

advising office

4/26/2002 © 2001 Bershad 5

What is an Operating System?

• An operating system (OS) is:
– a software layer to abstract away and manage details of

hardware resources
– a set of utilities to simplify application development

– “all the code you didn’t write” in order to implement your
application

4/26/2002 © 2001 Bershad 6

The OS and Hardware

• An OS mediates programs’ access to hardware
resources
– Computation (CPU)
– Volatile storage (memory) and persistent storage (disk, etc.)
– Network communications (TCP/IP stacks, ethernet cards, etc.)
– Input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
– processes (CPU, memory)
– files (disk)

• programs (sequences of instructions)

– sockets (network)

4/26/2002 © 2001 Bershad 7

Why bother with an OS?
• Application benefits

– programming simplicity
• see high-level abstractions (files) instead of low-level hardware

details (device registers)
• abstractions are reusable across many programs

– portability (across machine configurations or architectures)
• device independence: 3Com card or Intel card?

• User benefits
– safety

• program “sees” own virtual machine, thinks it owns computer
• OS protects programs from each other
• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

4/26/2002 © 2001 Bershad 8

The Major OS Issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources ensured?
• protection: how is one user/program protected from another?
• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with hardware or with

a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information, including across a

network?
• concurrency: how are parallel activities (computation and I/O) created and

controlled?
• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program executions?
• distribution: how do multiple computers interact with each other?
• accounting: how do we keep track of resource usage, and perhaps charge for

it?

4/26/2002 © 2001 Bershad 9

A Few Rules for Understanding
Nearly Everything

1. Always think about the “system” part of an operating
system
– Good analogies found in real life systems

2. Technology changes everything
– Look for the inflection points!

• Stemming from, or leading to, the “killer app”
– Generally, someone’s trying to MAKE money or SAVE

money by doing something differently

3. Most designers are not stupid, but priorities do
change
– Choose 2 of [Soon, Good, Cheap.]

4. Three things people tend to forget:
– Testability, Usability, Manageability.

4/26/2002 © 2001 Bershad 10

Rules - Continued

5. Code and Data are a matter of perspective.

6. MECHANISM and POLICY are generally separable

7. Simple solutions are generally better than complex ones.
– “Simple and good enough” almost always more attractive than optimal.

– Always consider the “Do nothing” option.

– Static solutions are generally simpler than dynamic ones

8. In general, the future is unknowable, except in retrospect
– It’s a good bet though that it looks like the past

9. Laziness in the presence of uncertainty is generally rewarded
– But punished in its absence

10. Often, all it takes is the the right level of indirection.

11. Space and time are interchangeable

12. 2x rarely matters, 10x almost always does.
13. SCALABILITY separates the good from the great

4/26/2002 © 2001 Bershad 11

A Brief History of Computing

4/26/2002 © 2001 Bershad 12

Inflection Point #0: 19th Century

• Machines can do things faster than people

Business Number Crunching
Technology: 1880-1920

Tabulators
electronic and mechanical
popular in the insurance industry and
w/employers
CTR

Adders
+ (and sometimes -)
mechanical devices
slow, clunky

Calculators
+-* /
mechanical devices
slow, clunky, $$

4/26/2002 © 2001 Bershad 13

Automatic Calculators:
“Bigger Must be Better”

In the very beginning…
– There was no OS and there was no

program.
– Just levers, computation, and output

(think Big Calculator)
– Problem: Really Hard to Use

The Bush Differential Analyzer

• Built in 1931
• Analog and Decimal

– poor accuracy -- 1%

• Big & Slow
– all mechanical
– 100 tons

• Only one of them

4/26/2002 © 2001 Bershad 14

Iowa in 1937

John Vincent Atanasoff
(A math & physics guy)

In the treatment of many mathematical
problems one requires the solution of
systems of linear simultaneous
algebraic equations.

•Curve fitting.
•Method of least squares.
•Vibration problems including
the vibrational Raman effect.
•Electrical circuit analysis.
•Analysis of elastic structures.
•Approximate solution of many
problems of elasticity.
•Approximate solution of
problems of quantum
mechanics.
•Perturbation theories of
mechanics, astronomy and the
quantum theory.

4/26/2002 © 2001 Bershad 15

John Atanasoff Invents the First
Electronic Calculator

•3kbits of RAM

•30 calculations/minute

4/26/2002 © 2001 Bershad 16

Key Technical Ideas

• Binary rather than decimal
• Vacuum tubes for logic rather than storage
• Inexpensive rotating capacitors for (cheap) temporary

storage
• Punch cards for input/output

4/26/2002 © 2001 Bershad 17

John Berry (Grad Student) With the
ABC Computer

4/26/2002 © 2001 Bershad 18

What Happened to Atanasoff ?

• In 1940, asks for 5K from Iowa Research Council to
build a commercial-grade machine
– he’s turned down

• He meets John Mauchly
– physicist from U Penn

• But forgets to have him sign the NDA
• WWII starts

– By 1942, Atanasoff resigns from Iowa State to join the war
effort

4/26/2002 © 2001 Bershad 19

The First “Killer” App

• Projectile
trajectories

• 5 days per
trajectory using a
mechanical
calculator

• 30 minutes using
BDA

– not accurate
enough

– and still takes
one
month/table

• John Mauchly
seized the
opportunity

4/26/2002 © 2001 Bershad 20

The ENIAC

• Started in 1942
• Completed in 1945
• Key stats

– $500K
– 30 tons
– 1800 square feet
– 19000 vacuum tubes
– 175 Kw/power
– 5000 ops/second

• Followed 2 years later by
EDVAC.

– Stored Program
Electronic Numerical Integrator and Computer

4/26/2002 © 2001 Bershad 21

IPs Leading to EDVAC

• IP #1: Application of Dynamic RAM at any cost (Vacuum tubes)
– Computers can now execute code against data
– Could now have a “PROGRAM” that could be loaded quickly and

run.
• programs were loaded in their entirety into memory, and executed

– OS was just a library of code that you linked into your program
– By using the Hollerith Card (Old Technology Reapplied) (~1952)

computers can run a BATCH of programs
• Led to “Batch Processing Languages” which told OS about the

programs
• OS loaded the next job into memory from the card reader

– job gets executed
– output is printed, including a dump of memory (why?)
– repeat…

• Problem:card readers and line printers were very slow
– so CPU (most $$ part of system) was idle much of the time (wastes

$$)

4/26/2002 © 2001 Bershad 22

1947-1952: The UNIVAC

• E&M’s first commercial
computer

– used mag tape, courtesy of the
Nazis

• WWII was a Big Inflection Point

• $1M dev costs
– Sold to Census Bureau for

$150K

• The company was
undercapitalized and needed
cash to build

– No problem finding customers.

– They couldn’t deliver.

4/26/2002 © 2001 Bershad 23

The UNIVAC Invented Spooling

• IP#3: Tapes, which are faster than mechanical
readers and printers
– Spool (Simultaneous Peripheral Operation On-Line)

• while one job is executing, spool next job from card reader onto
tape

– slow card reader I/O is overlapped with CPU

• Problem: Tapes are sequential � can only run the
“next” program.

4/26/2002 © 2001 Bershad 24

IBM Invents The Disk in 1956

First computer disk storage system. The 305 RAMAC
(Random Access Method of Accounting and Control) could
store five million characters (five megabytes) of data on 50
disks, each 24 inches in diameter. RAMAC's revolutionary
recording head could go directly to any location on a disk
surface without reading the information in between. This IBM
innovation made it possible to use computers for airline
reservations, automated banking, medical diagnosis, and
space flights.

•IP#4: Disks, which allow Random Access to Storage
–Run multiple programs at “once” by swapping image to disk

•OS must choose which to run next when current ends, or performs I/O (eg,
fetch data from disk)

•job scheduling. EARLY POLICY/MECHANISM SEPARATION EXAMPLE

–Problem: CPU still idle during I/O

4/26/2002 © 2001 Bershad 25

Multiprogramming by 1960

• IP#5: Big, Cheap Memory, to keep multiple programs in core at
the same time

– Again, to increase system utilization
– keeps multiple runnable jobs loaded in memory at once
– overlaps I/O of a job with computing of another

• while one job waits for I/O completion, OS runs instructions from
another job

– to benefit, need asynchronous I/O devices
• need some way to know when devices are done

– interrupts
– polling

– goal: optimize system throughput
• perhaps at the cost of response time…

– Yielded the invention of the “PROCESS” – a program which is
executing in memory

• Problem: Computer is NOT interactive

4/26/2002 © 2001 Bershad 26

Timesharing by the mid-60s

• IP#6: Even cheaper memory, modems, and inexpensive CRTs,
allowing multiple users to “interact” with the computer at the
same time

– To support interactive use, create a timesharing OS:
• multiple terminals into one machine
• each user has illusion of entire machine to him/herself
• optimize response time, perhaps at the cost of throughput

– Timeslicing
• divide CPU equally among the users
• if job is truly interactive (e.g. editor), then can jump between programs

and users faster than users can generate load
• permits users to interactively view, edit, debug running programs (why

does this matter?)

– MIT Multics system (mid-1960’s) was the first large timeshared
system (based on the CTSS for the IBM 7094 from 1961)

• nearly all OS concepts can be traced back to Multics
• UNIX is just a simpler MULTICS

– Core of Mac OS X, Linux, etc.

• Problem: The computer ran faster at night

4/26/2002 © 2001 Bershad 27

The Multics System

4/26/2002 © 2001 Bershad 28

Personal and Distributed Computing by
the 1970s

• IP#7: Plummeting cost of silicon and networking allows
everyone to have their own computer

– Memory was under a penny/bit

– “Share everything but the time”
– distributed systems using geographically distributed resources

• workstations on a LAN

• servers across the Internet

– OS supports communications between jobs
• interprocess communication

• networking stacks

– OS supports sharing of distributed resources (hardware, software)
• load balancing, authentication and access control, …

– speedup isn’t the issue
• access to diversity of resources is goal

• Problem: there’s never a time that the machine runs faster

4/26/2002 © 2001 Bershad 29

XEROX ALTO -- 1972

First personal workstation First wide deployment of:
•Bit-map graphics
•Mouse
•WYSIWG editing

Hosted the invention of:
•Local-area networking
•Laser printing
•All of modern client / server distributed computing

4/26/2002 © 2001 Bershad 30

Parallel Systems by the 80’s

• IP#8: High Speed Interconnects allow multiple processors to
cooperate on a single program

– Some applications can be written as multiple parallel threads or
processes

– can speed up the execution by running multiple threads/processes
simultaneously on multiple CPUs

– need OS and language primitives for dividing program into multiple
parallel activities

– need OS primitives for fast communication between activities
• degree of speedup dictated by communication/computation ratio

– many flavors of parallel computers
• SMPs (symmetric multi-processors)
• MPPs (massively parallel processors)

• NOWs (networks of workstations)

• computational grid (SETI @home)

4/26/2002 © 2001 Bershad 31

Internet by the 90s

• IP#9: WEB, HTTP, TCP at Scale
– TCP+HTTP+Web Browser has changed the way that the

world looks at computing
– BUT, there have been relatively few Operating System

Advances to support this
• The internet was functional by the 70s

– Mostly, it’s been a time of leveraging the last 50 years to
deploy MASSIVELY SCALABLE SYSTEMS

4/26/2002 © 2001 Bershad 32

Ubiquitous Computing in the 21st Century

• IP#10: Massive miniaturization and integration of
computers + Wireless
– Ubiquitous computing

• cheap processors embedded everywhere and anywhere
• how many are on your body now? in your car?

• cell phones, PDAs, network computers, …

– Typically very constrained hardware resources
• (relatively) slow processors

• very small amount of memory (e.g. 8 MB)

• no disk

– OS researchers are working in this area today to understand
what we’ll be using tomorrow.

