
1

CSE 451: Operating Systems
Winter 2001

Lecture 18
A Bit of Cryptography

Steve Gribble
gribble@cs.washington.edu

323B Sieg Hall

3/4/2001 © 2001 Steve Gribble 2

Brief Intro to Cryptography

• Much of this material taken from “Applied
Cryptography” by Bruce Schneier
– a highly recommended book; very approachable, few errors

• Cryptography:
– the art and science of keeping messages secure
– communicating in the presence of adversaries

• practiced by cryptographers
• in its essence, art of disguising a message (“plaintext”) in such

a way as to hide its substance (turn it into “cyphertext”)
– cryptanalysis

• art and science of breaking cyphertext
• cryptology = union(cyryptography, cryptanalysis)

• The basic idea
– trust mathematics instead of people

2

3/4/2001 © 2001 Steve Gribble 3

Roles of Cryptography

• Confidentiality
– hiding the content of messages

• Authentication
– ascertain the origin of a message

• Integrity
– verify that a message hasn’t been modified in transit

• Nonrepudiation
– prevent a sender from falsely denying sending a message

3/4/2001 © 2001 Steve Gribble 4

The Basic Idea

• Ek1(M) = C, Dk2(C) = M
– Dk2(Ek1(M)) = M

• Symmetric algorithms (aka secret-key algorithms):
– given k1, can deduce k2, and vice-versa

• Public-Key Algorithms
– decryption key (k2) cannot be calculated from encryption key
– encryption key can be made public!

• encryption key = “public key”, decryption key = “private key”

encryption decryptionplaintext cyphertext original
plaintext

encryption key decryption key

3

3/4/2001 © 2001 Steve Gribble 5

Communications using Symmetric Crypto

• Protocol for Alice and Bob to communicate securely:
– 1. Alice and Bob agree on a cryptosystem (e.g., DES)
– 2. Alice and Bob agree on a key. (how?)
– 3. Alice encrypts plaintext with algo+key
– 4. Alice sends the ciphertext to Bob
– 5. Bob decrypts the ciphertext with same algo+key

• Claims:
– this gives 3 of 4 desired properties (confidentiality,

authentication, integrity). why not nonrepudiation?

• Weaknesses:
– which steps must Alice and Bob protect from Eve[sdropper]?
– what could Mallory (man in the middle) to do harm A&B?
– what happens if Alice is subverted?

3/4/2001 © 2001 Steve Gribble 6

Public-Key Cryptography

• Symmetric-key crypto is like a safe
– public-key crypto is like a mailbox

• Protocol to communicate with public-key crypto
– 1. Alice/Bob agree on a public-key cryptosystem (e.g. RSA)
– 2. Bob sends Alice his public key
– 3. Alice encrypts her message using Bob’s public key
– 4. Alice sends ciphertext to Bob

– 5. Bob decrypts Alice’s message using his private key

• Which properties does this give Alice and Bob?
• Weaknesses?

– what must Alice/Bob protect from Eve?
– what could Mallory do?

4

3/4/2001 © 2001 Steve Gribble 7

Hybrid Cryptosystem

• But, public key cryptography is 1000 times as
expensive as symmetric key crypto
– also, susceptible to chosen-plaintext attacks

• e.g., if only 1000 possible messages, attacker could simply
encrypt all 1000 with public key to get a dictionary of ciphertext

• Hybrid cryptosystem
– 1. Bob sends Alice his public key.
– 2. Alice generates a random session key K, encrypts it using

Bob’s public key, and sends it to Bob. Eb(K)
– 3. Bob decrypt’s Alice’s message using private key to

recover session key. Db(Eb(K)) = K
– 4. Alice and Bob communicate using symmetric

cryptography, using key K.

3/4/2001 © 2001 Steve Gribble 8

Beware Randomness

• Is your random number truly random?
– Donald Knuth quotes John von Neumann:

• Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.

– typical random number generation libraries aren’t that random (e.g.,
rand() or rand48())

• emit a deterministic sequence of numbers
• sequence isn’t that random, e.g., rand() flips low -order bit

• Netscape crack:
– used hybrid cryptosystem (SSL)
– session key chosen by random number generation

• RNG was seeded using time-of-day, process IDS, etc.
• very guessable!

– my Berkeley officemates reverse-engineered Netscape binary, and wrote
code to do online attack of SSL connections

– better: use physical process (noise on electrical conductor, geiger
counter), or very low-level stuff (interrupt arrival times, timing of
keystrokes)

5

3/4/2001 © 2001 Steve Gribble 9

One-Way Hash Functions

• Hash function
– takes a variable-lengthed input string (pre-image) and

produces a fixed-length, smaller output string (hash value)
– essentially fingerprints the pre-image

• e.g.: return byte consisting of XOR of all preimage bytes

• One-way hash function (e.g., MD5)
– easy to compute hash from preimage, but hard to generate

preimage that hashes to particular value
• how hard? brute force

– birthday paradox…

– useful in many places (as we’ll see)
• e.g.: to confirm somebody has a file intact, ask her to compute

a one-way hash on the file, and verify that. (integrity)

3/4/2001 © 2001 Steve Gribble 10

Example Use of Hash Functions

• UNIX passwords
– when you log in, how is your password verified?

• naïve strategy: OS keeps a file with everybody’s password in it
– what happens if bad-guy gets that file? all passwords are lost!

• better strategy: OS keeps a file with hash(password) in it
– one-way hash protects bad-guy from getting passwords

• /etc/passwd file entries look like:
gribble:AEFEF.hKbYNEU:10046:116:Steve Gribble:/home/gribble:/bin/bash

• Weakness: dictionary attack
– compile list of 1,000,000 common passwords

• amongst most popular: sex, secret, password, gandalf, god
– run them each through one-way hash

• compile a dictionary of popular hashed passwords
– solution? salt:

• passwd file entry = hash(salt+password)
• store salt in clear on host
• bad-guy can’t use pregenerated dictionary file
• UNIX: uses 12-bit salt (only makes it 4096 times harder to crack)

6

3/4/2001 © 2001 Steve Gribble 11

Digital Signatures

• Why are handwritten signatures good?
– authentic: convinces document recipient that signer

deliberately signed the document
– unforgeable: proof that the signer, and no-one else, signed

the document
– not reusable: signature is part of document, can’t be moved

to another document
– unalterable: after document is signed, it can’t be altered
– non-repudiable: signer cannot later claim didn’t sign it

• Of course, none of these things are true for analog
handwritten signatures
– can we do better with digital signatures?

3/4/2001 © 2001 Steve Gribble 12

Public-Key based Digital Signatures

• Protocol is really simple:
– 1. Alice encrypts document with her private key.
– 2. Alice sends encrypted document to Bob.
– 3. Bob decrypts the document with Alice’s public key,

thereby verifying the signature.

• Properties?
– authentic: Bob verifies message with Alice’s public key.
– unforgeable: only Alice knows her private key.
– not reusable: signature is function of document, can’t be

transferred.
– unalterable: altering the document will alter the produced

plaintext, producing gibberish
– non-repudiation: only Alice knows her private key, thus only

she could sign document. Plus, Bob doesn’t need Alice’s
help to verify the signature.

7

3/4/2001 © 2001 Steve Gribble 13

Problems?

• Timestamps:
– Bob can reuse document+signature

• what if it is a signed cheque?

– for this reason, digital signatures often contain timestamps
• signed document = Ea(doc+timestamp)

– bank stores timestamp, can detect copied cheque

• Public key crypto is expensive!
– what if want to sign the human genome sequence?

• one-way hashes to the rescue…

– new protocol:
• 1. Alice produces a one-way hash of a document
• 2. Alice encrypts the hash value with private key
• 3. Alice sends plaintext document + signed hash to Bob
• 4. Bob produces one-way hash of document. He also decrypts signed

hash with Alice’s public key, and compares with his hash. If match,
signature is valid.

3/4/2001 © 2001 Steve Gribble 14

Combining Signatures and Encryption

• What if you want to securely send a secret file to
somebody, and let them validate it came from you?
– letter from Mom: signature as proof of authorship, letter to

provide privacy from prying eyes

• Protocol:
– 1. Alice signs message with her private key

• SA(M)
– 2. Alice encrypts the signed message with Bob’s public key,

and sends it to Bob
• EA(SA(M))

– 3. Bob decrypts message with his private key
• Db(Eb(SA(M))) = SA(M)

– 4. Bob verifies with Alice’s public key and recovers message
• VA(SA(M)) = M

8

3/4/2001 © 2001 Steve Gribble 15

Bit-commitment

• Imagine:
– Bob: pick 5 stocks for me, if you’re good on all 5, I’ll hire you

as my stock broker.
– Alice: if I tell you 5 good stocks, you don’t need me! How

about I predict 5, and tell you them in a month?
– Bob: but, how do I know you won’t change your answer?

• Answer: bit commitment
– Alice wants to commit to a prediction (a sequence of bits),

but doesn’t want to reveal her prediction until later.
• Bob wants to make sure Alice doesn’t change her mind after

committing to the bits.

3/4/2001 © 2001 Steve Gribble 16

Bit-commitment algorithms

• Using symmetric crypto:
– 1. Bob generates a random-bit string R, sends to Alice

• R

– 2. Alice creates message containg bit she wishes to commit
concatenated with Bob’s random string. She encrypts
message with random key K, sends result to Bob.

• EK(R,b)
• the bit is now committed..

– 3. When it’s time to reveal the bit, Alice sends Bob the key
• K

– 4. Bob decrypts the message to reveal the bit. He also
checks his random string to verify the bit’s validity.

• R,b = DK(EK(R,b))

• Why does Bob need to provide the random string?

9

3/4/2001 © 2001 Steve Gribble 17

Bit-Commitment Using One-Way
Functions

• 1. Alice generates two random -bit strings, R1 and R2
– R1, R2

• 2. Alice creates message containing her random strings and the bit she
wishes to commit
– (R1, R2, b)

• 3. Alice computes one-way hash on message, sends it and R1 to Bob
– H(R1,R2,b), R1
– commitment is now done.

• 4. When time to reveal, Alice sends Bob full message
– (R1,R2,b)

• 5. Bob computes one-way hash of message, compares it and R1 with
the hash and value he received in step 3. If match, bit is valid.

• Note that Bob didn’t need to send Alice any messages at all!
– a strong benefit over symmetric crypto algorithm
– could imagine posting committed bit on random newsgroup
– Bob retains anonymity

3/4/2001 © 2001 Steve Gribble 18

Many other cool crypto tricks

• Zero-knowledge proofs
– prove know information without revealing it

• Secure elections and auctions
• Anonymous broadcasts
• Digital cash
• Anonymous mail (messaging)
• Pseudonymity

– persistent, untraceable identities

• …many many more!

