

Operating System

Windows 2000 Kerberos Authentication

White Paper

Abstract

The next generation of the Microsoft® Windows® operating system will adopt Kerberos as the default

protocol for network authentication. An emerging standard, Kerberos provides a foundation for

interoperability while enhancing the security of enterprise-wide network authentication.

Windows 2000 implements Kerberos version 5 with extensions for public key authentication. The

Kerberos client is implemented as a security provider through the Security Support Provider Interface.

Initial authentication is integrated with the Winlogon single sign-on architecture. The Kerberos Key

Distribution Center (KDC) is integrated with other Windows 2000 security services running on the

domain controller and uses the domain’s Active Directory as its security account database.

This white paper examines components of the protocol and provides detail on its implementation.

© 1999 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Active Desktop, BackOffice, the BackOffice logo, MSN, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of
their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

0999

,1752'8&7,21 �� �
Authentication in Windows 2000 1
Benefits of Kerberos Authentication 1
Standards for Kerberos Authentication 2
Extensions to the Kerberos Protocol 3

29(59,(:�2)�7+(�.(5%(526�35272&2/ ����������������������������� �
Basic Concepts 4

Authenticators 4
Key Distribution 6
Session Tickets 7
Ticket-Granting Tickets 9
Authentication Across Domain Boundaries 10

Subprotocols 11
AS Exchange 11
TGS Exchange 12
CS Exchange 13

Tickets 14
What Is in a Ticket 14
What Clients Know About Tickets 15
How the KDC Limits a Ticket’s Lifetime 15
What Happens When Tickets Expire 16
Renewable TGTs 16

Delegation of Authentication 17
Proxy Tickets 17
Forwarded Tickets 18

.(5%(526�&20321(176�,1�:,1'2:6���������������������������� ��
Key Distribution Center 19
Account Database 19
Kerberos Policy 20
Delegation of Authentication 21
Preauthentication Error! Bookmark not defined.
Kerberos Security Support Provider 22
Credentials Cache 23
DNS Name Resolution 24
IP Transport 24

$87+25,=$7,21�'7�� ��
Access Control in Windows 2000 26
How the KDC Prepares Authorization Data 27
How Services Use Authorization Data 28
Why Authorization Data Is Signed 29

,17(5$&7,9(�/2*21 �� ��
The Logon Process 30

&217(176�

Password Logon 31
Smart Card Logon 33
Preauthentication Data 34

5(027(�/2*21 ��� ��
Security Support Provider Interface 35
Security Support Provider Negotiation 36
Example: Opening a File on a Remote Server 36

Negotiating a Security Support Provider 36
How the Client Initiates Authentication 37
How the Server Responds 37
Mutual Authentication 37

Example: Cross-Domain Authentication 38

,17(523(5$%,/,7< ��� ��
Scenarios 41
For More Information 42

 Windows 2000 White Paper 1

This paper provides a technical introduction to how the Microsoft® Windows® 2000

operating system implements the Kerberos version 5 authentication protocol. The

paper includes detailed explanations of important concepts, architectural elements,

and features of Kerberos authentication. The first section, “Overview of the

Kerberos Protocol,” is for anyone unfamiliar with Kerberos authentication. Following

this introduction to the protocol are several sections with details of Microsoft’s

implementation in Windows 2000. The paper concludes with a brief discussion of

requirements for interoperability with other implementations.

$XWKHQWLFDWLRQ�LQ�:LQGRZV������

Windows 2000 supports several protocols for verifying the identities of users who

claim to have accounts on the system, including protocols for authenticating dial-up

connections and protocols for authenticating external users who access the network

over the Internet. But there are only two choices for network authentication within

Windows 2000 domains:

• Kerberos Version 5. The Kerberos version 5 authentication protocol is the

default for network authentication on computers with Windows 2000.

• Windows NT LAN Manager (NTLM). The NTLM protocol was the default for

network authentication in the Windows NT® 4.0 operating system. It is retained

in Windows 2000 for compatibility with downlevel clients and servers. NTLM is

also used to authenticate logons to standalone computers with Windows 2000.

Computers with Windows 3.11, Windows 95, Windows 98, or Windows NT 4.0 will

use the NTLM protocol for network authentication in Windows 2000 domains.

Computers running Windows 2000 will use NTLM when authenticating to servers

with Windows NT 4.0 and when accessing resources in Windows NT 4.0 domains.

But the protocol of choice in Windows 2000, when there is a choice, is Kerberos

version 5.

%HQHILWV�RI�.HUEHURV�$XWKHQWLFDWLRQ�

The Kerberos protocol is more flexible and efficient than NTLM, and more secure.

The benefits gained by using Kerberos authentication are:

• More efficient authentication to servers. With NTLM authentication, an

application server must connect to a domain controller in order to authenticate

each client. With Kerberos authentication, the server does not need to go to a

domain controller. It can authenticate the client by examining credentials

presented by the client. Clients can obtain credentials for a particular server once

and reuse them throughout a network logon session.

• Mutual authentication. NTLM allows servers to verify the identities of their

clients. It does not allow clients to verify a server’s identity, or one server to verify

the identity of another. NTLM authentication was designed for a network

environment in which servers were assumed to be genuine. The Kerberos

protocol makes no such assumption. Parties at both ends of a network

connection can know that the party on the other end is who it claims to be.

,1752'8&7,21�

Windows 2000 White Paper 2

• Delegated authentication. Windows services impersonate clients when

accessing resources on their behalf. In many cases, a service can complete its

work for the client by accessing resources on the local computer. Both NTLM

and Kerberos provide the information that a service needs to impersonate its

client locally. However, some distributed applications are designed so that a

front-end service must impersonate clients when connecting to back-end

services on other computers. The Kerberos protocol has a proxy mechanism that

allows a service to impersonate its client when connecting to other services. No

equivalent is available with NTLM.

• Simplified trust management. One of the benefits of the Kerberos protocol is

that trust between the security authorities for Windows 2000 domains is by

default two-way and transitive. Networks with multiple domains no longer require

a complex web of explicit, point-to-point trust relationships. Instead, the many

domains of a large network can be organized in a tree of transitive, mutual trust.

Credentials issued by the security authority for any domain are accepted

everywhere in the tree. If the network includes more than one tree, credentials

issued by a domain in any tree are accepted throughout the forest.

• Interoperability. Microsoft’s implementation of the Kerberos protocol is based

on standards-track specifications recommended to the Internet Engineering Task

Force (IETF). As a result, the implementation of the protocol in Windows 2000

lays a foundation for interoperability with other networks where Kerberos version

5 is used for authentication.

6WDQGDUGV�IRU�.HUEHURV�$XWKHQWLFDWLRQ�

The Kerberos protocol originated at MIT more than a decade ago, where it was

developed by engineers working on Project Athena.1 The first public release of the

protocol was Kerberos version 4. Following wide industry review of the protocol, its

authors developed and released Kerberos version 5. That version is now on a

standards track with the IETF. The implementation of the protocol in Windows 2000

closely follows the specification defined in Internet RFC 1510.2 In addition, the

mechanism and format for passing security tokens in Kerberos messages follows

the specification defined in Internet RFC 1964.3

1
 Miller, S., Neuman, C., Schiller, J., and J. Saltzer, “Section E.2.1: Kerberos Authentication and

Authorization System,” MIT Project Athena, Cambridge, MA, December 1987.
2
 Kohl, J., and C. Neuman, “The Kerberos Network Authentication Service (V5),” RFC 1510, September

1993.
3
 Linn, J., “The Kerberos Version 5 GSS-API Mechanism,” RFC 1964, June 1996.

 Windows 2000 White Paper 3

([WHQVLRQV�WR�WKH�.HUEHURV�3URWRFRO�

Windows 2000 implements extensions to the Kerberos protocol that permit initial

authentication using public key certificates rather than conventional shared secret

keys. This enhancement allows the protocol to support interactive logon with a

smart card. The extensions for public key authentication are based on a draft

specification submitted to the IETF working group by a number of third parties with

interests in public key technology.4 Microsoft is participating in the standards

process and will continue to support its efforts.

4
 Tung, B., Neuman, C., Wray, J., Medvinsky, A., Hur, M., and J. Trostle, “Public Key Cryptography for

Initial Authentication in Kerberos,” draft-ietf-cat-kerberos-pk-init.

Windows 2000 White Paper 4

The Kerberos authentication protocol provides a mechanism for mutual

authentication between a client and a server, or between one server and another,

before a network connection is opened between them. The protocol assumes that

initial transactions between clients and servers take place on an open network

where most computers are not physically secure, and packets traveling along the

wire can be monitored and modified at will. The assumed environment, in other

words, is very much like today’s Internet, where an attacker can easily pose as

either a client or a server, and can readily eavesdrop on or tamper with

communications between legitimate clients and servers.

%DVLF�&RQFHSWV�

The Kerberos protocol relies heavily on an authentication technique involving

shared secrets. The basic concept is quite simple: If a secret is known by only two

people, then either person can verify the identity of the other by confirming that the

other person knows the secret.

For example, let’s suppose that Alice often sends messages to Bob and that Bob

needs to be sure that a message from Alice really has come from Alice before he

acts on its information. They decide to solve their problem by selecting a password,

and they agree not to share this secret with anyone else. If Alice’s messages can

somehow demonstrate that the sender knows the password, Bob will know that the

sender is Alice.

The only question left for Alice and Bob to resolve is how Alice will show that she

knows the password. She could simply include it somewhere in her messages,

perhaps in a signature block at the end—Alice, Our$ecret. This would be simple

and efficient and might even work if Alice and Bob can be sure that no one else is

reading their mail. Unfortunately, that is not the case. Their messages pass over a

network used by people like Carol, who has a network analyzer and a hobby of

scanning traffic in hope that one day she might spot a password. So it is out of the

question for Alice to prove that she knows the secret simply by saying it. To keep

the password secret, she must show that she knows it without revealing it.

The Kerberos protocol solves this problem with secret key cryptography. Rather

than sharing a password, communication partners share a cryptographic key, and

they use knowledge of this key to verify one another’s identity. For the technique to

work, the shared key must be symmetric—a single key must be capable of both

encryption and decryption. One party proves knowledge of the key by encrypting a

piece of information, the other by decrypting it.

$XWKHQWLFDWRUV�

A simple protocol that uses secret key authentication begins when someone is

outside a communications door and wants to go in. To gain entry, this person

presents an authenticator in the form of a piece of information encrypted in the

secret key. The information in the authenticator must be different each time the

protocol is executed, otherwise an old authenticator could be reused by anyone who

happens to overhear the communication. On receiving an authenticator, the person

29(59,(:�2)�7+(�

.(5%(526�35272&2/�

 Windows 2000 White Paper 5

guarding the door decrypts it and knows from what is inside whether decryption was

successful. If it was successful, the doorkeeper knows that the person presenting

the authenticator has the correct key. Only two people have the correct key; the

doorkeeper is one of them, so the person who presented the authenticator must be

the other.

If the person outside the door wants mutual authentication, the same protocol can

be executed in reverse, with a slight difference. The doorkeeper can extract part of

the information from the original authenticator, encrypt it in a new authenticator, and

then give the new authenticator to the person waiting outside the door. The person

outside the door can then decrypt the doorkeeper’s authenticator and compare the

result with the original. If there is a match, the person outside the door will know that

the doorkeeper was able to decrypt the original, so he must have the correct key.

It will help to walk through an example. Suppose Alice and Bob decide that before

transferring any information between their computers, each will use knowledge of a

shared secret key to verify the identity of the party at the other end of the

connection. In situations where Alice is the wary guest and Bob is the suspicious

host, they agree to follow this protocol:

1. Alice sends Bob a message containing her name in plaintext and an

authenticator encrypted in the secret key she shares with Bob. In this protocol,

the authenticator is a data structure with two fields. One field contains

information about Alice. For simplicity, let’s say this is another instance of her

name. The second field contains the current time on Alice’s workstation.

2. Bob receives the message, sees that it is from someone claiming to be Alice,

and uses the key he shares with Alice to decrypt the authenticator. He extracts

the field that contains the time on Alice’s workstation, and evaluates the time.

 Bob’s task will be easier if his clock is reasonably synchronized with Alice’s, so

let’s suppose both Alice and Bob use a network time service to keep their clocks

fairly close. Let’s say the time skew is never more than five minutes. This way,

Bob can compare the time from the authenticator with the current time on his

clock. If the difference is greater than five minutes, he can automatically reject

the authenticator.

 If the time is within the allowable skew, it’s probable that the authenticator came

from Alice, but Bob still does not have proof that the authenticator actually came

from her. Another person might have been watching network traffic and might

now be replaying an earlier attempt by Alice to establish a connection with Bob.

However, if Bob has recorded the times of authenticators received from Alice

during the past five minutes, he can defeat attempts to replay earlier messages

by rejecting any message with a time that is the same as or earlier than the time

of the last authenticator. If this authenticator yields a time later than the time of

the last authenticator from Alice, then this message must be from Alice.

3. Bob uses the key he shares with Alice to encrypt the time taken from Alice’s

message and sends the result back to her.

Windows 2000 White Paper 6

Note that Bob does not send back all of the information taken from Alice’s

authenticator, just the time. If he sent back everything, Alice would have no way

of knowing whether someone posing as Bob had simply copied the authenticator

from her original message and sent it back to her unchanged. He sends just a

piece of the information in order to demonstrate that he was able to decrypt the

authenticator and manipulate the information inside. He chooses the time

because that is the one piece of information that is sure to be unique in Alice’s

message to him.

 Alice receives Bob’s reply, decrypts it, and compares the result with the time in

her original authenticator. If the times match, she can be confident that her

authenticator reached someone who knows the secret key needed to decrypt it

and extract the time. She shares that key only with Bob, so it must be Bob who

received her message and replied.

A
lic

e

B
ob

"I’m Alice", KAB{Alice, timestamp}

KAB{timestamp}

1

4

2

3

Figure 1: Mutual authentication (Alice-Bob)

.H\�'LVWULEXWLRQ�

One problem with the simple protocol described in the preceding section is that it

does not explain how or where Alice and Bob got a secret key to use in sessions

with each other. If they are people, Alice and Bob could meet, perhaps in an alley,

and agree on a secret key. But that method will not work if Alice is a client program

that is running on a workstation and Bob is a service that is running on a network

server. There is also the further problem that the client, Alice, will want to talk to

many servers and will need keys for each of them. Likewise, the service, Bob, will

talk to many clients and will need keys for each of them as well. If each client needs

to have a key for every service, and each service needs one for every client, key

distribution could quickly become a tough problem to solve. And the need to store

and protect so many keys on so many computers would present an enormous

security risk.

The name of the Kerberos protocol suggests how it solves the problem of key

distribution. Kerberos (or Cerberus) was a figure in classical Greek mythology, a

fierce, three-headed dog who guarded the gates of the Underworld. Like Kerberos

the guard, Kerberos the protocol has three heads: a client, a server, and a trusted

third party to mediate between them. The trusted intermediary in the protocol is

known as the Key Distribution Center (KDC).

 Windows 2000 White Paper 7

The KDC is a service that runs on a physically secure server. It maintains a

database with account information for all security principals in its realm, the

Kerberos equivalent of a Windows 2000 domain. (We will continue to call them

domains.) Along with other information about each security principal, the KDC

stores a cryptographic key known only to the security principal and the KDC. This

key is used in exchanges between the security principal and the KDC and is known

as a long-term key. In most implementations of the protocol, it is derived from a

user’s logon password.

When a client wants to talk to a server, the client sends a request to the KDC, and

the KDC distributes a unique, short-term session key for the two parties to use

when they authenticate each other. The server’s copy of the session key is

encrypted in the server’s long-term key. The client’s copy of the session key is

encrypted in the client’s long-term key.

C
lie

nt

S
er

ve
r

Client wants Server

KClient{use SCS for Server}

KDC invents
session key

SCS
KServer{use SCS for Client}

Figure 2: Key Distribution (in theory)

In theory, the KDC could fulfill its role as a trusted intermediary by sending the

session key directly to each of the security principals involved, as illustrated above.

But, in practice, that procedure would be extremely difficult to implement. For one

thing, it would mean that the server would have to retain its copy of the session key

in memory while it waited for the client to call. Moreover, the server would need to

remember a key not just for this client but for every client who might ask for service.

Key management would consume considerable resources on the server and would

thus limit its scalability. In addition, given the vagaries of network traffic, a client’s

request for service might reach the server before the KDC’s message arrived there

with the session key. The server would have to suspend its reply to the client while

it waited to hear from the KDC. This would require the server to save state,

imposing still another burden on the server’s resources. What actually happens in

the Kerberos protocol is considerably more efficient.

6HVVLRQ�7LFNHWV�

The KDC responds to the client’s request to talk to a server by sending both copies

of the session key to the client, as shown in Figure 3. The client’s copy of the

session key is encrypted with the key that the KDC shares with the client. The

server’s copy of the session key is embedded, along with information about the

client, in a data structure called a session ticket. The entire structure is then

encrypted with the key that the KDC shares with the server. The ticket—with the

server’s copy of the session key safely inside—becomes the client’s responsibility to

Windows 2000 White Paper 8

manage until it contacts the server.

C
lie

nt

Client wants Server

KClient{use SCS for Server}, ticket = KServer{use SCS for Client}

KDC invents
session key

SCS

Figure 3: Key Distribution (in practice)

Note that the KDC is simply providing a ticket-granting service. It does not keep

track of its messages to make sure they reach the intended address. No harm will

be done if the KDC’s messages fall into the wrong hands. Only someone who

knows the client’s secret key can decrypt the client’s copy of the session key. Only

someone who knows the server’s secret key can read what is inside the ticket.

When the client receives the KDC’s reply, it extracts the ticket and the client’s copy

of the session key, putting both aside in a secure cache (located in volatile memory,

not on disk). When the client wants admission to the server, it sends the server a

message that consists of the ticket, which is still encrypted with the server’s secret

key, and an authenticator, which is encrypted with the session key. The ticket and

authenticator together are the client’s credentials to the server.

C
lie

nt

S
er

ve
r

SCS{Client, time}, ticket = KServer{use SCS for Client}

SCS{time}

Figure 4: Mutual authentication (Client/server)

When the server receives credentials from a client, it decrypts the session ticket

with its secret key, extracts the session key, and uses the session key to decrypt

the client’s authenticator. If everything checks out, the server knows that the client’s

credentials were issued by a trusted authority, the KDC. If the client has asked for

mutual authentication, the server uses its copy of the session key to encrypt the

timestamp from the client’s authenticator and returns the result to the client as the

server’s authenticator.

One benefit gained by using session tickets is that the server does not have to store

the session key that it uses in communicating with this client. It is the client’s

responsibility to hold a ticket for the server in its credentials cache and present the

ticket each time it wants access to the server. Whenever the server receives a

 Windows 2000 White Paper 9

session ticket from a client, it can use its secret key to decrypt the ticket and extract

the session key. When the server no longer needs the session key, it can discard it.

Another benefit is that the client does not need to go back to the KDC each time it

wants access to this particular server. Session tickets can be reused. As a

precaution against the possibility that someone might steal a copy of a ticket,

session tickets have an expiration time, specified by the KDC in the ticket’s data

structure. How long a ticket is valid depends on Kerberos policy for the domain.

Typically, tickets are good for no longer than eight hours, about the length of a

normal logon session. When the user logs off, the credentials cache is flushed and

all session tickets—as well as all session keys—are destroyed.

7LFNHW�*UDQWLQJ�7LFNHWV�

A user’s long-term key is derived from a password. When Alice logs on, for

example, the Kerberos client on her workstation accepts her password and then

converts it to a cryptographic key by passing the text of the password through a

one-way hashing function. (All implementations of Kerberos version 5 must support

DES-CBC-MD5. Other algorithms are permissible.) The result is Alice’s long-term

key.

The KDC gets its copy of Alice’s long-term key from her record in its account

database. When it receives a request from the Kerberos client on Alice’s

workstation, the KDC searches its database for Alice, pulls up her account record,

and takes her long-term key from a field in the record.

This process—computing one copy of the key from a password, fetching another

copy of the key from a database—actually takes place only once, when a user

initially logs on to the network. Immediately after accepting the user’s password and

deriving the user’s long-term key, the Kerberos client on the workstation requests a

session ticket and session key that it can use in subsequent transactions with the

KDC during this logon session.

The KDC responds to the client’s request by returning a session ticket for itself. This

special session ticket is called a ticket-granting ticket (TGT). Like an ordinary

session ticket, a TGT contains a copy of the session key that the service (in this

case the KDC) will use in communicating with the client. The message that returns

the TGT to the client also includes a copy of the session key that the client can use

in communicating with the KDC. The TGT is encrypted in the KDC’s long-term key.

The client’s copy of the session key is encrypted in the user’s long-term key.

When the client receives the KDC’s reply to its initial request, it uses its cached

copy of the user’s long-term key to decrypt its copy of the session key. It can then

discard the long-term key derived from the user’s password, for it is no longer

needed. In all subsequent exchanges with the KDC, the client uses the session key.

Like any other session key, this key is temporary, valid only until the TGT expires or

the user logs off. For that reason, it is called a logon session key.

From the client’s point of view, a TGT is just another ticket. Before it attempts to

connect to any service, the client first checks its credentials cache for a session

Windows 2000 White Paper 10

ticket to that service. If it does not have one, it checks the cache again for a TGT. If

it finds a TGT, the client fetches the corresponding logon session key from the

cache, uses this key to prepare an authenticator, and sends both the authenticator

and the TGT to the KDC, along with a request for a session ticket for the service. In

other words, gaining admission to the KDC is no different from gaining admission to

any other service in the domain—it requires a session key, an authenticator, and a

ticket (in this case, a TGT).

From the KDC’s point of view, TGTs allow it to shave a few nanoseconds off the

turnaround time for ticket requests. The KDC looks up the user’s long-term key only

once, when it grants an initial TGT. For all other exchanges with this client, the KDC

can decrypt the TGT with its own long-term key, extract the logon session key, and

use that to validate the client’s authenticator.

$XWKHQWLFDWLRQ�$FURVV�'RPDLQ�%RXQGDULHV�

The functions of the KDC are divided into two distinct services: an authentication

service whose job is to issue TGTs, and a ticket-granting service whose job is to

issue session tickets. This division of labor allows the Kerberos protocol to operate

across domain boundaries. A client can get a TGT from the authentication service

of one domain and use it to get session tickets from the ticket-granting service of

another domain.

To see how cross-domain authentication works, let’s first consider the simplest

case: a network with only two domains, East and West. If administrators for these

domains are members of the same organization, or if for some other reason they

are willing to treat the other domain’s users as their own, they can enable

authentication across domain boundaries simply by sharing an inter-domain key. (In

Windows 2000 this happens automatically when two domains establish a trust

relationship.) Once this is accomplished, the ticket-granting service of each domain

is registered as a security principal with the other domain’s KDC. As a result, the

ticket-granting service in each domain can treat the ticket-granting service in the

other domain as just another service, something for which properly authenticated

clients can request and receive session tickets.

When a user with an account in East wants access to a server with an account in

West, the Kerberos client on the user’s workstation sends a request for a session

ticket to the ticket-granting service in the user’s account domain, East. The ticket-

granting service in East sees that the desired server is not a security principal in its

domain, so it replies by sending the client a referral ticket. This is simply a TGT

encrypted with the inter-domain key that the KDC in East shares with the KDC in

West. The client uses the referral ticket to prepare a second request for a session

ticket, and this time sends the request to the ticket-granting service in the server’s

account domain, West. The ticket-granting service in West uses its copy of the inter-

domain key to decrypt the referral ticket. If decryption is successful, it sends the

client a session ticket to the desired server in its domain.

The referral process is more complicated on networks with more than two domains.

In theory, the KDC in each domain could establish a direct link to the KDC in every

 Windows 2000 White Paper 11

other domain on the network, in each case sharing a different inter-domain key. In

practice, the number and complexity of these relationships could easily become

unmanageable, especially on a large network. The Kerberos protocol solves the

problem by making direct links unnecessary. A client in one domain can get a ticket

to a server in another domain by traveling a referral path through one or more

intermediate domains.

For example, consider a network with three domains, East, West, and CorpHQ. The

KDC in East does not share an inter-domain key with the KDC in West, but both

East and West do share inter-domain keys with CorpHQ. In this case, when a user

with an account in East wants access to a server with an account in West, the

referral path begins at the KDC for the user’s account domain, East, passes through

an intermediate domain, CorpHQ, and ends at the KDC for the server’s account

domain, West. The client must send its request for a session ticket three times, to

three different KDCs.

1. The client asks the KDC for East to give it a ticket to the server in West.

 The KDC for East sends the client a referral ticket to the KDC for CorpHQ. This

ticket is encrypted in the inter-domain key East shares with CorpHQ.

2. The client asks the KDC for CorpHQ to give it a ticket to the server in West.

 The KDC for CorpHQ sends the client a referral ticket to the KDC for West. This

ticket is encrypted in the inter-domain key CorpHQ shares with West.

3. The client asks the KDC for West to give it a ticket to the server in West.

 The KDC for West sends back a ticket for the server.

6XESURWRFROV�

The Kerberos protocol is comprised of three subprotocols. The subprotocol in which

the KDC gives the client a logon session key and a TGT is known as the

Authentication Service (AS) Exchange. The subprotocol in which the KDC

distributes a service session key and a session ticket for the service is known as the

Ticket-Granting Service (TGS) Exchange. The subprotocol in which the client

presents the session ticket for admission to a service is called the Client/Server

(CS) Exchange.

To see how the three subprotocols work together, let’s look at how Alice, a user at a

workstation, gets access to Bob, a service on the network.

$6�([FKDQJH�

Alice begins by logging on to the network. She types her logon name and her

password. The Kerberos client on Alice’s workstation converts her password to an

encryption key and saves the result in its credentials cache.

The client then sends the KDC’s authentication service a Kerberos Authentication

Service Request (KRB_AS_REQ). The first part of this message identifies the user,

Alice, and the name of the service for which she is requesting credentials, the ticket-

Windows 2000 White Paper 12

granting service. The second part of the message contains preauthentication data

that proves Alice knows the password. This is usually a timestamp encrypted with

Alice’s long-term key, although the protocol permits other forms of

preauthentication data.

A
lic

e

Alice wants TGS, KAlice{Alice, time}

KAlice{use SAlice for TGS}, TGT = KTGS{use SAlice for Alice}

KDC
AS invents
session key

SAlice

KRB_AS_REQ

KRB_AS_REP

Figure 5: AS Exchange

When the KDC receives KRB_AS_REQ, it looks up the user Alice in its database,

gets her long-term key, decrypts the preauthentication data, and evaluates the

timestamp inside. If the timestamp passes the test, the KDC can be assured that

the preauthentication data was encrypted with Alice’s long-term key and thus that

the client is genuine.

After it has verified Alice’s identity, the KDC creates credentials that the Kerberos

client on her workstation can present to the ticket-granting service. First, the KDC

invents a logon session key and encrypts a copy of it with Alice’s long-term key.

Second, it embeds another copy of the logon session key in a TGT, along with other

information about Alice such as her authorization data. The KDC encrypts the TGT

with its own long-term key. Finally, it sends both the encrypted logon session key

and the TGT back to the client in a Kerberos Authentication Service Reply

(KRB_AS_REP).

When the client receives the message, it uses the key derived from Alice’s

password to decrypt her logon session key and stores the key in its credentials

cache. Then it extracts the TGT from the message and stores that in its credentials

cache as well.

7*6�([FKDQJH�

The Kerberos client on Alice’s workstation requests credentials for the service Bob

by sending the KDC a Kerberos Ticket-Granting Service Request

(KRB_TGS_REQ). This message includes the user’s name, an authenticator

encrypted with the user’s logon session key, the TGT obtained in the AS Exchange,

and the name of the service for which the user wants a ticket.

 Windows 2000 White Paper 13

A
lic

e

Alice wants Bob, SAlice{Alice, time}, TGT = KTGS{use SAlice for Alice}

SAlice{use SAB for Bob}, ticket = KBob{use SAB for Alice}

KDC
TGS invents
session key

SAB

KRB_TGS_REQ

KRB_TGS_REP

Figure 6: TGS Exchange

When the KDC receives KRB_TGS_REQ, it decrypts the TGT with its own secret

key, extracting Alice’s logon session key. It uses the logon session key to decrypt

the authenticator and evaluates that. If the authenticator passes the test, the KDC

extracts Alice’s authorization data from the TGT and invents a session key for the

client, Alice, to share with the service, Bob. The KDC encrypts one copy of this

session key with Alice’s logon session key. It embeds another copy of the session

key in a ticket, along with Alice’s authorization data, and encrypts the ticket with

Bob’s long-term key. The KDC then sends these credentials back to the client in a

Kerberos Ticket-Granting Service Reply (KRB_TGS_REP).

When the client receives the reply, it uses Alice’s logon session key to decrypt the

session key to use with the service, and stores the key in its credentials cache.

Then it extracts the ticket to the service and stores that in its cache.

&6�([FKDQJH�

The Kerberos client on Alice’s workstation requests service from Bob by sending

Bob a Kerberos Application Request (KRB_AP_REQ). This message contains an

authenticator encrypted with the session key for the service, the ticket obtained in

the TGS Exchange, and a flag indicating whether the client wants mutual

authentication. (The setting of this flag is one of the options in configuring Kerberos.

The user is never asked.)

A
lic

e
(c

lie
nt

)

B
ob

 (
se

rv
er

)SAB{Alice, time}, ticket = KBob{use SAB for Alice}

SAB{time}

KRB_AP_REQ

KRB_AP_REP

Figure 7: CS Exchange

The service, Bob, receives KRB_AP_REQ, decrypts the ticket, and extracts Alice’s

authorization data and the session key. Bob uses the session key to decrypt Alice’s

authenticator and then evaluates the timestamp inside. If the authenticator passes

the test, Bob looks for a mutual authentication flag in the client’s request. If the flag

Windows 2000 White Paper 14

is set, he uses the session key to encrypt the time from Alice’s authenticator and

returns the result in a Kerberos Application Reply (KRB_AP_REP).

When the client on Alice’s workstation receives KRB_AP_REP, it decrypts Bob’s

authenticator with the session key it shares with Bob and compares the time

returned by the service with the time in the client’s original authenticator. If the times

match, the client knows that the service is genuine, and the connection proceeds.

During the connection, the session key can be used to encrypt application data, or

the client and server can share another key for this purpose.

7LFNHWV�

So far we have avoided a detailed description of exactly what is in a ticket, how

expiration times are calculated, and how much of a ticket’s content is known by the

client. All of these details are important to understanding how to configure Kerberos

policy, and so they deserve a closer look.

:KDW�,V�LQ�D�7LFNHW�

For our purpose here, it is enough to list the fields in a ticket and to describe the

information they contain. The exact data structures for tickets as well as messages

can be found in RFC 1510.

Table 1: Fields of a Ticket

Field Name Description

The first three fields in a ticket are not encrypted. The information is in plaintext

so that the client can use it to manage tickets in its cache.

tkt-vno Version number of the ticket format. In Kerberos v.5 it is 5.

Realm Name of the realm (domain) that issued the ticket. A KDC

can issue tickets only for servers in its own realm, so this

is also the name of the server’s realm.

Sname Name of the server.

The remaining fields are encrypted with the server’s secret key.

Flags Ticket options.

Key Session key.

Crealm Name of the client’s realm (domain).

Cname Client’s name.

Transited Lists the Kerberos realms that took part in authenticating

the client to whom the ticket was issued.

Authtime Time of initial authentication by the client. The KDC places

a timestamp in this field when it issues a TGT. When it

issues tickets based on a TGT, the KDC copies the

authtime of the TGT to the authtime of the ticket.

Starttime Time after which the ticket is valid.

Endtime Ticket’s expiration time.

 Windows 2000 White Paper 15

Field Name Description

renew-till (Optional) Maximum endtime that may be set in a ticket

with a RENEWABLE flag.

Caddr (Optional) One or more addresses from which the ticket

can be used. If omitted, the ticket can be used from any

address.

Authorization-data (Optional) Privilege attributes for the client. Kerberos does

not interpret the contents of this field. Interpretation is left

up to the service.

The flags field is a bit-field in which options are set by turning a particular bit on (1)

or off (0). Although the field is 32 bits long, only nine ticket flags are of interest to

Kerberos administrators.

Table 2: Ticket Flags

Flag Description

FORWARDABLE (TGT only) Tells the ticket-granting service that it can

issue a new TGT with a different network address based

on the presented TGT.

FORWARDED Indicates either that a TGT has been forwarded or that a

ticket was issued from a forwarded TGT.

PROXIABLE (TGT only) Tells the ticket-granting service that it can

issue tickets with a different network address than the one

in the TGT.

PROXY Indicates that the network address in the ticket is different

from the one in the TGT used to obtain the ticket.

RENEWABLE Used in combination with the endtime and renew-till fields

to cause tickets with long life spans to be renewed at the

KDC periodically.

INITIAL (TGT only) Indicates that this is a TGT.

:KDW�&OLHQWV�.QRZ�$ERXW�7LFNHWV�

Clients need to know some of the information that is inside tickets and TGTs in

order to manage their credentials cache. When the KDC returns a ticket and

session key as the result of an AS or TGS Exchange, it packages the client’s copy

of the session key in a data structure that includes the information in the ticket fields

flags, authtime, starttime, endtime, and renew-till. The entire structure is encrypted

in the client’s key and returned with KRB_AS_REP or KRB_TGS_REP.

+RZ�WKH�.'&�/LPLWV�D�7LFNHW·V�/LIHWLPH�

Tickets have a start time and an expiration time. At any time after the start time but

before the expiration time, a client holding a ticket for a service can present the

ticket and gain access to the service, no matter how many times the client has used

the ticket before. In order to reduce the risk that a ticket or the corresponding

Windows 2000 White Paper 16

session key may be compromised, administrators can set the maximum lifetime for

tickets. This time is an element of Kerberos policy.

When a client asks the KDC for a ticket to a service, it may request a specific start

time. If this time is missing from the request or is a time in the past, the KDC sets

the ticket’s starttime field to the current time.

Whether or not clients specify a start time, their requests must include a desired

expiration time. The KDC determines the value of a ticket’s endtime field by adding

the maximum ticket life fixed by Kerberos policy to the value of the ticket’s starttime

field. It then compares the result with the requested expiration time. Whichever time

is sooner becomes the ticket’s endtime.

:KDW�+DSSHQV�:KHQ�7LFNHWV�([SLUH�

The KDC does not notify clients when session tickets or TGTs are about to expire.

In fact, it makes no effort to keep track of transactions with clients beyond short-

term records needed to prevent replay attacks.

If a client presents an expired session ticket when requesting a connection to a

server, the server returns an error message. The client must request a new session

ticket from the KDC. Once a connection is authenticated, however, it no longer

matters whether the session ticket remains valid. Session tickets are used only to

authenticate new connections with servers. Ongoing operations are not interrupted

if the session ticket used to authenticate the connection expires during the

connection.

If a client presents an outdated TGT when requesting a session ticket from the

KDC, the KDC responds with an error message. The client must request a new

TGT, and to do that it needs the user’s long-term key. If the client did not cache the

user’s long-term key during the initial logon process, the client may have to ask the

user for a password and derive the long-term key.

5HQHZDEOH�7*7V�

One defense against attacks on session keys is to force them to change often by

setting Kerberos policy so that maximum ticket life is relatively short. Another is to

allow renewable tickets. When tickets are renewable, session keys are refreshed

periodically without issuing a completely new ticket. If Kerberos policy permits

renewable tickets, the KDC sets a RENEWABLE flag in every ticket it issues and

sets two expiration times in the ticket. One expiration time limits the life of the

current instance of the ticket. A second expiration time sets a limit on the cumulative

lifetime of all instances of the ticket.

The expiration time for the current instance of the ticket is held in the endtime field.

As with non-renewable tickets, endtime is the value of the starttime field plus the

maximum ticket life specified by Kerberos policy. A client holding a renewable ticket

must send it to the KDC for renewal before the endtime is reached, presenting a

fresh authenticator as well. When the KDC receives a ticket for renewal, it checks a

second expiration time held in the renew-till field. This time is set when the ticket is

first issued, and the value is the ticket’s starttime plus the maximum cumulative

 Windows 2000 White Paper 17

ticket life specified by Kerberos policy. When the KDC renews the ticket, it checks to

see that the renew-till time has not yet arrived. If it has not, the KDC issues a new

instance of the ticket with a later endtime and a new session key.

This means that administrators can set Kerberos policy so that tickets must be

renewed at relatively short intervals—every day, perhaps. When tickets are

renewed, a new session key is issued, minimizing the value of a compromised key.

Administrators can also set cumulative ticket life for a relatively long period—one

week, one month, whatever. At the end of that time, the ticket expires and is no

longer valid for renewal.

'HOHJDWLRQ�RI�$XWKHQWLFDWLRQ�

Multitier client/server applications present a special situation for the Kerberos

protocol. In this kind of application, a client may connect to a server that must itself

connect to a second server on the back end. For this to happen, the first server

must have a ticket to the second. Ideally, the ticket should limit the first server’s

access on the second server to whatever the client, rather than the server, is

authorized to do.

The protocol deals with this situation through a mechanism known as delegation of

authentication. Essentially, the client delegates authentication to a server by telling

the KDC that the server is authorized to represent the client. The concept is similar

to the concept of impersonation in Windows 2000.

Delegation can be done two ways. First, the client can get a ticket for the back-end

server and then give it to the front-end server. Tickets obtained in this way—by a

client for a proxy—are called proxy tickets. The difficulty with proxy tickets is that the

client must know the name of the back-end server. This difficulty is overcome by a

second method of delegation that allows the client to give the front-end server a

TGT it can use to request tickets as needed. Tickets obtained in this way—with

credentials forwarded by a client—are called forwarded tickets. Whether the KDC

will allow clients to obtain proxy tickets or forwardable TGTs is a matter for Kerberos

policy.

3UR[\�7LFNHWV�

When the KDC issues a TGT to a client, it checks Kerberos policy to see if proxy

tickets are allowed. If they are, the KDC sets the PROXIABLE flag in the TGT it

issues to the client.

The client obtains a proxy ticket by presenting a TGT to the ticket-granting service

and asking for a ticket to the back-end server. The client’s request includes a flag

signaling that it wants a proxy ticket and also includes the name of the server who

will represent the client. When the KDC receives the client’s request, it creates a

ticket for the back-end server, sets the PROXY flag in the ticket, and sends it back

to the client. The client then sends the ticket to the front-end server, which uses the

ticket to access the back-end server.

Windows 2000 White Paper 18

)RUZDUGHG�7LFNHWV�

If a client wants to delegate the task of obtaining tickets for back-end servers to a

front-end server, it must ask the KDC for a forwardable TGT. It does this through an

AS Exchange, indicating to the KDC the name of the server that will act on the

client’s behalf. If Kerberos policy permits forwarding, the KDC creates a TGT for the

front-end server to use in the client’s name, sets the FORWARDABLE flag, and

sends it back to the client. The client then forwards the TGT to the front-end server.

When the front-end server requests a ticket to the back-end server, it presents the

client’s TGT to the KDC. When the KDC issues a ticket, it sees the

FORWARDABLE flag in the TGT, sets the FORWARDED flag in the ticket, and

returns the ticket to the front-end server.

 Windows 2000 White Paper 19

.H\�'LVWULEXWLRQ�&HQWHU�

Windows 2000 implements the Key Distribution Center (KDC) as a domain service.

It uses the domain’s Active Directory as its account database and gets some

information about users from the Global Catalog.

As in other implementations of the Kerberos protocol, the KDC is a single process

that provides two services:

• Authentication Service (AS). This service issues Ticket Granting Tickets

(TGTs) good for admission to the ticket-granting service in its domain. Before

network clients can get tickets for services, they must get an initial TGT from the

authentication service in the user’s account domain.

• Ticket-Granting Service (TGS). This service issues tickets good for admission

to other services in its domain or to the ticket-granting service of a trusted

domain. When clients want access to a service, they must contact the ticket-

granting service in the service’s account domain, present a TGT, and ask for a

ticket. If the client does not have a TGT good for admission to that ticket-granting

service, it must get one through a referral process that begins at the ticket-

granting service in the user’s account domain and ends at the ticket-granting

service in the service’s account domain.

The KDC is located on every domain controller, as is the Active Directory service.

Both services are started automatically by the domain controller’s Local Security

Authority (LSA) and run in the process space of the LSA. Neither service can be

stopped. Windows 2000 ensures availability of these services by allowing each

domain to have several domain controllers, all peers. Any domain controller can

accept authentication requests and ticket-granting requests addressed to the

domain’s KDC.

The security principal name used by the KDC for a Windows 2000 domain is krbtgt,

as specified by RFC 1510. An account for this security principal is created

automatically when a new domain is created. The account cannot be deleted, nor

can the name be changed. A password is assigned to the account automatically

and is changed on a regular schedule, as are the passwords assigned to domain

trust accounts. The password for the KDC’s account is used to derive a secret key

for encrypting and decrypting the TGTs that it issues. The password for a domain

trust account is used to derive an inter-realm key for encrypting referral tickets.

All instances of the KDC within a domain use the domain account for the security

principal krbtgt. Clients address messages to a domain’s KDC by including both the

service principal name, krbtgt, and the name of the domain. Both items of

information are also used in tickets to identify the issuing authority. For information

on name forms and addressing conventions, see RFC 1510.

$FFRXQW�'DWDEDVH�

The account database that the KDC needs in order to obtain information about

security principals is provided by the domain’s Active Directory. Each principal is

.(5%(526�

&20321(176�

,1�:,1'2:6������

Windows 2000 White Paper 20

represented by an account object. The encryption key used in communicating with a

user, computer, or service is stored as an attribute of that security principal’s

account object.

Only domain controllers are Active Directory servers. Each domain controller keeps

a writeable copy of the directory, so accounts can be created, passwords reset, and

group membership modified at any domain controller. Changes made to one replica

of the directory are automatically propagated to all other replicas. Windows 2000

does not, however, implement the Kerberos replication protocol. Instead, it

replicates the information store for Active Directory using a proprietary multi-master

replication protocol over a secure channel between replication partners.

Physical storage of account data is managed by the Directory System Agent (DSA),

a protected process integrated with the LSA on the domain controller. Clients of the

directory service are never given direct access to the data store. Any client wanting

access to directory information must use one of the supported Active Directory

Service Interfaces (ADSI) to connect to the DSA and then search for, read, and

write directory objects and their attributes.

Requests to access an object or attribute in the directory are subject to validation by

Windows 2000 access control mechanisms. Like file and folder objects in the

Windows NT File System (NTFS), objects in Active Directory are protected by

Access Control Lists (ACLs) that specify who can access the object and in what

way. Unlike files and folders, however, Active Directory objects have an ACL for

each of their attributes. Thus attributes for sensitive account information can be

protected by more restrictive permissions than those granted for other attributes of

the account.

The most sensitive information about an account is of course its password.

Although an account object’s password attribute stores an encryption key derived

from a password, not the password itself, this key is just as useful to an intruder.

Therefore, access to an account object’s password attribute is granted only to the

account holder, never to anyone else, not even administrators. Only processes with

Trusted Computer Base privilege—processes running in the security context of the

LSA—are allowed to read or change password information.

In order to hinder an off-line attack by someone with access to a domain controller’s

backup tape, an account object’s password attribute is further protected by a

second encryption using a system key. This encryption key may be stored on

removable media so that it can be safeguarded separately, or stored on the domain

controller but protected by a dispersal mechanism. Administrators are given the

option to choose where the system key is stored and which of several algorithms is

used to encrypt password attributes.

.HUEHURV�3ROLF\�

In Windows 2000, Kerberos policy is defined in the Default Domain Group Policy

object and implemented by the domain’s KDC. By default, the policy settings can be

 Windows 2000 White Paper 21

modified only by members of the Domain Admins security group. The elements of

Kerberos policy are:

• Enforce user logon restrictions. Determines whether the KDC validates every

request for a session ticket against the user rights policy on the target computer.

When this policy is enabled, the user requesting the session ticket must have the

right either to Log on locally or to Access this computer from network. Validation

of each request is optional because the extra step takes time and may slow

network access to services. By default, this policy is enabled.

• Maximum lifetime for service ticket. Determines the maximum amount of time

(in minutes) that a ticket granted for a service (that is, a session ticket) can be

used to access the service. If the setting is zero minutes, the ticket never

expires. Otherwise, the setting must be greater than ten minutes and less than

the setting for Maximum lifetime for user ticket. By default, the setting is 600

minutes (ten hours).

• Maximum lifetime for user ticket. Determines the maximum amount of time (in

hours) that a user’s TGT can be used. When a user’s TGT expires, a new one

must be requested or the existing one must be renewed. By default, the setting

is ten hours.

• Maximum lifetime for user ticket renewal. Determines the longest period of

time (in days) that a TGT can be used if it is repeatedly renewed. By default, the

setting is seven days.

• Maximum tolerance for computer clock synchronization. Determines the

maximum difference (in minutes) that Kerberos will tolerated between the time

on a client’s clock and the time on a server’s clock while still considering the two

clocks synchronous. By default, the setting is five minutes.

'HOHJDWLRQ�RI�$XWKHQWLFDWLRQ�

In Windows NT, a service can impersonate clients when accessing resources on

the computer where the service process is running. In Windows 2000, a service can

use the Kerberos protocol’s delegation feature to impersonate clients on other

computers as well. For delegation of authentication to work, three conditions must

be met:

• The computers that host the client process, the service process, and the

processes for back-end services must all be running Windows 2000 in a

Windows 2000 domain.

• The client’s account must be enabled for delegation.

• The service’s account must be enabled for delegation.

To configure a client’s account for delegation, right-click the object that represents

the end user in Active Directory Users and Computers, click Properties, then the

Account tab. In the Account options list, look for the option Account is sensitive and

cannot be delegated. Make sure this option is not checked.

To configure a service’s account for delegation, you first need to know whether the

service runs under the host computer’s Local System account or under its own

Windows 2000 White Paper 22

domain user account.

• If the service runs under the Local System account, right-click the computer

object in Active Directory Users and Computers, click Properties, then click the

General tab. Check Trust computer for delegation.

• If the service runs under its own domain user account, right-click the user

object in Active Directory Users and Computers, click Properties, then click the

Account tab. In the Account options list, check Account is trusted for

delegation.

3UHDXWKHQWLFDWLRQ�

By default the KDC requires all accounts to use preauthentication. This makes

offline password-guessing attacks very difficult. However, preauthentication can be

disabled for individual accounts when necessary for compatibility with other

implementations of the protocol. To disable preauthentication for a particular user,

right-click the user object in Active Directory Users and Computers, click Properties,

then click the Account tab. In the account options list, check Do not require

Kerberos preauthentication.

.HUEHURV�6HFXULW\�6XSSRUW�3URYLGHU�

The Kerberos authentication protocol is implemented as a security support provider

(SSP), a dynamic-link library supplied with the operating system. Windows 2000

includes an SSP for NTLM authentication as well. By default, both are loaded by the

LSA on a Windows 2000 computer when the system boots. Either SSP may be

used to authenticate network logons and client/server connections. Which one is

used depends on the capabilities of the computer on the other side of the

connection. The Kerberos SSP is always the first choice.

After the LSA establishes a security context for an interactive user, another instance

of the Kerberos SSP may be loaded by a process running in the user’s security

context to support the signing and sealing of messages.

System services and transport-level applications access SSPs through the

Microsoft Security Support Provider Interface (SSPI). This is a Win32® interface

with methods for enumerating the providers available on a system, selecting one,

and using it to obtain an authenticated connection. The methods in the SSPI are

generic, black-box routines that developers can use without knowing the details of a

particular protocol. For example, when a client/server connection is authenticated,

the application on the client’s side of the connection sends credentials to the server

using the SSPI method InitializeSecurityContext. If the Kerberos SSP has been

selected, this method generates a KRB_AP_REQ message from the client. The

application on the server’s side of the connection responds with the SSPI method

AcceptSecurityContext, which generates a KRB_AP_REP message from the

server. Once the connection has been authenticated, the LSA on the server uses

information from the client’s ticket to build an access token. The server then invokes

the SSPI method ImpersonateSecurityContext to attach the access token to an

 Windows 2000 White Paper 23

impersonation thread for the service.

All distributed services in Windows 2000 use the SSPI to access the Kerberos SSP.

A partial list of the ways in which the Kerberos protocol is used for authentication

includes:

• Print spooler services

• CIFS/SMB remote file access

• LDAP queries to Active Directory

• Distributed file system management and referrals

• IPSec host-to-host security authority authentication

• Reservation requests for network Quality of Service

• Intranet authentication to Internet Information Server

• Remote server or workstation management using authenticated RPC

• Certificate requests to the Microsoft Certificate Server for domain users and

computers

&UHGHQWLDOV�&DFKH�

On computers running Windows 2000, tickets and keys obtained from the KDC are

stored in a credentials cache, an area of volatile memory protected by the LSA. The

credentials cache is never paged to disk. All objects stored there are destroyed

when a security principal logs off or the system is shut down.

The credentials cache is managed by the Kerberos SSP, which runs in the LSA’s

security context. Whenever tickets and keys need to be obtained or renewed, the

LSA calls the Kerberos SSP to accomplish the task.

Windows 2000 White Paper 24

The LSA also keeps a copy of an interactive user’s hashed password. If the user’s

TGT expires during a logon session, the Kerberos SSP uses the LSA’s copy of the

hashed password to obtain a new TGT silently, without interrupting the user’s logon

session. The password is not stored permanently on the computer, and the local

copy is destroyed when the user’s logon session is destroyed.

Hashed passwords for services and computers are handled differently. As in earlier

versions of Windows NT, they are stored in a secure area of the computer’s

registry. The registry is also used to store hashed passwords for user accounts on

the local system, but local accounts are used only for access to computers in

standalone mode, never for network access.

'16�1DPH�5HVROXWLRQ�

RFC 1510 specifies that IP transport should be used for messages between clients

and the KDC. When the Kerberos SSP on a client computer wants to send an initial

authentication service request, it needs to find an address for the KDC in the user's

account domain. To do that, it needs the Domain Name System (DNS) name of a

server where the KDC service is running. If the DNS name can be resolved to an IP

address, that is where the Kerberos SSP sends its message. Otherwise, the

Kerberos SSP generates an error indicating that it can find no such domain.

In Windows 2000 domains, the KDC service runs on every Windows 2000-based

domain controller. In addition to being KDC servers, domain controllers are also

Lightweight Directory Access Protocol (LDAP) servers. Both services are registered

in DNS service locator records (SRV resource records). Clients can find a domain

controller by querying DNS for SRV resource records with the name

_ldap._tcp.dc._msdcs.DnsDomainName. The KDC service can be located by

querying DNS for SRV resource records with the name

_kerberos._udp.DnsDomainName. Clients that do not support the SRV record type

in their DNS resolver can query for a host record (an A resource record) with the

name of the domain.

Computers running Windows 2000 can participate in Kerberos realms that are not

Windows 2000 domains. In this case, the KDC will not be on a Windows 2000

domain controller, so the DNS names for KDC servers must be stored in the client

computer's registry. The Kerberos SSP looks in the registry for the DNS domain

name of the user's realm, and then resolves the name to an IP address by querying

a DNS server.

Windows 2000 includes a tool for configuring clients to participate in Kerberos

realms that are not Windows 2000 domains. Look for ksetup.exe in the Support

folder of the Windows 2000 installation CD.

,3�7UDQVSRUW�

According to RFC 1510, when a client contacts the KDC, it should send a User

Datagram Protocol (UDP) datagram to port 88 at the KDC’s IP address. The KDC

 Windows 2000 White Paper 25

should respond with a reply datagram to the sending port at the sender’s IP

address.

UDP is a connectionless transport protocol, making it a logical choice where an

exchange of messages must precede a connection. UDP is also well suited to

applications with one message and one response, like the exchanges between

clients and the KDC, so long as each message fits into a single datagram. However,

UDP works best when datagrams are transmitted as single units—when each

datagram fits into one frame. The capacity of a frame varies with the medium. The

Maximum Transmission Unit (MTU) for an Ethernet frame is 1500 octets. If the

physical network is Ethernet, then Kerberos messages sent as UDP datagrams can

carry up to 1500 octets of data.

Windows 2000 authorization data can easily total more than 1500 octets. Because

this data is needed only by computers with the Windows 2000 operating system, it

is omitted from tickets to computers with other operating systems. As a result, those

messages are well within the limits of UDP transport, and so that is how they are

transmitted. Messages with tickets for computers running Windows 2000 are likely

to exceed the limit, and so they are transmitted using the Transport Control Protocol

(TCP), which has much greater capacity. The use of TCP transport is consistent

with recently proposed revisions to RFC 1510.5

5
 Neuman, C., Kohl, J. and T. Ts’o, “The Kerberos Network Authentication Service (V5),” draft-ieft-cat-

kerberos-revisions-03, November 1998.

Windows 2000 White Paper 26

Kerberos is a protocol for authentication, not authorization. It verifies that security

principals are who they say they are. It does not determine which files and other

objects security principals may access, or how they may access them. These

decisions are left to whatever access control mechanism may be available on the

system. The protocol assists by providing a field for authorization data in Kerberos

tickets, but it does not specify the form of the data or how servers should use it.

$FFHVV�&RQWURO�LQ�:LQGRZV������

On some operating systems, applications are required to implement their own

mechanisms for determining the level of a user’s authorization. Often applications

do this by maintaining private lists with the names of users who are authorized

access. This kind of access control can be integrated with Kerberos authentication

simply by ensuring that the authorization data field of a ticket carries some form of

the security principal’s name. This is sometimes called name-based authorization.

Applications designed for Windows 2000 can implement name-based authorization

mechanisms to control access to information internal to the application. Database

applications, for example, often maintain private authorization tables to control

which fields in a record a particular user can view or change. Unfortunately, private

authorization mechanisms are just that—private. A database application is

powerless to prevent an unauthorized user from running another application and

using it to edit the data file.

On Windows 2000, if a file or other resource can be shared by two processes, it is

secured against unauthorized access by the operating system’s own access control

mechanism. The header of every object includes a security descriptor with an

access control list (ACL) maintained by the object’s owner, who has the discretion

to grant or deny access to any security principal, and to define the level of

authorization for a security principal who has been granted access. The operating

system enforces the owner’s decisions by performing an access check whenever an

application requests a handle to a protected object. Before returning a handle, the

operating system examines the object’s ACL to see whether the security principal

who is using the application is authorized access. If not, the application is denied

access.

Another important difference from other access control mechanisms is that security

principals are not identified by name in Windows 2000, either by the operating

system or by entries in ACLs. Instead, each security principal is assigned a unique

Security Identifier (SID), an alphanumeric value with a structure similar to a

telephone number. Like the country code used in international calling, the first part

of a SID identifies the domain where the SID was issued. Like the number for a

particular telephone within a country, the second part of a SID identifies an account

within the issuing domain. The value for a domain is unique within an enterprise,

and the value for an account is unique within a domain. Unlike telephone numbers,

SIDs are never reused. There is no possibility that a user could be assigned a SID

that once belonged to another user—a problem not easily solved by name-based

$87+25,=$7,21�'7�

 Windows 2000 White Paper 27

access control mechanisms.

A third important difference with name-based access control is that authorization is

determined not only by user’s identity but also by the user’s membership in one or

more security groups. In fact, the preferred method of controlling resources is to

grant access to groups rather than to individuals, adjusting the level of a group’s

authorization according to the needs of its members. This method makes it easier to

keep ACLs up-to-date on networks with thousands of users and millions of objects.

Group membership can be managed centrally by administrators, who can change a

particular user’s level of authorization for many resources simply by adding or

removing a member from a group.

Windows 2000 makes resource security still easier to manage by allowing groups to

be nested. A group created in one domain can be included in the membership of a

group created in another domain, or in the membership of a universal group used

throughout a tree of trusted domains. As a result, when employees change jobs,

their level of authorization can be changed throughout the enterprise without

touching the ACL on a single object.

Like individual security principals, each Windows 2000 security group has a SID. A

user’s level of authorization is determined, then, by a list of SIDs—one SID for the

user and one SID for each security group to which the user belongs.

+RZ�WKH�.'&�3UHSDUHV�$XWKRUL]DWLRQ�'DWD�

When the Kerberos protocol is used for authentication, a list of SIDs identifying a

security principal and the principal’s group membership is transported to the local

computer in the authorization data field of a session ticket. Authorization data is

gathered in two separate steps. The first step takes place when the KDC in a

Windows 2000 domain prepares a TGT. The second step is accomplished when the

KDC prepares a session ticket for a server in the domain.

When a user requests a TGT, the KDC in the user’s account domain queries the

domain’s Active Directory. The user’s account record includes an attribute for the

user’s SID as well an attribute with SIDs for any domain security groups to which

the user belongs. The list of SIDs returned by the KDC’s query is placed in the

TGT’s authorization data field. In a multiple-domain environment, the KDC also

queries the Global Catalog for any universal groups that include the user or one of

the user’s domain security groups. If any are found, their SIDs are added to the list

in the TGT’s authorization data field.

When the user requests a session ticket for a server, the KDC in the server’s

domain copies the contents of the TGT’s authorization data field to the session

ticket’s authorization data field. If the server’s domain is different from the user’s

account domain, the KDC queries Active Directory in order to find out whether any

security groups in the local domain include the user or one of the user’s security

groups. If any are found, their SIDs are added to the list in the session ticket’s

authorization data field.

Windows 2000 White Paper 28

This use of the authorization data field is consistent with revisions to RFC 1510

submitted to the IETF.6 The precise format of Windows 2000 authorization data is

subject to change until the operating system’s release. The Windows 2000

authorization data is in Network Data Representation (NDR) format and is signed by

the KDC.

+RZ�6HUYLFHV�8VH�$XWKRUL]DWLRQ�'DWD�

In Windows 2000, services act in their own security contexts only when accessing

resources on their own behalf. For the most part, this is just when they are doing

their own housekeeping—accessing configuration data stored in registry keys,

binding to communications ports, and completing other tasks not related to work for

a particular client. When a service does do something for a client, it impersonates

the client, acting in the client’s security context. This means that in addition to

identifying clients, Windows 2000 services must also take on some of their

characteristics—specifically the client’s level of authorization on the system.

When a service sets up housekeeping on a computer running Windows 2000, it

calls the SSPI method AcquireCredentialsHandle to gain access to its own

credentials—the secret key for the account under which the service runs. The

service then binds to a communications port, where it listens for messages from

prospective clients.

When a client requests a connection and presents a session ticket, the service asks

the Kerberos SSP to verify the client’s credentials by calling the SSPI method

AcceptSecurityContext, passing the client’s session ticket along with a handle to the

service’s secret key. The Kerberos SSP verifies the ticket’s authenticity, opens it,

and passes the contents of the authorization data field to its parent process, the

LSA. If the data includes a list of SIDs, the LSA uses them to build an access token

representing the user on the local system. In addition, the LSA queries its own

database to determine if the user or one of the user’s security groups is a member

of a security group created on the local system. If any are found, the LSA adds

those SIDs to the access token. The LSA then confirms to the calling service that

the client’s identity has been authenticated, enclosing a reference to the client’s

access token.

On receiving confirmation, the service completes its connection with the client and

attaches the client’s access token to an impersonation thread by calling

ImpersonateSecurityContext. When the impersonation thread needs access to an

object, it presents the client’s token. The operating system performs an access

check by comparing SIDs in the token to SIDs in the object’s ACL. If it finds a

match, it checks to see that the entry in the ACL grants the level of access

requested by the thread. If it does, the thread is allowed access. Otherwise, access

is denied.

6
 Neuman, C., Kohl, J, and T. Ts’o, “The Kerberos Network Authentication Service (V5),” draft-ietf-cat-

kerberos-revisions, November 1997.

 Windows 2000 White Paper 29

:K\�$XWKRUL]DWLRQ�'DWD�,V�6LJQHG�

Session tickets are encrypted with the secret key for the account under which the

service starts. When a service acquires a handle to its own credentials on the

system, it gains access to that key. A rogue service could be installed by an

unscrupulous user with a legitimate network account but limited authorization on the

local computer. The user could request a session ticket for the service, and it could

decrypt the ticket, modify the authorization data by adding the SID for a privileged

group, encrypt the altered ticket, and present it to the LSA in a call to

AcceptSecurityContext. The result would be to elevate the user’s level of

authorization on the computer where the service is running.

In order to prevent tampering with authorization data, it is signed by the KDC before

it is stored in a session ticket. Any attempt to alter the data will invalidate the

signature. The LSA on a Windows 2000 computer always checks the validity of this

signature when session tickets are presented by untrusted services.

The LSA can trust calls to AcceptSecurityContext from services running under the

Local System account. This account is used by services installed with the operating

system—by the native Server service, for example. Other services can be

configured to use the Local System account, but this must be done by a member of

the Administrators group. It is assumed that the administrator who installs the

service can vouch for its security.

The LSA does not trust services running under any other account. If a session ticket

is presented by an application that is not running as Local System, the LSA asks the

KDC in its domain to verify the signature on the ticket’s authorization data. The

question is asked and answered by a Remote Procedure Call (RPC) over

Netlogon’s secure channel to the domain controller. Requests for verification do not

need to travel beyond the local domain because session tickets are always

issued—and therefore authorization data is always signed—by the KDC for the

target computer’s domain.

Windows 2000 White Paper 30

Users have a natural tendency to think that logging on to an account in a Windows

domain gives them access to the network. That is of course not true. When the

Kerberos protocol is used for network authentication, what you actually get when

you first log on is access to the domain’s authentication service. Specifically, you

get a TGT that you can present when requesting session tickets for other services

in the domain.

When you log on to a domain account from a computer running Windows 2000, you

always need at least one session ticket—a ticket for the computer where you are

logging on. Unlike other computers, computers running Windows 2000 have their

own accounts in the domain. You can think of them as service accounts. Remote

users can access resources on a computer that is running Windows 2000 by

submitting requests to its Server service. Interactive users can access resources in

the domain by submitting requests to the computer’s Workstation service. Before

you can gain admission to either of these services, or to any other service running

as Local System, you must present a session ticket for the computer.

7KH�/RJRQ�3URFHVV�

When a user with an account in a Windows 2000 domain logs on at the keyboard of

a computer running Windows 2000, the user’s logon request is processed in three

stages:

1. The user asks for admission to the ticket-granting service for the domain.

 This is accomplished by an AS Exchange between the Kerberos SSP on the

computer and the KDC for the user’s account domain. The result of a successful

exchange is a TGT that the user can present in future transactions with the

KDC.

2. The user asks for a ticket for the computer.

 This is accomplished by a TGS Exchange between the Kerberos SSP on the

computer and the KDC for the computer’s account domain. The result is a

session ticket that the user can present when requesting access to system

services on the computer.

3. The user asks for admission to Local System services on the computer.

 This is accomplished when the Kerberos SSP on the computer presents a

session ticket to the LSA on the computer.

If the computer’s domain is different from the user’s domain, an extra step is

involved. Before requesting a session ticket for the computer, the Kerberos SSP

must first ask the KDC in the user’s account domain for a TGT good for admission

to the KDC in the computer’s account domain. It can then present the TGT to that

KDC and get a session ticket for the computer.

Exactly how the logon process works will depend on how the computer is

configured. With standard configurations of Windows 2000, interactive users log on

with a password. The operating system also includes the option to log on with a

,17(5$&7,9(�/2*21�

 Windows 2000 White Paper 31

smart card. The basic process is the same for both configurations. We will examine

their differences after first stepping through the process for a standard logon with a

password.

3DVVZRUG�/RJRQ�

Suppose Alice has a network account in the domain West. The computer she

normally uses, Bob, also has an account in West. When Alice logs on to the

network, she begins by pressing the key combination CTRL+ALT+DEL, the Secure

Attention Sequence (SAS) on computers with a standard Windows 2000

configuration.

In response to the SAS, the computer’s Winlogon service switches to the logon

desktop and dispatches to the Graphical Identification and Authentication (GINA)

dynamic-link library, a component loaded in Winlogon’s process. The GINA is

responsible for collecting logon data from the user, packaging it in a data structure,

and sending everything to the LSA for verification. Third parties can develop

replacement GINAs, but in this case Winlogon has loaded the standard component

supplied with the operating system, MSGINA.DLL. Winlogon dispatches to it, and it

displays the standard Logon Information Dialog.

Alice types her user name and password. From the domains in a drop-down list,

she selects West. When she clicks OK to dismiss the dialog, MSGINA returns her

logon information to Winlogon. It sends the information to the LSA for validation by

calling LsaLogonUser.

On receiving a data structure with Alice’s logon data, the LSA immediately converts

her clear text password to a secret key by passing it through a one-way hashing

function. It saves the result in the credentials cache, where it can be retrieved when

needed for TGT renewal or for NTLM authentication to servers that are not capable

of Kerberos authentication..

In order to validate Alice’s logon information and set up her logon session on the

computer, the LSA must obtain:

• A TGT good for admission to the ticket-granting service.

• A session ticket good for admission to the computer.

The LSA gets these tickets by working through the Kerberos SSP, which exchanges

messages directly with the KDC in West.

Windows 2000 White Paper 32

LSA

K
erb

eros S
S

P

TGT for Domain

Ticket for Computer

KDC

Ticket Granting Service

Authentication Service

Figure 8: Interactive logon to a domain account

The messages follow this sequence:

1. The LSA sends the message KRB_AS_REQ to the KDC in West.

 The message includes:

• The user principal name, Alice.

• The name of the account domain, West.

• Preauthentication data encrypted with the secret key derived from Alice’s

password.

2. If the client’s preauthentication data is correct, the KDC replies with

KRB_AS_REP.

 The message includes:

• A session key for Alice to share with the KDC, encrypted with the secret key
derived from Alice’s password.

• A TGT for the KDC in West, encrypted with the KDC’s secret key.

 The TGT includes:

• A session key for the KDC to share with Alice.

• Authorization data for Alice.

 The authorization data includes:

• The SID for Alice’s account.

• SIDs for security groups in the domain West that include Alice.

• SIDs for universal groups in the enterprise that include either Alice or one of

her domain groups.

3. The LSA sends the message KRB_TGS_REQ to the KDC in West.

 The message includes:

• The name of the target computer, Bob.

• The name of the target computer’s domain, West.

• Alice’s TGT.

• An authenticator encrypted with the session key Alice shares with the KDC.

4. The KDC replies with KRB_TGS_REP.

 Windows 2000 White Paper 33

 The message includes:

• A session key for Alice to share with Bob, encrypted with the session key
Alice shares with the KDC.

• Alice’s session ticket to Bob, encrypted with the secret key Bob shares with
the KDC.

 The session ticket includes:

• A session key for Bob to share with Alice.

• Authorization data copied from Alice’s TGT.

Having received Alice’s session ticket, the LSA decrypts it with the computer’s

secret key and extracts her authorization data. It then queries the local SAM

database to discover whether Alice is a member of any security groups local to the

computer and whether she has been given any special privileges on the local

machine. It adds any SIDs returned by this query to the list taken from the ticket’s

authorization data. The entire list is then used to build an access token, and a

handle to the token is returned to Winlogon, along with an identifier for Alice’s logon

session and confirmation that her logon information was valid.

Winlogon creates a window station and several desktop objects for Alice, attaches

her access token, and starts the shell process she will use to interact with the

computer. Alice’s access token is subsequently inherited by any application process

that she starts during her logon session.

6PDUW�&DUG�/RJRQ�

In standard Kerberos logons, users initially prove to the KDC that they are who they

say they are by showing that they know a secret known only by the user and the

KDC. This shared secret is a cryptographic key derived from the user’s password. It

is used only during the AS Exchange:

• When the client encrypts preauthentication data.

• When the KDC decrypts preauthentication data.

• When the KDC encrypts the logon session key.

• When the client decrypts the logon session key.

The same key is used for both encryption and decryption. For this reason, shared

secret keys are said to be symmetric.

To support smart card logons, Windows 2000 implements a public key extension to

the Kerberos protocol’s initial AS Exchange.7 In contrast to how shared secret keys

work, public key cryptography is asymmetric. Two different keys are needed, one to

7
 Windows 2000 implements the current IETF CAT draft for PKINIT with the exception that the protocol

draft requires encryption of an arbitrary element using a 512-bit RSA public key, which is not possible in an

exportable product such as Windows NT. In this particular instance, Windows NT uses the PKCS #7 standard

for encrypted data. The issue has been discussed with the authors of the draft.

Windows 2000 White Paper 34

encrypt, the other to decrypt. Together, the keys needed to perform both operations

make up a private/public key pair. The private key is known only to the owner of the

pair and is never shared. The public key can be made available to anyone with

whom the owner wishes to exchange confidential information.

When a smart card is used in place of a password, a private/public key pair stored

on the user’s smart card is substituted for the shared secret key derived from the

user’s password. In the public key extension to the Kerberos protocol, the initial

AS Exchange is modified so that the KDC encrypts the user’s logon session key

with the public half of the user’s key pair. The client decrypts the logon session key

with the private half of the pair.

The logon process begins when the user inserts a smart card into a card reader

attached to the computer. When computers with Windows 2000 are configured for

smart card logon, a card insertion event signals the SAS, just as the key

combination CTRL+ALT+DEL does on computers configured for password logon. In

response, Winlogon dispatches to MSGINA, which displays a Logon Information

Dialog. In this case, the user types just one item of information, a Personal

Identification Number (PIN).

MSGINA sends the user’s logon information to the LSA by calling LsaLogonUser,

just as it does with a password logon. The LSA uses the PIN to access the smart

card, which stores the user’s private key and an X.509 v3 certificate containing the

public half of the key pair. All cryptographic operations that use these keys take

place on the smart card.

The Kerberos SSP on the client computer sends the user’s public key certificate to

the KDC as preauthentication data in its initial authentication request,

KRB_AS_REQ. The KDC validates the certificate, extracts the public key, and uses

it to encrypt a logon session key. It returns the encrypted logon session key, along

with a TGT, in its reply to the client, KRB_AS_REP. If the client is in possession of

the private half of the key pair, it will be able to use the private key to decrypt the

logon session key. Both the client and the KDC then use the logon session key in all

further communications with one another. No other deviation from the standard

protocol is necessary.

For information on the types of smart cards and readers that will be supported by

Windows 2000, see the Windows 2000 Hardware Compatibility List.

3UHDXWKHQWLFDWLRQ�'DWD�

By default, the Kerberos SSP on a client computer sends the KDC

preauthentication data in the form of an encrypted timestamp. On systems

configured for smart card logon, it sends preauthentication data in the form of a

public key certificate.

 Windows 2000 White Paper 35

When you log on at a computer’s keyboard, the logon process creates a security

context for your actions on the local computer. Your security identity is

encapsulated in an access token attached to the process object that represents

your logon session. When you start an application, it runs within your logon

session’s process, and the application process inherits your access token. The

application acts in your security context; it can access only resources that you are

authorized to access. Something similar happens when an application that you are

using becomes the client of a server application on the same computer. The server

process spawns a thread of execution, attaches a copy of your access token to the

thread, and the thread impersonates you while working on your behalf. The thread

acts in your security context and can do only what you are allowed to do on the

local computer.

When a client application on your computer connects to a server application on

another computer, there is no access token to attach to the server’s impersonation

thread. You have no security context on the remote computer, and won’t have one

until you are logged on to that computer. However, unlike logging on to a local

computer, logging on to a remote computer is not interactive. You do not need to

supply logon information by entering it in a dialog box. Instead, the client application

on the local computer sends your logon credentials to the server application on the

remote computer, and the server application establishes a security context for your

actions on the remote computer.

6HFXULW\�6XSSRUW�3URYLGHU�,QWHUIDFH�

Typically, authentication is built into whatever mechanism the client/server

application uses for interprocess communication. Client/server applications

designed for Windows 2000 do not need to know the details of a particular

authentication protocol, or even which protocols are supported. Instead, both sides

of the application can make standard calls to the Security Support Provider

Interface (SSPI). The client side calls the SSPI to request a security context for the

user. The server side calls the SSPI to create a security context for the user. The

SSPI takes care of the details.

In a sense, the SSPI allows the authentication protocol to take place as a subtext to

the application protocol, as a kind of conversation within a conversation. On both

sides of the client/server conversation, the SSPI works through a security support

provider (SSP) that has code needed to implement a particular authentication

protocol. The SSP simply hands authentication messages to the application for

transport. As far as the application is concerned, these messages are opaque data.

It has no responsibility for knowing what is inside an authentication message that it

transports or for knowing how to respond to an authentication message that it

receives. All the work of interpreting and responding to authentication messages is

done by the SSP.

5(027(�/2*21�

Windows 2000 White Paper 36

Client

Kerberos SSP Kerberos SSP

Server

SSPI SSPI

Application

Authentication

Figure 9: Authentication protocol as subtext to application protocol

6HFXULW\�6XSSRUW�3URYLGHU�1HJRWLDWLRQ�

Windows 2000 includes SSPs designed to handle Kerberos authentication, NTLM,

and SChannel. Applications can specify a particular SSP when calling the SSPI, or

they can use the SSPI’s negotiation feature to select the most secure protocol from

those available on the computer.8 When the application requests logon with

negotiation, the client proposes an ordered list of authentication protocols, starting

with the most secure. The server selects from the list, choosing the most secure

protocol available on its side. On systems running Windows 2000, the preference is

Kerberos first, then NTLM, then SChannel. If both client and server are running on

Windows 2000, the negotiation mechanism will select the Kerberos SSP.

([DPSOH��2SHQLQJ�D�)LOH�RQ�D�5HPRWH�6HUYHU�

Suppose that Alice has logged on to her workstation using her domain account. In

the course of her work, Alice starts Microsoft Word and opens a document stored

on a file server.

To open the document, Microsoft Word submits an I/O request through an API call

to the Windows 2000 operating system on the workstation. The operating system

determines that the document is a remote resource and passes the request to the

file system redirector. The redirector uses the Server Message Block (SMB) file

sharing protocol to connect to the Server service on the remote file server, open the

file, and read its data. The entire operation is carried out in stages through a series

of SMB messages. The first step—and the only one of interest here—is for the

redirector to obtain an authenticated connection to the remote service.

1HJRWLDWLQJ�D�6HFXULW\�6XSSRUW�3URYLGHU�

Before either side of the SMB conversation can verify the other’s identity, the two

parties must agree on an authentication protocol. Both client and server list the

security support providers available on their systems and indicate preferences. In

this case, both are running Windows 2000, so the preference on both sides is the

Kerberos SSP. That is what they agree to use.

8
 The method used to negotiate a security support provider is based on the SPNEGO protocol described in

RFC 2478, “Simple and Protected GSS-API Negotiation Mechanism,” December 1998.

 Windows 2000 White Paper 37

+RZ�WKH�&OLHQW�,QLWLDWHV�$XWKHQWLFDWLRQ�

The authentication protocol begins when the redirector on Alice’s workstation calls

the SSPI method AcquireCredentialsHandle, specifying Alice as the security

principal. This call returns a handle to the credentials Alice obtained when she

logged on interactively to her workstation. The redirector then calls the SSPI

method InitializeSecurityContext, passing a handle to Alice’s TGT and specifying

the file server as the target. This call generates the Kerberos message

KRB_TGS_REQ, which includes Alice’s TGT. The Kerberos SSP sends the

message directly to the KDC in Alice’s account domain. The KDC returns a ticket for

the file server. The Kerberos SSP caches the ticket and returns to the calling

process, the redirector, indicating that authentication is not yet complete.

The redirector calls InitializeSecurityContext a second time, asking for a

continuation of the previous call. This time the Kerberos SSP generates Kerberos

message KRB_AP_REQ, which includes a ticket encrypted in the secret key that

the server shares with the KDC, and an authenticator encrypted in the session key

that Alice shares with the server. The Kerberos SSP returns this message to the

redirector. The redirector includes the Kerberos message as an authentication

token in an SMB message that it sends to the Server service.

+RZ�WKH�6HUYHU�5HVSRQGV�

When the Server service receives the redirector’s SMB message, it creates a local

security context for the client by calling the SSPI method AcceptSecurityContext,

passing a pointer to the authentication token. The Kerberos SSP on the file server

opens KRB_AP_REQ, extracts the ticket, takes out the session key, and uses it to

validate Alice’s authenticator. If the authenticator is valid, the Kerberos SSP

removes Alice’s authorization data from the session ticket, passing it to the LSA on

the server. The LSA builds an access token for Alice, establishing a security context

for her actions on the system. That done, the Kerberos SSP prepares

KRB_AP_REP and returns it, along with a handle to Alice’s security context, to the

calling process.

When the call to AcceptSecurityContext returns, the Server service sends

KRB_AP_REP as data in an SMB message to the redirector on Alice’s workstation.

It then uses the handle to Alice’s security context to impersonate Alice by calling the

SSPI method ImpersonateSecurityContext. As a result of this call, Alice’s access

token is attached to an impersonation thread in the service process, allowing it to

act on Alice’s behalf when opening the file. If Alice has been given permission to

read the file, the service will be able to respond to the redirector’s I/O request.

0XWXDO�$XWKHQWLFDWLRQ�

When the redirector receives the SMB message containing KRB_AP_REP, it hands

the data to the Kerberos SSP on Alice’s workstation so that it can validate the file

server’s identity. The Kerberos SSP uses its copy of the session key to decrypt the

server’s authenticator. It compares the timestamp in the server’s authenticator with

the timestamp in the authenticator that it sent with KRB_AP_REQ. If the times do

not match, the Kerberos SSP returns an error and the redirector breaks the

Windows 2000 White Paper 38

connection with the file server. Otherwise, the connection proceeds. This process is

mutual authentication.

([DPSOH��&URVV�'RPDLQ�$XWKHQWLFDWLRQ�

The network where Alice works has three domains, a parent, and two children, East

and West. Alice has an account in West. She has logged on to her domain account

and has collected a TGT for the KDC in West. In the course of her work on the

computer, Alice decides that she needs to take a look at a document stored in a

public share on Bob, a server in the domain East.

company.com

east.company.comwest.company.com

Alice Bob

Figure 10: Alice’s network

The procedure for setting up a secure client/server connection is similar to the one

described in the preceding example. However, in this case Alice’s domain is

different from the file server’s domain, so the Kerberos SSP on Alice’s workstation

must obtain a TGT for the server’s domain and then use the TGT to get a ticket for

the server. This involves a referral process that proceeds as follows:

1. Alice’s workstation sends KRB_TGS_REQ to the KDC in west.company.com.

 The message includes:

• The name of the target computer, Bob.

• The name of the target computer’s domain, east.company.com.

• A TGT for admission to the KDC in west.company.com.

• An authenticator encrypted with the session key Alice shares with that KDC.

2. The KDC in west.company.com replies with KRB_TGS_REP.

 The message includes:

• A session key for Alice to share with the KDC in company.com, encrypted
with Alice’s logon session key.

 Windows 2000 White Paper 39

• A TGT for admission to the KDC in company.com, encrypted with the secret

key for the trust relationship between the two domains.

3. Alice’s workstation sends KRB_TGS_REQ to the KDC in company.com.

 The message includes:

• The name of the target computer, Bob.

• The name of the target computer’s domain, east.company.com.

• A TGT for admission to the KDC in company.com.

• An authenticator encrypted with the session key Alice shares with that KDC.

4. The KDC in company.com replies with KRB_TGS_REP.

 The message includes:

• A TGT for admission to the KDC in east.company.com, encrypted with the
secret key for the trust relationship between the two domains.

• A session key for Alice to share with that KDC, encrypted with the session

key Alice shares with the KDC in company.com.

5. Alice’s workstation sends KRB_TGS_REQ to the KDC in east.company.com.

 The message includes:

• The name of the target computer, Bob.

• The name of the target computer’s domain, east.company.com.

• A TGT for admission to the KDC in east.company.com.

• An authenticator encrypted with the session key Alice shares with that KDC.

6. The KDC in east.company.com replies with KRB_TGS_REP.

 The message includes:

• A session key for Alice to share with Bob, encrypted with the session key
Alice shares with the KDC in east.company.com.

• A session ticket for admission to Bob, encrypted with the secret key Bob
shares with the KDC.

 The session ticket includes:

• A session key for Bob to share with Alice.

• Authorization data copied from Alice’s TGT, plus data for the local domain,

east.company.com.

 The authorization data includes:

• The SID for Alice’s account.

• SIDs for groups in west.company.com that include Alice.

• SIDs for universal groups that include either Alice or one of her groups in

west.company.com.

• SIDs for groups in east.company.com that include Alice, one of her groups in

west.company.com, or one of her universal groups.

Windows 2000 White Paper 40

7. Alice’s workstation sends KRB_AP_REQ to Bob.

 The message includes:

• The user principal name, Alice.

• A ticket to Bob.

• An authenticator encrypted with the session key Alice shares with Bob.

8. Bob replies with KRB_AP_REP.

 The message includes an authenticator encrypted with the session key Bob

shares with Alice.

 Windows 2000 White Paper 41

The goal for the implementation of the Kerberos version 5 authentication protocol in

Windows 2000 is seamless, out-of-the-box interoperability with the reference

implementation of Kerberos published by MIT.

6FHQDULRV�

Microsoft has tested interoperability with the MIT reference implementation in the

following scenarios:

Windows KDC. Non-windows Kerberos implementations can authenticate to the

KDC in a Windows 2000 domain. Non-windows Kerberos users and hosts can

authenticate to a domain controller by using kinit and DES-CBC-MD5 or DES-CBC-

CRC encryption.

Non-windows Kerberos KDC. Systems running Windows 2000 can authenticate to

a host serving as the KDC of a Kerberos realm. In addition, a standalone Windows

2000 system can be configured so that local computer accounts map to Kerberos

principals. This configuration allows users to log on simultaneously to both the

computer and the Kerberos realm.

Windows Client, Non-Windows Kerberos Service. Client applications running on

Windows 2000 can authenticate to non-Windows Kerberos services if the services

support the Generic Security Service Application Program Interface (GSS-API)

defined in RFC 1964.

Windows 2000 does not provide the GSS-API. Applications written for the Windows

2000 operating system should use the SSPI to get support for Kerberos version 5

authentication. The two interfaces are compatible and similar.

Non-Windows Kerberos Client, Windows Service. Client applications running on

non-Windows Kerberos systems can authenticate to services running on Windows

2000 if the client applications support the GSS-API as defined in RFC 1964.

Trust Relationships. Windows 2000 domains can be configured to trust non-

Windows Kerberos realms. Non-Windows Kerberos realms can be configured to

trust Windows domains. The trusts are not complete like domain trusts. For

instance, user principals from the Kerberos realm do not have the authorization data

that Windows 2000-based services need for access control. In order for this

authorization data to be added to the user’s ticket, an account mapping mechanism

is used. Selected domain user accounts are used to provide identity for Kerberos

principals in the trusted realm. These mappings are kept on the altSecurityID

property on the user account object. They can be managed through Active Directory

Users and Computers.

,17(523(5$%,/,7<�

Windows 2000 White Paper 42

&RQILJXUDWLRQ

Utilities for configuring Windows 2000 for interoperability with UNIX systems are

available in the Support folder of the Windows 2000 installation CD. For more

information, see the white paper on Windows 2000 Kerberos interoperability at

http://www.microsoft.com/WINDOWS2000/library/howitworks/security/kerbint.asp .

)RU�0RUH�,QIRUPDWLRQ�

For detailed procedures about Kerberos interoperability features with Windows

2000, see Step-by-Step Guide to Kerberos 5 (krb5 1.0) Interoperability.

For the latest information on Windows 2000, visit our World Wide Web site at

http://www.windows.com/windows2000 .

