
Natural Language Processing
Text classification

1

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides 



Announcements

● Quiz 1: Released as soon as lecture ends today (2:20pm)
○ 6 multiple-choice questions

○ Will be open for 12 hours 24 hours, until 2:20pm Thursday 1/19

○ 10-min time limit once you start the quiz

○ Materials from weeks 1 and 2 (anything we talked about up through the end of 

class on Friday)
■ Introduction to NLP, introduction to text classification

■ Instructions for HW 1

○ We’ll release the answers by the start of next week
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● Probabilistic

Logistic regression
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● Rule-based 

● Generative models ● Discriminative models

● Linear models
○ Multinomial logistic regression 

(aka MaxEnt)

● Non-linear models
○ Multilayer perceptron

● Supervised text classification

● Naïve Bayes



Binary logistic regression
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Logistic regression classifier

● Important analytic tool in natural and social sciences

● Baseline supervised machine learning tool for classification

● Is also the foundation of neural networks
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Text classification

Input: 

● a document d (e.g., a movie review)

● a fixed set of classes C = {c1, c2, … cj} (e.g., positive, negative, neutral)

Output

● a predicted class ŷ ∈ C
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Binary classification in logistic regression

● Given a series of input/output pairs:
○ (x(i), y(i)) 

● For each observation x(i)

○ We represent x(i) by a feature vector {x1, x2, …, xn}
○ We compute an output: a predicted class ŷ(i) ∈ {0,1}
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Features in logistic regression

● For feature xi∈{x1, x2, …, xn}, weight wi ∈{w1, w2, …, wn}
tells us how important is xi
○ xi = "review contains ‘awesome’": wi = +10

○ xj = "review contains horrible": wj = -10

○ xk = “review contains ‘mediocre’": wk = -2
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Binary Logistic Regression for one observation x

● Input observation: vector x(i) = {x1, x2, …, xn}

● Weights: one per feature: W = [w1, w2,…, wn]
○ Sometimes we call the weights θ = [θ1, θ2,…, θn]
○ We’ll talk about how to extend this to multinomial logistic regression on Friday

■ Hint: taking potential classes into account too

● Output: a predicted class ŷ(i) ∈ {0,1}
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Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate .  So why was it so 
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was 
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do 
the same to you .
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Classifying sentiment for input x

Suppose w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] 

b = 0.1
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How to do classification

● For each feature xi, (the absolute value of) weight wi tells us importance of xi
○ (Plus we'll have a bias b)
○ We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0
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But we want a probabilistic classifier

We need to formalize “sum is high”

● We’d like a principled classifier that gives us a probability, just like Naive Bayes did

● We want a model that can tell us:

○ p(y=1|x; θ)
○ p(y=0|x; θ)
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The problem: z isn't a probability, it's just a number!

● z ranges from -∞ to ∞

● Solution: use a function of z that goes from 0 to 1

15

“sigmoid” or 
“logistic” function



The very useful sigmoid or logistic function
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Idea of logistic regression

● We’ll compute w∙x+b

● And then we’ll pass it through the sigmoid function: 

● And we'll just treat it as a probability
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Making probabilities with sigmoids
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Making probabilities with sigmoids
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By the way:
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Turning a probability into a classifier

● 0.5 here is called the decision boundary
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The probabilistic classifier 
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Turning a probability into a classifier

if w∙x+b > 0

if w∙x+b ≤ 0
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Classifying sentiment for input x

Suppose w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] 

b = 0.1
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Classifying sentiment for input x
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A computation graph view of logistic regression

27

w



Wait, where did the W’s come from?

● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.

○ But what the system produces at inference time is an estimate ŷ
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Wait, where did the W’s come from?

● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.

○ But what the system produces at inference time is an estimate ŷ

● We want to set w and b to minimize the distance between our estimate ŷ(i) and the 

true y(i)

○ We need an optimization algorithm to update w and b to minimize the loss

○ We need a distance estimator: a loss function or a cost function
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Learning components in LR

An optimization algorithm: 

● stochastic gradient descent
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Gradient descent
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Stochastic Gradient Descent

● Stochastic Gradient Descent algorithm
○ is used to optimize the weights

○ for logistic regression

○ also for neural networks

● We’ll talk about the distinction between Stochastic Gradient Descent (SGD) and 

vanilla Gradient Descent (GD) tomorrow
○ Hint: has to do with how often you adjust your function’s weights
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Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360∘

Find the direction of steepest slope up

Go the opposite direction
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Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? 

A: Move w in the reverse direction from the slope of the function
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Let's first visualize for a single scalar w
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Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? 

A: Move w in the reverse direction from the slope of the function
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Now let’s imagine 2 dimensions, w and b

Visualizing the (negative) gradient vector

at the red point 

It has two dimensions shown 

in the x-y plane

37



Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up 
θ ) we should move.

The gradient is just such a vector; it expresses the directional components of the 

sharpest “slope” at your current point when you’re considering all N dimensions at 

once.
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What gives with highlighting the “current point” bit?

Think back to calculus I.

We’re used to finding a formula for the gradient (in this case, y’ = 2x - 1). Why am I not telling 
you to do that and then plug in the current point?
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In some cases you can…

… like in that example,

or, as it turns out, for the loss function we’ll construct for logistic regression!

Nice closed expression :))
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… but in other cases, computing/storing that formula 
can get pretty awful.
Consider this (hypothetical) function:

wTM
1

(𝛔(M
2

w) + M
3

w)

We begin full of optimism:

● Gradient of M
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● Gradient of 𝛔(z) is 𝛔(z)(1 - 𝛔(z))

… and then we run into the chain rule combined with the product rule.
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… but in other cases, computing/storing that formula 
can get pretty awful.
Chain rule: 

Product rule:
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Good news: we don’t have to compute that formula!

(believe it or not) chain rule to the rescue!!
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We can represent that function like this →

We want d/dw of that function.

Remember:

http://colah.github.io/posts/2015-08-Backprop/ 

http://colah.github.io/posts/2015-08-Backprop/


The lesson:

If you have a function that is end-to-end differentiable,

you get the same result from backpropagating from the output back through a 

computation graph representation of that function

than you would by calculating the formula for that function’s gradient and plugging in 

the input you used to get that output.

● And since this formula calculation is often pretty horrible to compute/store, we 

generally compute gradients through backpropagation.
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Gradients

The gradient of a function of many variables is a vector pointing in the direction of the 

greatest increase in a function. 

Gradient Descent: Find the gradient of the loss function at the current point and move 

in the opposite direction. 
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Our goal: minimize the loss

For logistic regression, loss function is convex 

● A convex function has just one minimum

● Gradient descent starting from any point is guaranteed to find the minimum
○ (Loss for neural networks is non-convex)
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Real gradients

Are much longer; lots and lots of weights

For each dimension wi the gradient component i tells us the slope with respect to that 

variable. 

● “How much would a small change in wi influence the total loss function L?” 

● We express the slope as a partial derivative ∂ of the loss ∂wi 

The gradient is then defined as a vector of these partials. 
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Loss function: the distance between ŷ and y

We want to know how far is the classifier output ŷ 

from the true output: y [= either 0 or 1]

We'll call this difference: L(ŷ,y) = how much ŷ differs from the true y
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Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights 𝛳=(w,b)

● And we’ll represent ŷ as f(x; θ) to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:
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The gradient

We’ll represent ŷ as f(x; θ) to make the dependence on θ more obvious:

The equation for updating θ based on the gradient is thus:
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How much do we move in that direction?

● The value of the gradient (slope in our example)
○ weighted by a learning rate η 

● Higher learning rate means move w faster
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(Beginning to) construct our 
cross entropy loss
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Intuition of negative log likelihood loss = cross-entropy 
loss
A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

● the log probability

● of the true y labels in the training data

● given the observations x
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A computation graph view of logistic regression
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Previewing the construction of our loss function
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Next class: 

● Deriving cross-entropy loss

● Moving from binary to multinomial logistic regression

● Tying up loose ends (picking a step size, regularization, etc.)
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