Natural Language Processing Text classification

Sofia Serrano sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

- We'll be holding extra office hours next week
 - Exact times will be posted on the course website and as an announcement on Ed by the end of the weekend

Logistic regression

Last time we established...

- The structure of a (binary) logistic regression model
 - weights w corresponding to features
 - a sigmoid function applied as the last layer in order to form probabilities
- How to apply an existing (binary) logistic regression model

And we *started* to talk about

- How to learn w (and b)
 - Gradient descent
 - Note: NOT solely for logistic regression

What's left from logistic regression?

- The loss function that we use in conjunction with gradient descent
- Transitioning from binary logistic regression to **multinomial** logistic regression

And some additional loose ends that are nevertheless important in practice:

- Gradient descent \rightarrow Stochastic Gradient Descent
- Preventing overfitting
 - Regularization
- Hyperparameters

Cross-entropy loss

Intuition of negative log likelihood loss = cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

- the log probability
- of the true y labels in the training data
- given the observations **x**

From classification to a loss function

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^{y} (1-\hat{y})^{1-y}$$

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^{y} (1-\hat{y})^{1-y}$$

Noting:

if y=1, this simplifies to \hat{y} if y=0, this simplifies to 1 - \hat{y}

Goal: maximize probability of the correct label p(y|x)

Maximize: $p(y|x) = \hat{y}^{y} (1-\hat{y})^{1-y}$

Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$$

= $y \log \hat{y} + (1-y) \log(1-\hat{y})$

Whatever values maximize $\log p(y|x)$ will also maximize p(y|x)

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1-y) \log(1-\hat{y})]$$

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log(1-\hat{y})$

Now flip sign to turn this into a **cross-entropy loss**: something to minimize Minimize: $L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1-y) \log(1-\hat{y})]$

Or, plug in definition of $\hat{y} = \sigma(w \cdot x + b)$

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

Zooming out for a sec...

Remember: the loss on the last slide is for a single instance of training data!

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

In practice, the function we *actually* want to minimize is an averaged version of that loss over *all* our training examples:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{\text{CE}}(f(x^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

15

We want loss to be:

- smaller if the model estimate $\hat{\mathbf{y}}$ is close to correct
- bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

True value is y=1 (positive). How well is our model doing?

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

= $\sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$
= $\sigma(.833)$
= 0.70

Pretty well! What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

= -[log \sigma(\mathbf{w} \cdot \mathbf{x} + b)]
= -log(.70)
= .36

Suppose the true value instead was y=0 (negative).

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

=
$$-[\log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

=
$$-\log (.30)$$

=
$$1.2$$

18

The loss when the model was right (if true y=1)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

= -[log \sigma(\mathbf{w} \cdot \mathbf{x} + b)]
= -log(.70)
= .36

The loss when the model was wrong (if true y=0)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b)))$$

=
$$-[\log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

=
$$-\log (.30)$$

=
$$1.2$$

Sure enough, loss was bigger when model was wrong!

The gradient

Remember that we need to take the gradient of that loss.

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$

Turns out that there's a nice closed expression for that gradient!

What are these partial derivatives for logistic regression?

The loss function:

$$L_{\text{CE}}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

The elegant derivative of this function (see Section 5.10 for the derivation)

$$\frac{\partial L_{\rm CE}(\hat{y}, y)}{\partial w_j} = [\boldsymbol{\sigma}(w \cdot x + b) - y] x_j$$
$$= (\hat{y} - y) \mathbf{x}_j$$

Multinomial logistic regression

Multinomial Logistic Regression

Often we need more than 2 classes

- Positive/negative/neutral
- Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
- Classify emergency SMSs into different actionable classes

If >2 classes we use **multinomial logistic regression**

Changes we'll need to make

• We need more weights per feature

• ... and something other than the sigmoid function

• ... which results in a slightly different loss function.

Why might we need more weights per feature?

Imagine we're doing topic classification:

Does this document talk about... river ecosystems? finance? or electricity?

What weights might we want to give to the following features?

Bank	River ecosystems: Med +	Finance: Very +	Electricity: Low +
Ground	River ecosystems: Low +	Finance: Very –	Electricity: Very +
Current	River ecosystems: Very +	Finance: Low +	Electricity: Very +

Why don't we just copy each feature for each class?

w for our classifier will now contain a separate weight w_i for each of the following:

- (bank, river ecosystems)
- (bank, finance)
- (bank, electricity)
- (ground, river ecosystems)
- (ground, finance)
- (ground, electricity)
- (current, river ecosystems)
- (current, finance)
- (current, electricity)

... but in order to take full advantage of these newly expanded features, we'll also have to replace the sigmoid.

Why are you making us drop the sigmoid, Sofia?

$$P(y=1) = \sigma(w \cdot x + b)$$

=
$$\frac{1}{1 + \exp(-(w \cdot x + b))}$$

We need more than a single output probability that can only move either up or down...

... but we would like to keep the output in the form of probabilities.

Softmax: a generalization of sigmoid

• For a vector \mathbf{z} of dimensionality \mathbf{k} , the softmax is:

softmax(z) =
$$\left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, ..., \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)}\right]$$

softmax(z_i) = $\frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)}$ 1 ≤ i ≤ k
Example:
 $z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$

Softmax properties

- Takes a vector $\mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_k]$ of k arbitrary values
- Outputs a probability distribution
- each value in the range [0,1]
- all the values summing to 1

We'll see it again (a *lot*) when we get into neural networks later.

"You just ruined our loss function, Sofia."

No I didn't!! I've just... improved it >:)

This is what we had as our loss for binary logistic regression:

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

Which, if we imagine our model as guessing about the true "label vector" $\mathbf{y} = [? ?]$, is equivalent to $-[y \log \hat{p}(\mathbf{y}_1 = 1 | \mathbf{x}) + (1 - y) \log \hat{p}(\mathbf{y}_0 = 1 | \mathbf{x})]$

$$-\log \hat{p}(\mathbf{y}_{\text{whichever class is right}} = 1|\mathbf{x})$$

 $-\log \hat{p}(\mathbf{y}_c = 1 | \mathbf{x})$ (where c is the correct class)

New loss
$$\rightarrow -\log \frac{\exp(\mathbf{w_c} \cdot \mathbf{x} + b_c)}{\sum_{j=1}^{K} \exp(\mathbf{w_j} \cdot \mathbf{x} + b_j)}$$
 (*c* is the correct class)

... and some loose ends

$\textbf{Gradient Descent} \rightarrow \textbf{Stochastic Gradient Descent}$

Key difference from our motivating scenario on Wednesday: in practice, calculating the exact gradient is really time-consuming. $\frac{1}{2} \sum_{k=1}^{m} L_{or}(f(x^{(i)}; \theta), y^{(i)})$

So... we estimate the gradient using samples of data.

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{\text{CE}}(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$$

Mini-batch training

Stochastic gradient descent calculates gradients based on subsets of random examples from the training data at a time.

If you do this with only one instance at a time, that can result in choppy movements.

So it's very common to compute gradient over "mini-batches" of training instances (not just single instances).

function Stochastic Gradient Descent(L(), f(), x, y) returns θ

where: L is the loss function

- # f is a function parameterized by θ
- # x is the set of training inputs $x^{(1)}, x^{(2)}, ..., x^{(m)}$
- # y is the set of training outputs (labels) $y^{(1)}$, $y^{(2)}$,..., $y^{(m)}$

$\theta \leftarrow 0$

repeat til done (or subset of training tuples that you've partitioned the training data into) For each training tuple $(x^{(i)}, y^{(i)})$ (in random order)

- 1. Optional (for reporting): Compute $\hat{y}^{(i)} = f(x^{(i)}; \theta)$ Compute the loss $L(\hat{y}^{(i)}, y^{(i)})$ 2. $g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$ 3. $\theta \leftarrow \theta - \eta g$
- # How are we doing on this tuple?
 # What is our estimated output ŷ?
 # How far off is ŷ⁽ⁱ⁾) from the true output y⁽ⁱ⁾?
 # How should we move θ to maximize loss?
 # Go the other way instead

return θ

Overfitting

A model that perfectly matches the training data has a problem.

It will also **overfit** to the data, modeling noise

- A random word that perfectly predicts y (it happens to only occur in one class) will get a very high weight.
- Failing to generalize to a test set without this word.

A good model should be able to **generalize**

Regularization

A solution for overfitting

Add a **regularization** term $R(\theta)$ to the loss function (for now written as maximizing logprob rather than minimizing loss)

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i=1}^{m} \log P(y^{(i)} | x^{(i)}) - \alpha R(\theta)$$

Idea: choose an $\mathbf{R}(\theta)$ that penalizes large weights

• fitting the data well with lots of big weights not as good as fitting the data a little less well, with small weights

L2 regularization (ridge regression)

The sum of the squares of the weights

$$R(\boldsymbol{\theta}) = ||\boldsymbol{\theta}||_2^2 = \sum_{j=1}^n \theta_j^2$$

L2 regularized objective function:

$$\hat{\theta} = \operatorname{argmax}_{\theta} \left[\sum_{i=1}^{m} \log P(y^{(i)} | x^{(i)}) \right] - \alpha \sum_{j=1}^{n} \theta_j^2$$

L1 regularization (aka "lasso regression")

The sum of the (absolute value of the) weights

$$R(\theta) = ||\theta||_1 = \sum_{i=1}^n |\theta_i|$$

L1 regularized objective function:

$$\hat{\theta} = \operatorname{argmax}_{\theta} \left[\sum_{1=i}^{m} \log P(y^{(i)} | x^{(i)}) \right] - \alpha \sum_{j=1}^{n} |\theta_j|$$

L1 regularization prefers sparse solutions. Why?

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

From Elements of Statistical Learning by Hastie, Tibshirani, and Friedman (Fig. 3.11)

Hyperparameters

Hyperparameters:

- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

The coefficient multiplied by a regularization term is an example of a **hyperparameter**.

The learning rate η is another hyperparameter.

- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

Components of a probabilistic machine learning classifier

Given m input/output pairs $(x^{(i)}, y^{(i)})$:

- 1. A feature representation for the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_j , more completely $x_1^{(i)}$, or sometimes $f_j(x)$.
- 2. A classification function that computes \hat{y} the estimated class, via p(y|x), like the sigmoid or softmax functions
- 3. An objective function for learning, like cross-entropy loss
- 4. An algorithm for **optimizing** the objective function: **stochastic gradient descent**

Next class:

• Wrapping up text classification