
1

CSE 451: Operating Systems
Winter 2001

Lecture 19:
Some Principles of Security

Steve Gribble
gribble@cs.washington.edu

323B Sieg Hall

3/4/2001 © 2001 Steve Gribble 2

Security

(Many of these slides taken from David Wagner’s
security course at UC Berkeley.)

• Computer Security
– techniques for computing in the presence of adversaries

• three categories of security goals:
– confidentiality: preventing the unauthorized release of information
– integrity: preventing the unauthorized modification of information
– availability: preventing denial of service attacks

• protection is all about providing all three on a single machine
– usually considered to be the responsibility of operating systems

• Cryptography
– techniques for communicating in the presence of adversaries

2

3/4/2001 © 2001 Steve Gribble 3

Trusted Computing Base (TCB)

• Think carefully about what you are trusting with your
information
– if you type your password on a keyboard, you’re trusting:

• the keyboard manufacturer
• your computer manufacturer
• your operating system
• the password library
• the application that’s checking the password

– TCB = set of components (hardware, software, wetware) that
you trust your secrets with

• Public web kiosks should *not* be in your TCB
– should your OS?

• but what if it is promiscuous? (e.g., IE and active-X extensions)
– how about your compiler?

• A great read: “Reflections on Trusting Trust”.

3/4/2001 © 2001 Steve Gribble 4

Design Principles for Security-Conscious Systems

• Security is much, much more than just crypto
– if there is a fundamental flaw in the design of a system, then

all the crypto in the world won’t help you
– unfortunately, systems design is still as much an art as it is a

science…
• but, decades of building systems the wrong way have helped

us cull some learned wisdom
• we’ll cover just a few of these in the rest of this lecture

3

3/4/2001 © 2001 Steve Gribble 5

Principle of Least Privilege

• Figure out exactly which capabilities a program
needs to run, and grant it only those
– not always easy, but: start out granting none, run program,

and see where it breaks. add new privileges as needed.

• Unix: concept of root is *not* a good example of this
– some programs need to run as root just to get a small

privilege, such as running with a port < 1024
• e.g., ftpd

3/4/2001 © 2001 Steve Gribble 6

Tractorbeaming wu-ftpd

• wu-ftp tries to run with least privilege
– but occasionally tries to elevate its privilege with:

seteuid(0);
// some privileged “critical section” runs here
seteuid(getuid());

– however, wu-ftp does not disable UNIX signals
• thus, while it is in critical section, it can be tractor-beamed away

to a signal handler
• remote user can cause signal handler to run by terminating a

download in midstream!
– but need to catch wu-ftp in the critical section

• wu-ftp doesn’t relinquish privileges after signal handler

– result: abort a download, and if win a race condition, wu-ftp
never relinquishes root privileges!

• get full access to *entire* remote file system

4

3/4/2001 © 2001 Steve Gribble 7

Principle of Least-common Mechanism

• Basic lesson: be careful with shared code
– assumptions made may no longer be valid

• Eudora/Outlook and Internet Explorer
– windows exports an API to IE’s HTML rendering code

• eudora and other programs use this to display HTML in email
• by default, JavaScript and Java parsing is enabled

– HTML rendering code knows Java{Script} is unsafe
• disables it when javascript is off of internet

– “internet is untrusted”
• but enables it when javascript is loaded off of disk

– “your own file system is trusted”

– but…email is loaded off of the disk!
• oops.

3/4/2001 © 2001 Steve Gribble 8

Even more pernicious shared mechanism

• VMS password checking flaw
– password checking algorithm:

for (I=0; I<password.length(); I++) {
if password[I] == supplied_password[I]

return false;

}
return true;

– can you see the problem?
• hint: think about virtual memory…
• another hint: think about page faults…
• final hint: who controls where in memory supplied_password

lives?

5

3/4/2001 © 2001 Steve Gribble 9

Principle of Complete Mediation

• Check every access to every object
– in rare cases, can get away with less (caching)

• but only if sure nothing relevant in environment has changed…and
there is a lot that’s relevant!

• e.g., NFS and file handles
– NFS is not a good example of complete mediation
– NFS protocol:

• client contacts remote “mountd” to get a filehandle to a remotely
exported NFS filesystem

– this is done when remote system is mounted
– remote mountd checks access control at mount time

• filehandle is a capability: client presents it to read/write file
– access control is not checked after mount time!

• use network sniffer to get filehandle
– access exported filesystem without access control check
– this is how I used to mount my directories at Berkeley

» faster than going through beurocracy (remember, white-hat)

3/4/2001 © 2001 Steve Gribble 10

Fail-Safe defaults

• Start by denying all access, then allow only that
which has been explicitly permitted
– oversights will then show up as “false negatives”, I.e.

somebody is denied access that should be given it
– opposite leads to “false positives”, I.e. somebody is given

access that shouldn’t get it
• bad guys usually don’t report this kind of failure…

• Examples:
– SunOS shipped with “+” in /etc/hosts.equiv

• When a user name (or +) is specified in ROOTDIR/etc/hosts.equiv, that
user (or all users, in the case of +) may log in to the local host as
any local user. User names in ROOTDIR/etc/hosts.equiv should always be
specified.

– Irix shipped with “xhost +” by default
• I’ve used this to help friends debug programs remotely..

– with their permission, of course

6

3/4/2001 © 2001 Steve Gribble 11

“Security through Obscurity” = bad

• Security through obscurity
– attempting to gain security by hiding the implementation details of a

system
– claim: a secure system should be secure even if all implementation

details are published
• in fact, a system grows more secure as people scour over

implementation details and find flaws
• rely on mathematics and sound design to keep secure

– think back to cryptographic protocols in last lecture

• Counterexample: GSM cellphones
– “impossible to clone”

• I had the privilege of receiving the first phone call on a cloned GSM cell
phone

• GSM committee designed their own crypto algorithm, but hid it from the
world

– social engineering + reverse engineering revealed the algorithm
– it turned out to be very weak

» could essentially play 20 questions with identity chip on cell phone,
and eventually learn its secret key

3/4/2001 © 2001 Steve Gribble 12

Security: outlook for the future

• Doesn’t look bright…
– more and more complex systems are being deployed

• and more and more human lives are being trusted to them

• Bruce Schneier: 3 waves of security attacks
– 1st wave: physical attacks on wires and hardware

• physical security to defend against this

– 2nd wave: syntactic attacks on cryptographic protocols and software
implementations

• e.g., buffer overflows, DDOS attacks. Just beginning to get a handle on this, long
way to go.

– 3rd wave: semantic attacks. Humans and computers trust information that
they shouldn’t

• e.g., forged web content
• e.g., falsified press announcements (Emulex corp stock hoax)

– CEO resignation announcement, 61% stock drop
– semantic attack against people with preprogrammed sell orders

• we have no idea how to handle this
– yet, networked society is eminently vulnerable to it…

• Bottom line: security research is one of the systems areas!

