
1

CSE 451: Operating Systems
Winter 2001

Lecture 1
Course Introduction

Steve Gribble
gribble@cs.washington.edu

323B Sieg Hall

1/2/01 © 2001 Steve Gribble 2

Today’s agenda

• Administrivia
– overview of course

• projects, assignments, exams, …
• sections

– overloading

• OS overview
– functional

• resource mgmt, major issues

– historical
• batch systems, multiprogramming, time shared OS’s
• PC’s, networked computers

2

1/2/01 © 2001 Steve Gribble 3

Course overview

• Everything you need to know will be on the course
web page:

http://www.cs.washington.edu/education/courses/cse451/01wi

1/2/01 © 2001 Steve Gribble 4

Overloading

• There are 60 slots available in the course
– …60 people have already signed up
– …and ~15 more people that want to get in
– unfortunately, our TA and lab resources are limited to

support 60 students, so we simply can’t overload.

• If you intend on dropping this course
– please do it soon!

• If you want to get into this course
– plan for the worst case (i.e. you don’t get in)
– but, make sure you’ve sent me email

• I will keep track of slots that open, and let more people in either
based on need, or FIFO

3

1/2/01 © 2001 Steve Gribble 5

What is an Operating System?

• An operating system (OS) is:
– a software layer to abstract away and manage details of

hardware resources
– a set of utilities to simplify application development

– “all the code you didn’t write” in order to implement your
application

Applications

OS

Hardware

1/2/01 © 2001 Steve Gribble 6

The OS and Hardware

• An OS mediates programs’ access to hardware
resources
– Computation (CPU)
– Volatile storage (memory) and persistent storage (disk, etc.)
– Network communications (TCP/IP stacks, ethernet cards, etc.)
– Input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
– processes (CPU, memory)
– files (disk)

• programs (sequences of instructions)

– sockets (network)

4

1/2/01 © 2001 Steve Gribble 7

Why bother with an OS?
• Application benefits

– programming simplicity
• see high-level abstractions (files) instead of low-level hardware

details (device registers)
• abstractions are reusable across many programs

– portability (across machine configurations or architectures)
• device independence: 3Com card or Intel card?

• User benefits
– safety

• program “sees” own virtual machine, thinks it owns computer
• OS protects programs from each other
• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

1/2/01 © 2001 Steve Gribble 8

The Major OS Issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources

ensured?
– protection: how is one user/program protected from another?

• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with

hardware or with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information,

including across a network?

5

1/2/01 © 2001 Steve Gribble 9

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each

other?
• accounting: how do we keep track of resource usage, and

perhaps charge for it?

1/2/01 © 2001 Steve Gribble 10

OS History

• In the very beginning…
– OS was just a library of code that you linked into your

program; programs were loaded in their entirety into
memory, and executed

– interfaces were literally switches and blinking lights

• And then came batch systems
– OS was stored in a portion of primary memory
– OS loaded the next job into memory from the card reader

• job gets executed
• output is printed, including a dump of memory (why?)
• repeat…

– card readers and line printers were very slow
• so CPU was idle much of the time (wastes $$)

6

1/2/01 © 2001 Steve Gribble 11

Spooling

• Disks were much faster than card readers and
printers

• Spool (Simultaneous Peripheral Operation On-Line)
– while one job is executing, spool next job from card reader

onto disk
• slow card reader I/O is overlapped with CPU

– can even spool multiple programs onto disk
• OS must choose which to run next
• job scheduling

– but, CPU still idle when a program interacts with a peripheral
during execution

1/2/01 © 2001 Steve Gribble 12

Multiprogramming

• To increase system utilization, multiprogramming
OS’s were invented
– keeps multiple runnable jobs loaded in memory at once
– overlaps I/O of a job with computing of another

• while one job waits for I/O completion, OS runs instructions
from another job

– to benefit, need asynchronous I/O devices
• need some way to know when devices are done

– interrupts

– polling

– goal: optimize system throughput
• perhaps at the cost of response time…

7

1/2/01 © 2001 Steve Gribble 13

Timesharing

• To support interactive use, create a timesharing OS:
– multiple terminals into one machine
– each user has illusion of entire machine to him/herself
– optimize response time, perhaps at the cost of throughput

• Timeslicing
– divide CPU equally among the users
– if job is truly interactive (e.g. editor), then can jump between

programs and users faster than users can generate load
– permits users to interactively view, edit, debug running

programs (why does this matter?)

• MIT Multics system (mid-1960’s) was the first large
timeshared system
– nearly all OS concepts can be traced back to Multics

1/2/01 © 2001 Steve Gribble 14

Distributed OS

• distributed systems to facilitate use of geographically
distributed resources
– workstations on a LAN
– servers across the Internet

• supports communications between jobs
– interprocess communication

• message passing, shared memory

– networking stacks

• sharing of distributed resources (hardware, software)
– load balancing, authentication and access control, …

• speedup isn’t the issue
– access to diversity of resources is goal

8

1/2/01 © 2001 Steve Gribble 15

Parallel OS

• Some applications can be written as multiple parallel
threads or processes
– can speed up the execution by running multiple

threads/processes simultaneously on multiple CPUs
– need OS and language primitives for dividing program into

multiple parallel activities
– need OS primitives for fast communication between activities

• degree of speedup dictated by communication/computation
ratio

– many flavors of parallel computers
• SMPs (symmetric multi-processors)
• MPPs (massively parallel processors)
• NOWs (networks of workstations)
• computational grid (SETI @home)

1/2/01 © 2001 Steve Gribble 16

Embedded OS

• Ubiquitous computing
– cheap processors embedded everywhere
– how many are on your body now? in your car?
– cell phones, PDAs, network computers, …

• Typically very constrained hardware resources
– slow processors
– very small amount of memory (e.g. 8 MB)
– no disk
– typically only one dedicated application

9

1/2/01 © 2001 Steve Gribble 17

CSE 451

• In this class we will learn:
– what are the major components to most OS’s?
– how are the components structured?
– what are the most important (common?) interfaces?
– what policies are typically used in an OS?
– what algorithms are used to implement policies?

