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Announcements

Computational Ethics In NLP
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● Academic Integrity Form is out on Canvas
● A1 is out on GitLab

○ Don’t see it? Reply to this thread on Ed with your NetID: 
https://edstem.org/us/courses/32306/discussion/2365366 

● Access to lecture recordings
○ No @cs.washington.edu google account? Click through to (request) access any lecture 

recording sooner rather than later so that we can give you access

● Make sure you can access the course machines
○ (if connecting from off campus) Run Husky OnNet VPN OR first ssh into an attu machine
○ ssh yourNetID@nlpg00.cs.washington.edu   (nlpg00-nlpg03)
○ Not working?

■ Not a CSE major/no CSE account? Email ugrad-adviser@cs.washington.edu to request a CSE 
account (include your student ID number in the email) and CC Sofia

■ Still not working? Reply to this thread on Ed so that we can help troubleshoot: 
https://edstem.org/us/courses/32306/discussion/2368995 

https://edstem.org/us/courses/32306/discussion/2365366
https://itconnect.uw.edu/tools-services-support/networks-connectivity/uw-networks/about-husky-onnet/
mailto:ugrad-adviser@cs.washington.edu
https://edstem.org/us/courses/32306/discussion/2368995


Following up on a question from last lecture
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Credit to Phoebe Mulcaire for figures

https://pmulcaire.github.io/


Symbolic and Probabilistic NLP
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Probabilistic and Connectionist NLP
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Linguistic Background
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What does it mean to “know” a language?
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(Thanks Canadian Internet Registration Authority!)
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What do we need to “tell” a computer program so that it 
knows more English than wc or a dictionary, maybe even 

as much as a three-year-old, for example?



● Language consists of many levels of structure

● Humans fluently integrate all of these in producing/understanding language

● Ideally, so would a computer!

What does an NLP system need to ‘know’?
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Levels of 
linguistic 
knowledge



Speech, phonetics, phonology
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Orthography

12



● Morphological analysis

● Tokenization

● Lemmatization

Words, morphology
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● Part-of-speech tagging

Syntax
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● Part-of-speech tagging

● Syntactic parsing

Syntax
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Semantics

● Named entity recognition
● Word sense disambiguation
● Semantic role labeling
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Discourse

● Reference resolution

● Discourse parsing
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Linguistic challenges we’ll 
need to deal with in designing 
NLP systems
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1. Ambiguity

2. Variation

3. Sparsity

4. Expressivity

5. Unmodeled variables

6. Unknown representation R 

What are some challenges for NLP systems?

19



● Ambiguity at multiple levels:

○ Word senses: bank (finance or river?)

○ Part of speech: chair (noun or verb?)

○ Syntactic structure: I can see a man with a telescope
○ Multiple: I saw her duck 

Ambiguity
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● How can we model ambiguity and choose the correct analysis in context?
○ non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible 

analyses.
○ probabilistic models (HMMs for part-of-speech tagging, PCFGs for syntax) and algorithms (Viterbi, 

probabilistic CKY) return the best possible analysis, i.e., the most probable one according to the model
○ Neural networks, pretrained language models now provide end-to-end solutions 

● But the “best” analysis is only good if our probabilities are accurate. Where do they 
come from?

Dealing with ambiguity
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● A corpus is a collection of text
○ Often annotated in some way

○ Sometimes just lots of text

● Examples
○ Penn Treebank: 1M words of parsed WSJ

○ Canadian Hansards: 10M+ words of aligned French / English sentences

○ Yelp reviews

○ The Web: billions of words of who knows what

Corpora
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AI



1. Ambiguity

2. Variation

3. Sparsity

4. Expressivity

5. Unmodeled variables

6. Unknown representation R 

What are some challenges for NLP systems?
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Variation in languages
● ~7K languages

● Thousands of 

language varieties
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Englishes
Africa is a continent with a very high linguistic diversity: 
there are an estimated 1.5-2K African languages from 6 language 
families. 1.33 billion people



NLP beyond English

● ~7,000 languages 

● thousands of language varieties
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Most of the world today is multilingual 

Source: EthnologueSource: US Census Bureau
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● Every language represents the world in a different way
○ For example, it could depend on cultural or historical conditions

○ Russian has very few words for colors, Japanese has hundreds
○ Multiword expressions, e.g. happy as a clam, it’s raining cats and dogs or wake up and 

metaphors, e.g. love is a journey are very different across languages

Semantic analysis

27



Tokenization
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Tokenization + disambiguation
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● Quechua

Tokenization + morphological analysis
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● German

Tokenization + morphological analysis
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Infektionsschutzmaßnahmenverordnung
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● Non-standard language, emojis, hashtags, names

Linguistic variation
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● Suppose we train a part of speech tagger or a parser on the Wall Street Journal

● What will happen if we try to use this tagger/parser for social media??

Variation
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1. Ambiguity

2. Variation

3. Sparsity

4. Expressivity

5. Unmodeled variables

6. Unknown representation R 

What are some challenges for NLP systems?

36



Sparse data due to Zipf’s Law

● To illustrate, let’s look at the frequencies of different words in a large text corpus

● Assume “word” is a string of letters separated by spaces

Sparsity
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Most frequent words in the English Europarl corpus (out of 24m word tokens)

Word Counts
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But also, out of 93,638 distinct words (word types), 36,231 occur only once.

Examples:

● cornflakes, mathematicians, fuzziness, jumbling

● pseudo-rapporteur, lobby-ridden, perfunctorily,

● Lycketoft, UNCITRAL, H-0695

● policyfor, Commissioneris, 145.95, 27a

Word Counts
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Order words by frequency. What is the frequency of nth ranked word?

Plotting word frequencies
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Implications

● Regardless of how large our corpus is, there will be a lot of infrequent (and 

zero-frequency!) words

● This means we need to find clever ways to estimate probabilities for things we 

have rarely or never seen

Zipf’s Law
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1. Ambiguity

2. Variation

3. Sparsity

4. Expressivity

5. Unmodeled variables

6. Unknown representation R 

What are some challenges for NLP systems?
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Not only can one form have different meanings (ambiguity) but the same meaning can be 
expressed with different forms:

She gave the book to Tom         vs.        She gave Tom the book

Some kids popped by                vs.        A few children visited

Is that window still open?          vs.        Please close the window

Expressivity
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1. Ambiguity

2. Variation

3. Sparsity

4. Expressivity

5. Unmodeled variables

6. Unknown representation R 

What are some challenges for NLP systems?
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Unmodeled variables

“Drink this milk”
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World knowledge
● I dropped the glass on the floor and it broke
● I dropped the hammer on the glass and it broke



1. Ambiguity

2. Variation

3. Sparsity

4. Expressivity

5. Unmodeled variables

6. Unknown representation R 

What are some challenges for NLP systems?
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● Very difficult to decide on a representation R , since we don’t even know how to 

represent the knowledge a human has/needs: 
○ What is the “meaning” of a word or sentence? 

○ How to model context? 

○ Other general knowledge?

Unknown representation
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● Sensitivity to a wide range of phenomena and constraints in human language

● Generality across languages, modalities, genres, styles

● Computational efficiency at construction time and runtime

● Strong formal guarantees (e.g., convergence, statistical efficiency, 

consistency)

● High accuracy when judged against expert annotations and/or test data 

specific to a particular task

● Explainable to human users

● Ethical

Desiderata for NLP models
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Next class

● Text classification

Questions?
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