CSE 451: Operating Systems
Winter 2001

Lecture 1
Course Introduction
Steve Gribble

gribble@cs.washington.edu
323B Sieg Hall

Today’s agenda

* Administrivia
— overview of course
¢ projects, assignments, exams, ...
* sections
— overloading

* OS overview
— functional
¢ resource mgmt, major issues
— historical
¢ batch systems, multiprogramming, time shared OS’s
¢ PC's, networked computers

1/2/01 © 2001 Steve Gribble




Course overview

» Everything you need to know will be on the course
web page:

http://mww.cs.washington.edu/education/courses/cse451/01wi

1/2/01 © 2001 Steve Gribble 3

Overloading

» There are 60 slots available in the course

— ...60 people have already signed up

— ...and ~15 more people that want to get in

— unfortunately, our TA and lab resources are limited to

support 60 students, so we simply can’t overload.

 If you intend on dropping this course

— please do it soon!
 If you want to get into this course

— plan for the worst case (i.e. you don'’t get in)

— but, make sure you've sent me emalil

« | will keep track of slots that open, and let more people in either
based on need, or FIFO

1/2/01 © 2001 Steve Gribble 4




What is an Operating System?

* An operating system (OS) is:
— a software layer to abstract away and manage details of
hardware resources
— a set of utilities to simplify application development

Applications

oS

Hardware

— “all the code you didn’t write” in order to implement your
application

1/2/01 © 2001 Steve Gribble 5

The OS and Hardware

* An OS mediates programs’ access to hardware
resources

Computation (CPU)

Volatile storage (memory) and persistent storage (disk, etc.)

Network communications (TCP/IP stacks, ethernet cards, etc.)

Input/output devices (keyboard, display, sound card, etc.)

* The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
— processes (CPU, memory)
— files (disk)
¢ programs (sequences of instructions)
— sockets (network)

1/2/01 © 2001 Steve Gribble 6




Why bother with an OS?

» Application benefits
— programming simplicity

¢ see high-level abstractions (files) instead of low-level hardware
details (device registers)

¢ abstractions are reusable across many programs
— portability (across machine configurations or architectures)
¢ device independence: 3Com card or Intel card?

» User benefits

— safety
¢ program “sees” own virtual machine, thinks it owns computer
¢ OS protects programs from each other
e OS fairly multiplexes resources across programs

— efficiency (cost and speed)
+ share one computer across many users
¢ concurrent execution of multiple programs

1/2/01 © 2001 Steve Gribble 7

The Major OS Issues

e structure: how is the OS organized?
» sharing: how are resources shared across users?
* naming: how are resources named (by users or programs)?

» security: how is the integrity of the OS and its resources
ensured?

— protection: how is one user/program protected from another?
» performance: how do we make it all go fast?

» reliability: what happens if something goes wrong (either with
hardware or with a program)?

» extensibility: can we add new features?

e communication: how do programs exchange information,
including across a network?

1/2/01 © 2001 Steve Gribble 8




More OS issues...

» concurrency: how are parallel activities (computation and 1/0)
created and controlled?

» scale: what happens as demands or resources increase?

» persistence: how do you make data last longer than program
executions?

» distribution: how do multiple computers interact with each
other?

* accounting: how do we keep track of resource usage, and
perhaps charge for it?

1/2/01 © 2001 Steve Gribble 9

OS History

* In the very beginning...

— OS was just a library of code that you linked into your
program; programs were loaded in their entirety into
memory, and executed

— interfaces were literally switches and blinking lights

* And then came batch systems

— OS was stored in a portion of primary memory

— OS loaded the next job into memory from the card reader
¢ job gets executed
¢ output is printed, including a dump of memory (why?)
* repeat...

— card readers and line printers were very slow
* s0 CPU was idle much of the time (wastes $$)

1/2/01 © 2001 Steve Gribble 10




Spooling

» Disks were much faster than card readers and
printers

* Spool (Simultaneous Peripheral Operation On-Line)
— while one job is executing, spool next job from card reader
onto disk
¢ slow card reader /O is overlapped with CPU
— can even spool multiple programs onto disk
¢ OS must choose which to run next
* job scheduling

— but, CPU still idle when a program interacts with a peripheral
during execution

1/2/01 © 2001 Steve Gribble 11

Multiprogramming

* To increase system utilization, multiprogramming
OS’s were invented
keeps multiple runnable jobs loaded in memory at once

overlaps 1/0 of a job with computing of another
¢ while one job waits for I/O completion, OS runs instructions
from another job
to benefit, need asynchronous I/O devices
¢ need some way to know when devices are done
— interrupts
— polling
goal: optimize system throughput
¢ perhaps at the cost of response time...

1/2/01 © 2001 Steve Gribble 12




Timesharing

» To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself
— optimize response time, perhaps at the cost of throughput
» Timeslicing
— divide CPU equally among the users

— if job is truly interactive (e.g. editor), then can jump between
programs and users faster than users can generate load

— permits users to interactively view, edit, debug running
programs (why does this matter?)

* MIT Multics system (mid-1960’s) was the first large
timeshared system
— nearly all OS concepts can be traced back to Multics

1/2/01 © 2001 Steve Gribble 13

Distributed OS

 distributed systems to facilitate use of geographically
distributed resources
— workstations on a LAN
— servers across the Internet

* supports communications between jobs

— interprocess communication
¢ message passing, shared memory
— networking stacks

» sharing of distributed resources (hardware, software)
— load balancing, authentication and access control, ...

» speedup isn’t the issue
— access to diversity of resources is goal

1/2/01 © 2001 Steve Gribble 14




Parallel OS

* Some applications can be written as multiple parallel
threads or processes
— can speed up the execution by running multiple
threads/processes simultaneously on multiple CPUs
— need OS and language primitives for dividing program into
multiple parallel activities
— need OS primitives for fast communication between activities

¢ degree of speedup dictated by communication/computation
ratio

— many flavors of parallel computers
¢ SMPs (symmetric multi-processors)
¢ MPPs (massively parallel processors)
¢« NOWs (networks of workstations)
¢ computational grid (SETI @home)

1/2/01 © 2001 Steve Gribble 15

Embedded OS

» Ubiquitous computing
— cheap processors embedded everywhere
— how many are on your body now? in your car?
— cell phones, PDAs, network computers, ...
» Typically very constrained hardware resources
— slow processors
— very small amount of memory (e.g. 8 MB)
— no disk
— typically only one dedicated application

1/2/01 © 2001 Steve Gribble 16




CSE 451

* In this class we will learn:

what are the major components to most OS’s?

how are the components structured?

what are the most important (common?) interfaces?
what policies are typically used in an OS?

what algorithms are used to implement policies?

1/2/01 © 2001 Steve Gribble 17




