
Natural Language Processing
Text classification

1

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

● Quiz 1: Released as soon as lecture ends today (2:20pm)
○ 6 multiple-choice questions

○ Will be open for 12 hours 24 hours, until 2:20pm Thursday 1/19

○ 10-min time limit once you start the quiz

○ Materials from weeks 1 and 2 (anything we talked about up through the end of

class on Friday)
■ Introduction to NLP, introduction to text classification

■ Instructions for HW 1

○ We’ll release the answers by the start of next week

2

https://courses.cs.washington.edu/courses/cse447/23wi/

https://courses.cs.washington.edu/courses/cse447/23wi/

● Probabilistic

Logistic regression

3

● Rule-based

● Generative models ● Discriminative models

● Linear models
○ Multinomial logistic regression

(aka MaxEnt)

● Non-linear models
○ Multilayer perceptron

● Supervised text classification

● Naïve Bayes

Binary logistic regression

4

Logistic regression classifier

● Important analytic tool in natural and social sciences

● Baseline supervised machine learning tool for classification

● Is also the foundation of neural networks

5

Text classification

Input:

● a document d (e.g., a movie review)

● a fixed set of classes C = {c1, c2, … cj} (e.g., positive, negative, neutral)

Output

● a predicted class ŷ ∈ C

6

Binary classification in logistic regression

● Given a series of input/output pairs:
○ (x(i), y(i))

● For each observation x(i)

○ We represent x(i) by a feature vector {x1, x2, …, xn}
○ We compute an output: a predicted class ŷ(i) ∈ {0,1}

7

Features in logistic regression

● For feature xi∈{x1, x2, …, xn}, weight wi ∈{w1, w2, …, wn}
tells us how important is xi
○ xi = "review contains ‘awesome’": wi = +10

○ xj = "review contains horrible": wj = -10

○ xk = “review contains ‘mediocre’": wk = -2

8

Binary Logistic Regression for one observation x

● Input observation: vector x(i) = {x1, x2, …, xn}

● Weights: one per feature: W = [w1, w2,…, wn]
○ Sometimes we call the weights θ = [θ1, θ2,…, θn]
○ We’ll talk about how to extend this to multinomial logistic regression on Friday

■ Hint: taking potential classes into account too

● Output: a predicted class ŷ(i) ∈ {0,1}

9

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do
the same to you .

10

11

Classifying sentiment for input x

Suppose w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]

b = 0.1

12

How to do classification

● For each feature xi, (the absolute value of) weight wi tells us importance of xi
○ (Plus we'll have a bias b)
○ We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0

13

But we want a probabilistic classifier

We need to formalize “sum is high”

● We’d like a principled classifier that gives us a probability, just like Naive Bayes did

● We want a model that can tell us:

○ p(y=1|x; θ)
○ p(y=0|x; θ)

14

The problem: z isn't a probability, it's just a number!

● z ranges from -∞ to ∞

● Solution: use a function of z that goes from 0 to 1

15

“sigmoid” or
“logistic” function

The very useful sigmoid or logistic function

16

Idea of logistic regression

● We’ll compute w∙x+b

● And then we’ll pass it through the sigmoid function:

● And we'll just treat it as a probability

17

Making probabilities with sigmoids

18

Making probabilities with sigmoids

19

By the way:

20

Turning a probability into a classifier

● 0.5 here is called the decision boundary

21

The probabilistic classifier

22

Turning a probability into a classifier

if w∙x+b > 0

if w∙x+b ≤ 0

23

24

Classifying sentiment for input x

Suppose w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]

b = 0.1

25

Classifying sentiment for input x

26

A computation graph view of logistic regression

27

w

Wait, where did the W’s come from?

● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.

○ But what the system produces at inference time is an estimate ŷ

28

Wait, where did the W’s come from?

● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.

○ But what the system produces at inference time is an estimate ŷ

● We want to set w and b to minimize the distance between our estimate ŷ(i) and the

true y(i)

○ We need an optimization algorithm to update w and b to minimize the loss

○ We need a distance estimator: a loss function or a cost function

29

Learning components in LR

An optimization algorithm:

● stochastic gradient descent

30

Gradient descent

31

Stochastic Gradient Descent

● Stochastic Gradient Descent algorithm
○ is used to optimize the weights

○ for logistic regression

○ also for neural networks

● We’ll talk about the distinction between Stochastic Gradient Descent (SGD) and

vanilla Gradient Descent (GD) tomorrow
○ Hint: has to do with how often you adjust your function’s weights

32

Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360∘

Find the direction of steepest slope up

Go the opposite direction

33

X

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

34

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

35

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

36

Now let’s imagine 2 dimensions, w and b

Visualizing the (negative) gradient vector

at the red point

It has two dimensions shown

in the x-y plane

37

Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up
θ) we should move.

The gradient is just such a vector; it expresses the directional components of the

sharpest “slope” at your current point when you’re considering all N dimensions at

once.

38

What gives with highlighting the “current point” bit?

Think back to calculus I.

We’re used to finding a formula for the gradient (in this case, y’ = 2x - 1). Why am I not telling
you to do that and then plug in the current point?

39

In some cases you can…

… like in that example,

or, as it turns out, for the loss function we’ll construct for logistic regression!

Nice closed expression :))

40

… but in other cases, computing/storing that formula
can get pretty awful.
Consider this (hypothetical) function:

wTM
1

(𝛔(M
2

w) + M
3

w)

We begin full of optimism:

● Gradient of M
2

w is M
2

T, of M
3

w is M
3

T, of M
1

z is M
1

T

● Gradient of 𝛔(z) is 𝛔(z)(1 - 𝛔(z))

… and then we run into the chain rule combined with the product rule.

41

… but in other cases, computing/storing that formula
can get pretty awful.
Chain rule:

Product rule:

42

wTM
1

(𝛔(M
2

w) + M
3

w)

d/dw (wT M
1

(𝛔(M
2

w) + M
3

w))

 … which will involve d/dw(M
1

(𝛔(M
2

w) + M
3

w)) ...

 … which will involve d/dw(𝛔(M
2

w)) ...

Good news: we don’t have to compute that formula!

(believe it or not) chain rule to the rescue!!

43

wTM
1

(𝛔(M
2

w) + M
3

w)
We can represent that function like this →

We want d/dw of that function.

Remember:

http://colah.github.io/posts/2015-08-Backprop/

http://colah.github.io/posts/2015-08-Backprop/

The lesson:

If you have a function that is end-to-end differentiable,

you get the same result from backpropagating from the output back through a

computation graph representation of that function

than you would by calculating the formula for that function’s gradient and plugging in

the input you used to get that output.

● And since this formula calculation is often pretty horrible to compute/store, we

generally compute gradients through backpropagation.

44

Gradients

The gradient of a function of many variables is a vector pointing in the direction of the

greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move

in the opposite direction.

45

Our goal: minimize the loss

For logistic regression, loss function is convex

● A convex function has just one minimum

● Gradient descent starting from any point is guaranteed to find the minimum
○ (Loss for neural networks is non-convex)

46

Real gradients

Are much longer; lots and lots of weights

For each dimension wi the gradient component i tells us the slope with respect to that

variable.

● “How much would a small change in wi influence the total loss function L?”

● We express the slope as a partial derivative ∂ of the loss ∂wi

The gradient is then defined as a vector of these partials.

47

Loss function: the distance between ŷ and y

We want to know how far is the classifier output ŷ

from the true output: y [= either 0 or 1]

We'll call this difference: L(ŷ,y) = how much ŷ differs from the true y

48

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights 𝛳=(w,b)

● And we’ll represent ŷ as f(x; θ) to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

49

The gradient

We’ll represent ŷ as f(x; θ) to make the dependence on θ more obvious:

The equation for updating θ based on the gradient is thus:

50

How much do we move in that direction?

● The value of the gradient (slope in our example)
○ weighted by a learning rate η

● Higher learning rate means move w faster

51

(Beginning to) construct our
cross entropy loss

52

Intuition of negative log likelihood loss = cross-entropy
loss
A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

● the log probability

● of the true y labels in the training data

● given the observations x

53

A computation graph view of logistic regression

54

w

Previewing the construction of our loss function

55

f

Next class:

● Deriving cross-entropy loss

● Moving from binary to multinomial logistic regression

● Tying up loose ends (picking a step size, regularization, etc.)

56

