
Natural Language Processing
Text classification

1

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

● We’ll be holding extra office hours next week
○ Exact times will be posted on the course website and as an announcement on Ed by the

end of the weekend

2

● Probabilistic

Logistic regression

3

● Rule-based

● Generative models ● Discriminative models

● Linear models
○ Multinomial logistic regression

(aka MaxEnt)

● Non-linear models
○ Multilayer perceptron

● Supervised text classification

● Naïve Bayes

Last time we established…

● The structure of a (binary) logistic regression model
○ weights w corresponding to features

○ a sigmoid function applied as the last layer in order to form probabilities

● How to apply an existing (binary) logistic regression model

And we started to talk about

● How to learn w (and b)
○ Gradient descent

■ Note: NOT solely for logistic regression

4

What’s left from logistic regression?

● The loss function that we use in conjunction with gradient descent

● Transitioning from binary logistic regression to multinomial logistic regression

And some additional loose ends that are nevertheless important in practice:

● Gradient descent → Stochastic Gradient Descent

● Preventing overfitting
○ Regularization

● Hyperparameters

5

Cross-entropy loss

6

Intuition of negative log likelihood loss = cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

● the log probability

● of the true y labels in the training data

● given the observations x

7

From classification to a loss function

8

sign

f

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x)

from our classifier (the thing we want to maximize) as

9

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x)

from our classifier (the thing we want to maximize) as

Noting:

if y=1, this simplifies to ŷ

if y=0, this simplifies to 1 - ŷ

10

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:

Now take the log of both sides (mathematically handy)

Maximize:

Whatever values maximize log p(y|x) will also maximize p(y|x)

11

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:

Now flip sign to turn this into a loss: something to minimize

12

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:

Now flip sign to turn this into a loss: something to minimize

13

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:

Now flip sign to turn this into a cross-entropy loss: something to minimize

Minimize:

Or, plug in definition of ŷ = σ(w∙x+b)

14

Zooming out for a sec…

Remember: the loss on the last slide is for a single instance of training data!

In practice, the function we actually want to minimize is an averaged version of that

loss over all our training examples:

15

Let's see if this works for our sentiment example

We want loss to be:

● smaller if the model estimate ŷ is close to correct
● bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do
the same to you .

16

Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

Pretty well! What's the loss?

17

Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).

What's the loss?

18

The loss when the model was right (if true y=1)

The loss when the model was wrong (if true y=0)

Sure enough, loss was bigger when model was wrong!

Let's see if this works for our sentiment example

19

The gradient

Remember that we need to take the gradient of that loss.

Turns out that there’s a nice closed expression for that gradient!

20

What are these partial derivatives for logistic regression?

The loss function:

The elegant derivative of this function (see Section 5.10 for the derivation)

21

Multinomial logistic regression

22

Multinomial Logistic Regression

Often we need more than 2 classes

● Positive/negative/neutral

● Parts of speech (noun, verb, adjective, adverb, preposition, etc.)

● Classify emergency SMSs into different actionable classes

If >2 classes we use multinomial logistic regression

23

Changes we’ll need to make

● We need more weights per feature

● … and something other than the sigmoid function

● … which results in a slightly different loss function.

24

Imagine we’re doing topic classification:

Does this document talk about… river ecosystems? finance? or electricity?

What weights might we want to give to the following features?

Bank River ecosystems: Med + Finance: Very + Electricity: Low +

Ground River ecosystems: Low + Finance: Very – Electricity: Very +

Current River ecosystems: Very + Finance: Low + Electricity: Very +

Why might we need more weights per feature?

25

Why don’t we just copy each feature for each class?

w for our classifier will now contain a separate weight w
i
 for each of the following:

● (bank, river ecosystems)

● (bank, finance)

● (bank, electricity)

● (ground, river ecosystems)

● (ground, finance)

● (ground, electricity)

● (current, river ecosystems)

● (current, finance)

● (current, electricity)

26

… but in order to take full advantage of
these newly expanded features, we’ll
also have to replace the sigmoid.

Why are you making us drop the sigmoid, Sofia?

We need more than a single output probability that can only move either

up or down…

… but we would like to keep the output in the form of probabilities.

27

Softmax: a generalization of sigmoid

● For a vector z of dimensionality k, the softmax is:

28

Softmax properties

● Takes a vector z = [z1, z2, ..., zk] of k arbitrary values

● Outputs a probability distribution

● each value in the range [0,1]
● all the values summing to 1

We’ll see it again (a lot) when we get into neural networks later.

29

“You just ruined our loss function, Sofia.”

No I didn’t!! I’ve just… improved it >:)

This is what we had as our loss for binary logistic regression:

Which, if we imagine our model as guessing about the true “label vector” ,

is equivalent to

30

New loss →

… and some loose ends

31

Key difference from our motivating scenario on Wednesday: in practice, calculating

the exact gradient is really time-consuming.

Gradient Descent → Stochastic Gradient Descent

Key difference from our motivating scenario on Wednesday: in practice, calculating

the exact gradient is really time-consuming.

So… we estimate the gradient using samples of data.

32

Mini-batch training

Stochastic gradient descent calculates gradients based on subsets of random examples

from the training data at a time.

If you do this with only one instance at a time, that can result in choppy movements.

So it’s very common to compute gradient over “mini-batches” of training instances (not

just single instances).

33

34

(or subset of training tuples that you’ve partitioned the training data into)

Overfitting

A model that perfectly matches the training data has a problem.

It will also overfit to the data, modeling noise

● A random word that perfectly predicts y (it happens to only occur in one class) will

get a very high weight.

● Failing to generalize to a test set without this word.

A good model should be able to generalize

35

Regularization

A solution for overfitting

Add a regularization term R(θ) to the loss function (for now written as maximizing logprob
rather than minimizing loss)

Idea: choose an R(θ) that penalizes large weights

● fitting the data well with lots of big weights not as good as fitting the data a little less
well, with small weights

36

L2 regularization (ridge regression)

The sum of the squares of the weights

L2 regularized objective function:

37

L1 regularization (aka “lasso regression”)

The sum of the (absolute value of the) weights

L1 regularized objective function:

38

L1 regularization prefers sparse solutions. Why?

39

From Elements of Statistical Learning by Hastie, Tibshirani, and Friedman (Fig. 3.11)

Hyperparameters

Hyperparameters:

● Briefly, a special kind of parameter for an ML model

● Instead of being learned by algorithm from supervision (like regular parameters),

they are chosen by algorithm designer.

The coefficient multiplied by a regularization term is an example of a hyperparameter.

The learning rate η is another hyperparameter.

● too high: the learner will take big steps and overshoot

● too low: the learner will take too long

40

Components of a probabilistic machine learning classifier

Given m input/output pairs (x(i), y(i)):

1. A feature representation for the input. For each input observation x(i), a vector of
features [x1, x2, …, xn]. Feature j for input x(i) is xj, more completely x1

(i), or
sometimes fj(x).

2. A classification function that computes ŷ the estimated class, via p(y|x), like the
sigmoid or softmax functions

3. An objective function for learning, like cross-entropy loss

4. An algorithm for optimizing the objective function: stochastic gradient descent

41

Next class:

● Wrapping up text classification

42

