Natural Language Processing
Text classification

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

https://courses.cs.washington.edu/courses/csedd7/23wi/

e Quiz 1: Released as soon as lecture ends today (2:20pm)
o 6 multiple-choice questions
o Will be open for 42hkedrs 24 hours, until 2:20pm Thursday 1/19
o 10-min time limit once you start the quiz
o Materials from weeks 1 and 2 (anything we talked about up through the end of

class on Friday)
s Introduction to NLP, introduction to text classification
s Instructions for HW 1

o We'll release the answers by the start of next week

https://courses.cs.washington.edu/courses/cse447/23wi/

Logistic regression

e Supervised text classification

T

e Rule-based e Probabilistic
e Generative models e Discriminative models
e Naive Bayes e Linear models e Non-linear models
o Multinomial logistic regression o Multilayer perceptron

(aka MaxEnt)

Binary logistic regression

Logistic regression classifier

e |mportant analytic tool in natural and social sciences
e Baseline supervised machine learning tool for classification
e |salsothe foundation of neural networks

Text classification

Input:

e adocumentd (e.g.,a movie review)

e afixedsetofclassesC={c,c,, ... cj} (e.g., positive, negative, neutral)
Output

e apredictedclassy & C

Binary classification in logistic regression

e Given aseries of input/output pairs:
o (x¥,y®)

e For each observation x®
o Werepresent x by a feature vector {x, X,, ..., X }
o We compute an output: a predicted class ® € {0,1}

Features in logistic regression

e Forfeaturex €{x,x,,...,X }, weight W Ew, W
tells us how important is x.
o X.= "review contains ‘awesome’™: W, = +10
o Xj = "review contains horrible": wj =-10

o X = “review contains ‘mediocre™: W, = -2

PR

Binary Logistic Regression for one observation x

e Input observation: vector x¥ = {x , x,, ..., X _}

e Weights: one per feature: W =[w , w,,..., W]

o Sometimes we call the weights0 =16, 0,,..., 0]
o WEe'll talk about how to extend this to multinomial logistic regression on Friday

m Hint: taking potential classes into account too

e Output: a predicted class @ & {0,1}

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was

overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do
the same to you .

-
-~
—
—
- o
-~ —
—

- Rg=l e

It's(aokey) There are Vlrtually.’surprlses and the writing 1s Gecond-rat®.

So why was it so@njoyable ? For one thing , the cast is

). Anothe touch 1s the music @Nas overcome with the urge to get off
the cGuch and start,dancmg It sucked @R sand it'll do the same to O -

™ \\

B , / ~ _-"
x;=3 xe=0 xg=A19 47
Var Definition Value
X1 count(positive lexicon) € doc) 3
b)) count(negative lexicon) € doc) 2
5 1 if “no” € doc 1
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
1 if “!” €doc
X5 0

0 otherwise
x¢ log(word count of doc) In(66) =4.19

Classifying sentiment for input x

Var Definition Value
x; count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
5 1 if “no” € doc |
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
e 1 if “!” €doc 0
0 otherwise
x¢ log(word count of doc) In(66) =4.19

Suppose w=[2.5,-5.0,-1.2,0.5,2.0,0.7]
b=0.1

How to do classification

e [oreach feature X,, (the absolute value of) weight W, tells us importance of X,
o (Plus we'll have a bias b)
o We'll sumup all the weighted features and the bias

n
g = Zwixi +b
=1

z = w-x+b>b

If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

We need to formalize “sum is high”

e We'd like a principled classifier that gives us a probability, just like Naive Bayes did

e \We want a model that can tell us:
o p(y=l[x; 0)
o p(y=0[x; 0)

The problem: z isn't a probability, it's just a number!

e zrangesfrom-ooto

z = w-x+b

e Solution: use a function of z that goes from 0to 1

i 1 1
sigmoid” or _ _ _
“logistic” function ¥= G(Z) o]l +e 2 o 1 + exp (—Z)

The very useful sigmoid or logistic function

Idea of logistic regression

e We'll compute w-x+b
e Andthenwe'll pass it through the sigmoid function:

o(W-x+b)

e Andwe'll just treat it as a probability

Making probabilities with sigmoids

Ply=1) = o(w-x+b)
1

l+exp(—(w-x+b))

Making probabilities with sigmoids

Ply=1) = o(w-x+b)
1
l+exp(—(w-x+b))

Py=0) = 1—oc(w-x+b)

1
= 1

~ 14exp(—(w-x+b))
exp(—(w-x+b))
l+exp(—(w-x+Db))

By the way:

G(—(w-x+b))

~
2N
~
|
=
N—r’
|

l—oc(w-x+Db)
[|
1+exp(—(w-x+Db)) Because

exp(—(w-x+b)) 1-—0o(x)=0(—x)

" 1+exp(—(w-x+b))

Turning a probability into a classifier

[1if P(y=1]x) > 0.5
Y=Y 0 otherwise

e (.5 hereiscalled the decision boundary

The probabilistic classifier

Turning a probability into a classifier

. J1if P(y=1Jx)>0.5 if wx+b>0
Y=Y 0 otherwise if wctb < 0

-
-~
—
—
- o
-~ —
—

- Rg=l e

It's(aokey) There are Vlrtually.’surprlses and the writing 1s Gecond-rat®.

So why was it so@njoyable ? For one thing , the cast is

). Anothe touch 1s the music @Nas overcome with the urge to get off
the cGuch and start,dancmg It sucked @R sand it'll do the same to O -

™ \\

B , / ~ _-"
x;=3 xe=0 xg=A19 47
Var Definition Value
X1 count(positive lexicon) € doc) 3
b)) count(negative lexicon) € doc) 2
5 1 if “no” € doc 1
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
1 if “!” €doc
X5 0

0 otherwise
x¢ log(word count of doc) In(66) =4.19

Classifying sentiment for input x

Var Definition Value
x; count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
5 1 if “no” € doc |
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
e 1 if “!” €doc 0
0 otherwise
x¢ log(word count of doc) In(66) =4.19

Suppose w=[2.5,-5.0,-1.2,0.5,2.0,0.7]
b=0.1

Classifying sentiment for input x

p(+lx) =P =1Jx) = o(w-x+Db)
= 0([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] +0.1)
= 0(.833)

70

I
-

p(—|x)=PY =0|x) = 1—c(w-x+b)
= 0.30

A computation graph view of logistic regression

classify(x)

*

Wait, where did the W's come from?

e Supervised classification:
o Atraining time we know the correct label y (either 0 or 1) for each x.
o Butwhat the system produces at inference time is an estimate ¥

Wait, where did the W's come from?

e Supervised classification:
o Atraining time we know the correct label y (either O or 1) for each x.
o Butwhat the system produces at inference time is an estimate ¥

e We wantto set w and b to minimize the distance between our estimate Y and the
true y?
o We need an optimization algorithm to update w and b to minimize the loss
o We need a distance estimator: a loss function or a cost function

Learning components in LR

An optimization algorithm:

e stochastic gradient descent

Gradient descent

Stochastic Gradient Descent

e Stochastic Gradient Descent algorithm
o isused to optimize the weights
o for logistic regression
o also for neural networks

e We'll talk about the distinction between Stochastic Gradient Descent (SGD) and

vanilla Gradient Descent (GD) tomorrow
o Hint: has to do with how often you adjust your function’s weights

Intuition of gradient descent

How do | get to the bottom of this river canyon?

Look around me 360°
Find the direction of steepest slope up

Go the opposite direction

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss

4

i Should we move
right or left from here?

\

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

slope of loss at Wl/

1S negative

So we'll move positive

\

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

slope of loss at wl/

1s negative

So we'll move positive

one step
of gradient
descent

\

Now let's imagine 2 dimensions, w and b

Visualizing the (negative) gradient vector
at the red point Cost(w,b)

It has two dimensions shown
in the x-y plane

Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up
0) we should move.

The gradient is just such-a~vector; it expresses the directional components of the
sharpest “slope(at your current point When you’re considering all N dimensions at
once.

What gives with highlighting the “current point” bit?

Think back to calculus I.

-3

We're used to finding a formula for the gradient (in this case, y’ = 2x - 1). Why am | not telling
you to do that and then plug in the current point?

In some cases you can...

... like in that example,

")

\L

-3

or, as it turns out, for the loss function we’ll construct for logistic regression!

Nice closed expression :))

.. but in other cases, computing/storing that formula
can get pretty awful.

Consider this (hypothetical) function:
w'M_ (6(M,w) + M, w)
We begin full of optimism:

e Gradientof M wis M2T, of M wis M3T, of M,zis MlT
e Gradient of 6(2) is 6(z)(1 - 6(2))

... and then we run into the chain rule combined with the product rule.

.. but in other cases, computing/storing that formula
can get pretty awful.

Chainrule: CZD [f(g(w))] — f’(g(m))g'(w)

d d d
Productrule: : —_— ; i
oductrule: 7" [£(z) - g(e)] = »_[f(@)] 9(2) + (z) + 7 [g(@)
T
w'M, (6(M,w) + M, w)
d/dw (w' M, (e(M,w) + M,w))
... which will involve d/dW(M1 (G(M2W)+M3W))

... which will involve d/dw(e(M,w))

Good news: we don't have to compute that formula!

(believe it or not) chain rule to the rescue!! I
Multiply
T / \
Transpose Multiply

W M1(0(M2W) + MSW) N
We can represent that function like this — Sum
We want d/dw of that function. /

Element\‘fvise

Remember: 29mee

d

http://colah.github.io/posts/2015-08-Backprop/

£ [ro0)] - (o)t " o

http://colah.github.io/posts/2015-08-Backprop/

The lesson:

If you have a function that is end-to-end differentiable,

you get the same result from backpropagating from the output back through a
computation graph representation of that function

than you would by calculating the formula for that function’s gradient and plugging in
the input you used to get that output.

e And since this formula calculation is often pretty horrible to compute/store, we
generally compute gradients through backpropagation.

Gradients

The gradient of a function of many variables is a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move
in the opposite direction.

Our goal: minimize the loss

For logistic regression, loss function is convex

e A convex function has just one minimum

e Gradient descent starting from any point is guaranteed to find the minimum
o (Loss for neural networks is non-convex)

Real gradients

Are much longer; lots and lots of weights

For each dimension w. the gradient component i tells us the slope with respect to that
variable.

e “How much would a small change in w. influence the total loss function L?”

e We express the slope as a partial derivative 0 of the loss ow, 8?1/-
l

The gradient is then defined as a vector of these partials.

Loss function: the distance betweeny andy

We want to know how far is the classifier outputy = o(w-x+b)

from the true output: y [= either 0 or 1]

We'll call this difference: L(y,y) = how much ¥ differs from the true y

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights 6=(w,b)

e Andwe'll represent § as f(x; 0) to make the dependence on 68 more obvious

We want the weights that minimize the loss, averaged over all examples:

A

Ll — i i
6 = argmm%ZLCE(f(x();9)73’())

0 i=1 \
LCE(yay)

The gradient

WEe'll represent ¥ as f(x; 0) to make the dependence on 6 more obvious:

VoL(f(x:0),y))

The equation for updating 6 based on the gradient is thus:

641 = 6, —MVL(f(x;0),y)

How much do we move in that direction?

e The value of the gradient (slope in our example) %L(f(x; w),y)

o weighted by alearning raten

e Higher learning rate means move w faster

W =W 1 L(fw),)

(Beginning to) construct our
cross entropy loss

Intuition of negative log likelihood loss = cross-entropy
loss

A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

e thelogprobability
e of thetruey labelsin the training data
e given the observations x

A computation graph view of logistic regression

classify(x)

*

Previewing the construction of our loss function

loss(0)

classify(x)

A

H scoreLR

DO

7
210>

Next class:

e Deriving cross-entropy loss
e Moving from binary to multinomial logistic regression
e Tyingup loose ends (picking a step size, regularization, etc.)

