CSE 451: Operating Systems
Winter 2001

Lecture 8
Semaphores and Monitors

Steve Gribble
gribble@cs.washington.edu
323B Sieg Hall

Today’s agenda

e Administrivia

» Semaphores and Monitors
— higher level synchronization constructs

1/21/2001 © 2001 Steve Gribble

Semaphores

* semaphore = a synchronization primitive
— higher level than locks
— invented by Dijkstra in 1968, as part of the THE os

* Asemaphore is:

— avariable that is manipulated atomically through two
operations, signal and wait

— wait(semaphore): decrement, block until semaphore is open
« also called P(), after Dutch word for test, also called down()

— signal(semaphore): increment, allow another to enter
« also called V(), after Dutch word for increment, also called up()

1/21/2001 © 2001 Steve Gribble 3

Blocking in Semaphores

» Each semaphore has an associated queue of
processes/threads
— when wait() is called by a thread,
« if semaphore is “open”, thread continues
« if semaphore is “closed”, thread blocks, waits on queue
— signal() opens the semaphore
« if thread(s) are waiting on a queue, one thread is unblocked
« if no threads are on the queue, the signal is remembered for
next time a wait() is called
* In other words, semaphore has history
— this history is a counter
— if counter falls below 0 (after decrement), then the
semaphore is closed
* wait decrements counter
* signal increments counter

1/21/2001 © 2001 Steve Gribble 4

Hypothetical Implementation

type semaphore = record
value: integer:
L: list of processes;

end
) ™
wait(S):
S.value = S.value - 1;
if S.value <0 >
then begin
add this process to S.L; \ wait()/signal() are
b'og_k?) critical sections!
end. Hence, they must be
signal(S): ™ executed atomically
S.value = S.value + 1; with respect to each
if S.Value. <=0 / Other.
then begin >~
remove a process P from S.L;
wakeup P
end; _/
1/21/2001 © 2001 Steve Gribble 5

Two types of semaphores

* Binary semaphore (aka mutex semaphore)
— guarantees mutually exclusive access to resource
— only one thread/process allowed entry at a time
— counter is initialized to 1
» Counting semaphore (aka counted semaphore)
— represents a resources with many units available

— allows threads/process to enter as long as more units are
available

— counter is initialized to N
* N = number of units available

1/21/2001 © 2001 Steve Gribble 6

Example: bounded buffer problem

» AKA producer/consumer problem

— there is a buffer in memory
 with finite size N entries

— a producer process inserts an entry into it
— a consumer process removes an entry from it
* Processes are concurrent

— s0, we must use synchronization constructs to control
access to shared variables describing buffer state

1/21/2001 © 2001 Steve Gribble

Bounded Buffer using Semaphores

var mutex: semaphore =1 ;mutual exclusion to shared data
empty: semaphore =n ;count of empty buffers (all empty to start)

full: semaphore =0 ;count of full buffers (none full to start)
producer:

wait(empty) ; one fewer buffer, block if none available

wait(mutex) ; get access to pointers

<add item to buffer>
signal(mutex) ; done with pointers
signal(full) ; note one more full buffer

consumer:
wait(full) ;wait until there’s a full buffer
wait(mutex) ;get access to pointers
<remove item from buffer>
signal(mutex) ; done with pointers
signal(empty) ; note there’'s an empty buffer
<usetheitem>

1/21/2001 © 2001 Steve Gribble

Example: Readers/Writers

» Basic problem:
— object is shared among several processes
— some read from it
— others write to it

* We can allow multiple readers at a time
— why?

* We can only allow one writer at a time
— why?

1/21/2001 © 2001 Steve Gribble

Readers/Writers using Semaphores

var mutex: semaphore ; controls access to readcount
wrt: semaphore ; control entry to a writer or first reader
readcount: integer ; number of readers

write process:
waitfwvrt) ; any writers or readers?
<perform write operation>
signal(wrt) ; allow others

read process:
wait(mutex) ; ensure exclusion
readcount = readcount + 1 ; one more reader
if readcount = 1 then wait(wrt) ; if we're the first, synch with writers
signal(mutex)
<perform reading>
wait(mutex) ; ensure exclusion
readcount = readcount - 1 ; one fewer reader
if readcount = 0 then signal(wrt) ; no more readers, allow a writer
signal(mutex)

1/21/2001 © 2001 Steve Gribble

10

Readers/Writers notes

* Note:
— the first reader blocks if there is a writer
» any other readers will then block onmutex
— if a writer exists, last reader to exit signals waiting writer
» can new readers get in while writer is waiting?

— when writer exits, if there is both a reader and writer waiting,
which one goes next is up to scheduler

1/21/2001 © 2001 Steve Gribble 11

Problems with Semaphores

* They can be used to solve any of the traditional
synchronization problems, but:
semaphores are essentially shared global variables
» can be accessed from anywhere (bad software engineering)

there is no connection between the semaphore and the data
being controlled by it

used for both critical sections (mutual exclusion) and for
coordination (scheduling)

no control over their use, no guarantee of proper usage
* Thus, they are prone to bugs

— another (better?) approach: use programming language
support

1/21/2001 © 2001 Steve Gribble 12

Monitors

* A programming language construct that supports
controlled access to shared data

— synchronization code added by compiler, enforced at
runtime

— why does this help?

* Monitor is a software module that encapsulates:
— shared data structures
— procedures that operate on the shared data

— synchronization between concurrent processes that invoke
those procedures

* Monitor protects the data from unstructured access

— guarantees only access data through procedures, hence in
legitimate ways

1/21/2001 © 2001 Steve Gribble 13

A monitor

waiting queue of processes
trying to enter the monitor

> > >
4
at most one operations (procedures)
process in monitor
at a time

1/21/2001 © 2001 Steve Gribble 14

Monitor facilities

* Mutual exclusion
— only one process can be executing inside at any time
* thus, synchronization implicitly associated with monitor

— if a second process tries to enter a monitor procedure, it
blocks until the first has left the monitor

* more restrictive than semaphores!
* but easier to use most of the time
* Once inside, a process may discover it can’t
continue, and may wish to sleep
— or, allow some other waiting process to continue
— condition variables provided within monitor

» processes can wait or signal others to continue
« condition variable can only be accessed from inside monitor

1/21/2001 © 2001 Steve Gribble 15

Condition Variables

* A place to wait; sometimes called a rendezvous point

» Three operations on condition variables
— wait(c)
* release monitor lock, so somebody else can get in
» wait for somebody else to sighal condition
« thus, condition variables have wait queues
— signal(c)
» wake up at most one waiting process/thread
« if no waiting processes, signal is lost
* this is different than semaphores: no history!
— broadcast(c)
» wake up all waiting processes/threads

1/21/2001 © 2001 Steve Gribble 16

Bounded Buffer using Monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
while(array “resources” is full)
wait(not_full);
add “x” to array “resources”
signal(not_empty);
}
procedure get_entry(resource *x) {
while (array “resources” is empty)
wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}

1/21/2001 © 2001 Steve Gribble 17

Monitors and Semaphores

» Each can be implemented given the other
— as you'll find out on Homework #2!

1/21/2001 © 2001 Steve Gribble 18

Two Kinds of Monitors

* Hoare monitors: signal(c) means
— run waiter immediately
— signaller blocks immediately
 condition guaranteed to hold when waiter runs
* but, signaller must restore monitor invariants before signalling!
* Mesa monitors: signal(c) means

— waiter is made ready, but the signaller continues
» waiter runs whensignaller leaves monitor (or waits)
 condition is not necessarily true when waiter runs again

— signaller need not restore invariant until it leaves the monitor

— being woken up is only a hint that something has changed
* must recheck conditional case

1/21/2001 © 2001 Steve Gribble 19

Examples

Hoare monitors
— if (notReady)
« wait(c)
Mesa monitors
— while(notReady)
» wait(c)

Mesa monitors easier to use

— more efficient

— fewer switches

— directly supports broadcast

Hoare monitors leave less to chance

— when wake up, condition guaranteed to be what you expect

1/21/2001 © 2001 Steve Gribble 20

10

Condition Variables and Mutex

Yet another construct:
— condition variables can be used with mutexes

pthread_nutex_t mu;
pt hread_cond_t co;
bool ean ready;
void foo()
pt hread _nut ex | ock(&) ;
if (!ready)
pthread_cond wai t (&co, &m);

ready = TRUE

pt hread _cond_si gnal (&co);

/1 unlock and signal atomcally
pt hread_nut ex _unl ock(&) ;

Think of a monitor as a language feature
— under the covers, compiler knows about monitors

— compiler inserts amutex to control entry and exit of processes to
the monitor’s procedures

1/21/2001 © 2001 Steve Gribble

21

11

