Zheng Fan, Karlen Lie, Gene Ma, and Maya Widyasari

CSE 451 – Group G

Programming Assignment #1

Write Up
CONDITION VARIABLES

Condition variables consist of just a queue of waiting threads unlike semaphores, which have state also. Each Condition variable has a queue member, which holds the threads that are waiting for the condition variable. In implementing condition variables we also had to implement the Lock class. The Lock class also has a queue to keep track of all the threads that are waiting for the lock to be released. A thread can either acquire or release a lock and must acquire a lock before it can access any of the functions of the condition variable. The Lock::Acquire function will associate the lock with the thread if it is not already held, but if it is already held the thread that tries to acquire the lock will be put in the locks queue. When we call the Lock::Release function, if there are threads waiting for the lock we then remove the first thread from the queue and place it in the ready list. We also implemented the wait, signal and broadcast functions for the Condition variable class. In Wait we first check to see if the thread is the one holding the lock and if so release the lock and put ourselves to sleep then acquire the lock again (which will happen when the thread runs again). In Signal we check the queue and see if there is a thread there and if so we wake it up by putting in on the ready list. Finally in Broadcast we wake up all the threads by removing all threads in the queue and placing them on the ready list.

To test our implementation of condition variables and locks we decided to wait and implement the mailbox and whale-mating parts of the assignment first. We then would be able to test and make sure that our condition variables and locks were implemented correctly because these other two parts relied on correct implementation of condition variables and locks.

MAILBOX

For the Mailbox problem, we implemented a class called Mailbox. The methods of the Mailbox class includes Mailbox::Recieve(int * message) and Mailboxl::Send (int message) which represent sender and receiver. The private members of Mailbox include three conditional variables (sender, receiver, mailbox) and three int counters (receiver count, sender count and mail_count). The integer counter (receiver count and sender count) keeps tracks how many sender and receivers are currently waiting. Upon entering Mailbox:send and Mailbox:recieve send_count and reciever_count will be incremented, upon leaving Mailbox:receive and Mailbox:send send_count and reciever_count will be incremented.

Mailbox:send and Mailbox:receive functioning as following:

Both Sender and receiver will block if the count of other side is less than 1. Both Sender and receiver will signal if the count of other side is bigger than 0. Once sender and receiver both are present, sender can put message in and receiver can take message out. However we need to ensure that sender put the message in to mail box before receiver try to retrieve the message. In order to do this we use another conditional variable mailbox and a counter mailcount. Receiver waits on mailbox until sender signal it to pick up the message.

Both Mailbox:send and Mailbox:receive are enclosed by lock.acquire/lock.release pairs to assure atomic operation.

Now let’s look at two simple cases: 1.Receiver come in first, sender come in afterward; 2. Sender come in first, Receiver come in second.

1. Receiver go in first

Receiver:

Go in found out there is no sender (sender_count<1), then wait for sender, After sender wake receiver up, receiver will need to wait for sender to put the mail into box, receiver then get the message, decrement message count, decrement the receiver counts.

Sender:

Once sender come in, sender found out there is a receiver waiting, it will wake up receiver, then it check if there is a receiver waiting and mail box is empty. It then put the mail in the box, signal receiver that mail is in the box, increment the mailcount decrement sender count.

2. Sender go in first

Sender: send comes in first, found there is no receiver currently, mail box is empty, so it wait for the receiver to come in. Once a receiver come in and wake up sender, sender will put message in the box, increment the mail count and signal receiver to pick it up, it then decrement sender count,

Receiver:

There is a sender, wake the sender up, if mail is not ready wait until sender signal it's ready, get the message, decrement

Mail_count, decrement the receiver count.

JOIN

Join is implemented by adding 2 private boolean variables and a condition variable in the thread object. The boolean variable, isJoin, is used as a flag to indicate whether or not join to this thread will be allowed. The other boolean, isThreadDone, is used as a flag to indicate whether the thread has finished executing its job. If a thread is done executing its job, therefore another thread calling join to this thread will just continue executing. NOTE : currently, we are not deleting threads that are joinable. This is because if such thread gets deleted before threads waiting on him runs after being signalled, it will result in segmentation fault.

If a thread has not finish executing its job and other thread wants to join then the current thread will be put in the condition variable queue and wait until the joining thread is done.

PREEMPTIVE PRIORITY SCHEDULING

To implement preemptive priority scheduling in nachos we first had to associate with each thread a given priority. We then changed the ready list (in scheduler) from a normal queue to a priority queue, which is sorted by the priority of the threads, with the highest priority thread at the head of the queue. Then each time a thread is put in the ready list (in the Scheduler::ReadyToRun function) we check if this thread to be added has a greater priority than the current running thread and if so we place the current thread in the ready list and run the higher priority thread. Also, for our locks, semaphores and condition variables we implemented the queues associated with them to be priority queues and so the highest priority thread will be woken up first.

To add priority inversion, we created three new private member variables to the thread class:

· Priority – holds current thread’s priority

· Original priority – holds user specified priority

· joinOrLock – holds the blocking status of the thread, as the thread can either be waiting on a lock or be waiting on a join.

Each thread now also has a pointer to a list of the locks, which that thread holds, a pointer to the thread that it is blocking on and a pointer to the lock, which the thread is blocking on. So each time a thread tries to acquire a lock that is already being held, the thread will check if it’s priority is higher than the priority of the thread holding the lock and if it is the thread will donate (using the other thread’s ReceivePriority function) it’s priority to the lower priority thread which is blocking. The thread holding the lock now will have the highest priority and will tell all other thread in the waiting queue that it is the thread that is currently blocking. If a thread holds more than one lock and it needs the priority to be bumped up more than once, it will work because once a first higher priority thread tries to acquire a held lock it will donate its priority and if another higher priority thread tries to acquire a held lock it will also donate it’s priority and so on. Once we are done with the lock and release it, the thread will traverse through it’s list of held locks finding the highest priority of all the threads it is blocking and take on that threads priority and then will wake up all the threads waiting on the released lock’s queue, give them back their original priority, reinsert them in the queue and run the one at the head of the queue (the one with the highest priority).

Similar situation also occurs when a thread calls join on another thread. The join function will invoke receivePriority() on itself (the thread being joined on) to check whether the priority of the thread being joined on needs to be bumped up.

In addition, the priority inversion also works on a chain of waiting processes, regardless of whether they are blocking on a lock or on a join. For example, if initially we have T10 with priority 10 holding a lock L1. Then if we fork another thread, T5 with priority 5, which then try to acquire L1, this thread will block, and then bump up T10’s priority to 5. If, another thread, T1, with priority 1, calls a join on T5, since T5 is waiting on T10, in our implementation, T10 and T5 will both get T1’s priority.

In testing our implementation of priority scheduling and priority inversion we created several test cases, which a low priority thread holds several locks and at different time a higher priority thread will try to acquire the low priority threads locks. Our test shows that indeed the low priority thread was able to receive the priorities of the blocked threads. One example test case is, we had a priority 10 thread (T10) hold lock1 and lock2. Then a priority 5 thread (T5) tried to acquire lock1, but was blocked and it successfully donated it’s 5 to the T10 thread. T10 then released lock1 and T5 acquired lock1, but tries to acquire lock2, but is blocked by T10. Then a third thread with priority 3 (T3) tries to acquire lock1, but is blocked by T5. We successfully saw that the T10, which blocked T5, which in turn blocked T3, received the priority of 3. Then T10 releases lock2, giving T5 the priority of 3 and T10 getting back its original priority of 10. T5 is then next to release lock1 and gave T3 back its priority of 3. We successfully saw that the lower thread's priority was able to be bumped up and down.

We were also able to test if we could indirectly change thread priorities. In our test case we have a thread T10, of priority 10, holding 2 locks. Another thread T5, of priority 5, tries to acquire the second lock, but is blocked by T10 and so T10 now gets the priority of 5. Then T10 released lock1 and T5 is now able to acquire lock1, but tries to acquire lock2, but is blocked again by T10, which again has a priority of 5. Then third thread T3, of priority 3, tries to acquire lock1, but is blocked by T5. T10 still hold lock2 and is blocking T5 and in turn T5 holds lock1 blocking T3. Thus, after running our test case we see that T10 correctly receives the priority of 3 till it releases lock2. Even though T10 was not directly blocking the higher priority thread T3, it was still able to invert its priority with T3.

WHALE MATING

Description

The whale mating functionality is implemented in the WhaleMater module. It basically consists of 3 condition variables where the 3 different whales can wait on; i.e the female whale will wait on a queue, the male whale will wait on another queue, while the matchmaker whale will wait on yet another queue. It also has a mutex lock which synchronizes access to these 3 condition variables and the data structure associated with them.

Implementation

When any of the male, female, or the matchmaker whales are ready to do some mating, or matchmaking, they will call their respective function: Male, Female, and Matchmaker. All three functions basically do the same thing. They will first increment the number of whale waiting. So if a male whale comes in, after acquiring the mutex, it will increment the male_count. Then all the function will call a test function, passing it its type of whale as a parameter, e.g male. This test function will return either false or true.

If the test function returns a true, it means the whale is allowed to mate, and thus it returns. Otherwise, if the test function returns false, the whale will have to wait on the condition variable.

The test function also has other function. Depending of the type of whale that calls it, if it sees enough of other type of whales available (when it will return true), it will signals those other whales. After that, it will decrement the count of all three types of whales, signifying there are one less of each whales available for mating, then it returns.

The idea behind this is to synchronize the decrement operation, such that if one is decrement, the other two types of whale will also be decremented. This code is safe because even though if there is an interrupt during the decrement operation, no other whale can run, since the whale running in the test function is still holding the mutex.

Another piece of curiosity is the fact that a whale only needs to call test once (doing if instead of while). This is because we are assured of the atomic "decrement" stated above. Without that, we won't be able to do this.
We believe that all group members contributed equally to this project. Most of the assignment was worked on together as a group and each member of the group worked hard to make sure all parts of this assignment were implemented not only correctly, but as efficient as we could make it. Even the testing and write up was done collectively as a group.

