
1

CSE 451: Operating Systems
Winter 2001

Lecture 13
File Systems

Steve Gribble
gribble@cs.washington.edu

323B Sieg Hall

2/7/2001 © 2001 Steve Gribble 2

File Systems

• The concept of a file system is simple
– the implementation of the abstraction for secondary storage

• abstraction = files

– logical organization of files into directories
• the directory hierarchy

– sharing of data between processes, people and machines
• access control, consistency, …

2

2/7/2001 © 2001 Steve Gribble 3

Files

• A file is a collection of data with some properties
– contents, size, owner, last read/write time, protection …

• Files may also have types
– understood by file system

• device, directory, symbolic link

– understood by other parts of OS or by runtime libraries
• executable, dll, source code, object code, text file, …

• Type can be encoded in the file’s name or contents
– windows encodes type in name

• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …

– unix has a smattering of both
• in content via magic numbers or initial characters (e.g., #!)

2/7/2001 © 2001 Steve Gribble 4

Basic operations

NT

• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers (handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix

• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)

• [notice no copy…why?]

3

2/7/2001 © 2001 Steve Gribble 5

File Access Methods

• Some file systems provide different access methods
that specify ways the application will access data
– sequential access

• read bytes one at a time, in order
– direct access

• random access given a block/byte #
– record access

• file is array of fixed- or variable-sized records
– indexed access

• FS contains an index to a particular field of each record in a file
• apps can find a file based on value in that record (similar to DB)

• Why do we care about distinguishing sequential from
direct access?
– what might the FS do differently in these cases?

2/7/2001 © 2001 Steve Gribble 6

Directories

• Directories provide:
– a way for users to organize their files
– a convenient file name space for both users and FS’s

• Most file systems support multi-level directories
– naming hierarchies (/, /usr, /usr/local, /usr/local/bin, …)
– pop quiz: are UNIX file systems trees?

• hint: what about symbolic links?

• Most file systems support the notion of current
directory
– absolute names: fully-qualified starting from root of FS

bash$ cd /usr/local

– relative names: specified with respect to current directory
bash$ cd /usr/local (absolute)
bash$ cd bin (relative, equivalent to cd /usr/local/bin)

4

2/7/2001 © 2001 Steve Gribble 7

Directory Internals

• A directory is typically just a file that happens to
contain special metadata
– directory = list of (name of file, file attributes)
– attributes include such things as:

• size, protection, location on disk, creation time, access time, …

– the directory list is usually unordered (effectively random)
• when you type “ls”, the “ls” command sorts the results for you

2/7/2001 © 2001 Steve Gribble 8

Path Name Translation

• Let’s say you want to open “/one/two/three”
fd = open(“/one/two/three”, O_RDWR);

• What goes on inside the file system?
– open directory “/” (well known, can always find)
– search the directory for “one”, get location of “one”

– open directory “one”, search for “two”, get location of “two”
– open directory “two”, search for “three”, get loc. of “three”
– open file “three”
– (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths
– this is why open is separate from read/write (session state)
– OS will cache prefix lookups to enhance performance

• /a/b, /a/bb, /a/bbb all share the “/a” prefix

5

2/7/2001 © 2001 Steve Gribble 9

Protection Systems

• FS must implement some kind of protection system
– to control who can access a file (user)
– to control how they can access it (e.g., read, write, or exec)

• More generally:
– generalize files to objects (the “what”)
– generalize users to principles (the “who”, user or program)
– generalize read/write to actions (the “how”, or operations)

• A protection system dictates whether a given action
performed by a given subject on a given object
should be allowed
– e.g., you can read or write your files, but others cannot
– e.g., your can read /etc/motd but you cannot write to it

2/7/2001 © 2001 Steve Gribble 10

Model for Representing Protection

• Two different ways of thinking about it:
– access control lists (ACLs)

• for each object, keep list of subjects and subj’s allowed actions

– capabilities
• for each subject, keep list of objects and subj’s allowed actions

• Both can be represented with the following matrix:

rguest

rrwrgribble

rwrwrwroot

/home/guest/home/gribble/etc/passwd

subjects

objects

ACL

capability

6

2/7/2001 © 2001 Steve Gribble 11

ACLs vs. Capabilities

• Capabilities are easy to transfer
– they are like keys: can hand them off
– they make sharing easy

• ACLs are easier to manage
– object-centric, easy to grant and revoke

• to revoke capability, need to keep track of subjects that have it
• hard to do, given that subjects can hand off capabilities

• ACLs grow large when object is heavily shared
– can simplify by using “groups”

• put users in groups, put groups in ACLs
• you are all in the “VMware powerusers ” group on Win2K

– additional benefit
• change group membership, affects ALL objects that have this

group in its ACL

