Prompting and In-Context Learning with Large Language Models

Sewon Min
University of Washington
https://shmsw25.github.io | sewon@cs.washington.edu

March 6, 2023, CSE 447
In this lecture...

- Prompting & In-context learning
- Terminologies
- Improving prompting/in-context learning
- Understanding prompting/in-context learning
- Takeaways
Prompting &
In-Context Learning
Prompting:
Using a large language model to perform a new task without gradient updates
Prompting:
Using a large language model to perform a new task without gradient updates
Prompting:
Using a large language model to perform a new task without gradient updates
Task

A three-hour cinema master class.
Supervised learning

Labeled Training Data

“An effortlessly accomplished and richly resonant work”: Positive

“A mostly tired retread of several other mob tales.”: Negative

Some neural model (RNN, LSTM, Transformer)

A three-hour cinema master class.
I am remarkably stingy with my 10/10 ratings. I'll be the first person to acknowledge this. Of the roughly 2600 titles I've rated on here, only 34 have a 10. Parasite is one of them. If this isn't a masterpiece, then I don't know what is. I'm going to keep it vague on the plot-front, because I didn't know anything about it going in, and was really excited to see it progress and unfold in satisfying, unexpected ways. (...)
Perform the task without finetuning, without large training data for the task of interest?

Labeled Training Data

“An effortlessly accomplished and richly resonant work”: Positive

“A mostly tired retread of several other mob tales.”: Negative
LM Prompting

(Frozen) Language Model
A three-hour cinema master class. It was ______

\[P1 = P(\text{It was great!} \mid \text{A three-hour cinema master class.}) \]
\[P2 = P(\text{It was terrible!} \mid \text{A three-hour cinema master class.}) \]

P1 > P2 \quad \text{“positive”}
P1 < P2 \quad \text{“negative”}

Brown et al. 2020. “Language Models are Few-Shot Learners”
In-context Learning (GPT3; Brown et al., 2020)

Movie review dataset

Input: An effortlessly accomplished and richly resonant work.
Label: positive

Input: A mostly tired retread of several other mob tales.
Label: negative
In-context Learning (GPT3; Brown et al., 2020)

Movie review dataset

Input: An effortlessly accomplished and richly resonant work.
Label: positive

Input: A mostly tired retread of several other mob tales.
Label: negative

An effortlessly accomplished and richly resonant work. It was great!
In-context Learning (GPT3; Brown et al., 2020)

Movie review dataset

Input: An effortlessly accomplished and richly resonant work.
Label: positive

Input: A mostly tired retread of several other mob tales.
Label: negative

An effortlessly accomplished and richly resonant work. It was great!

A mostly tired retread of several other mob tales. It was terrible!
In-context Learning (GPT3; Brown et al., 2020)

Movie review dataset

Input: An effortlessly accomplished and richly resonant work.
Label: positive

Input: A mostly tired retread of several other mob tales.
Label: negative

An effortlessly accomplished and richly resonant work. It was great!

A mostly tired retread of several other mob tales. It was terrible!

Test input
A three-hour cinema master class. It was ________
An effortlessly accomplished and richly resonant work. It was great!
A mostly tired retread of several other mob tales. It was terrible!
A three-hour cinema master class. It was ________

| \(P_1 = P(\text{It was } \text{great}! \mid 1\text{st train input+output} \ \& \ 2\text{nd train input+output} \ \& \ A \text{three-hour cinema master class.}) \) |
| \(P_2 = P(\text{It was } \text{terrible}! \mid 1\text{st train input+output} \ \& \ 2\text{nd train input+output} \ \& \ A \text{three-hour cinema master class.}) \) |

\(P_1 > P_2 \) “positive”
\(P_1 < P_2 \) “negative”

In-context Learning (GPT3; Brown et al., 2020)
In-context learning results

Brown et al. 2020. “Language Models are Few-Shot Learners”
In-context learning results

Brown et al. 2020. “Language Models are Few-Shot Learners”
In-context learning results

Brown et al. 2020. “Language Models are Few-Shot Learners”
In-context learning results

Brown et al. 2020. “Language Models are Few-Shot Learners”
In-context learning results

Brown et al. 2020. “Language Models are Few-Shot Learners”
Why is it amazing?

- No need to collect large labeled data
- No need to do gradient updates
- Scientifically interesting
 (Closer to fundamental intelligence?)
Terminologies

Prompt: A conditioning text coming before the test input

Demonstrations: A special instance of prompt which is a concatenation of the k-shot training data (in in-context learning, prompt==demonstrations)

(Prompt may be different from demonstrations outside of in-context learning, e.g., a description about the task).

An effortlessly accomplished and richly resonant work. It was great!

A mostly tired retread of several other mob tales. It was terrible!

A three-hour cinema master class. It was _____!
An effortlessly accomplished and richly resonant work.

A mostly tired retread of several other mob tales.

A three-hour cinema master class.

It was great!

It was terrible!

It was _____!

Prompt: A conditioning text coming before the test input

Demonstrations: A special instance of prompt which is a concatenation of the k-shot training data (in in-context learning, prompt==demonstrations)

Pattern: A function that maps an input to the text (a.k.a. template)

Verbalizer: A function that maps a label to the text (a.k.a. label words)
Examples of patterns/verbalizers

An effortlessly accomplished and richly resonant work. It was great!
A mostly tired retread of several other mob tales. It was terrible!
A three-hour cinema master class. It was great!

Pattern: \(f(\langle x \rangle) = \langle x \rangle \)

Verbalizer: \(v(\text{“positive”}) = \text{“It was great!”}, f(\text{“negative”}) = \text{“It was terrible!”} \)

Review: An effortlessly accomplished and richly resonant work. Sentiment: positive
Review: A mostly tired retread of several other mob tales. Sentiment: negative
Review: A three-hour cinema master class. Sentiment: positive

Pattern: \(f(\langle x \rangle) = \text{“Review: } \langle x \rangle \text{”} \)

Verbalizer: \(v(\langle x \rangle) = \text{“Sentiment: } \langle x \rangle \text{”} \)
Notes on patterns/verbalizers

- There are many different possible patterns/verbalizers even for the same task.
- In practice, it is better to use patterns/verbalizers that makes the sequence closer to language modeling, i.e. closer to the text that the model might have seen during pretraining.
- It turns out there is huge variance in performance based on the choice of patterns/verbalizers (more in the next slide).
- You should not choose patterns/verbalizers based on the test data.
Review

Test data: \((x, y)\)
Train data: \((x_1, y_1, \ldots, x_k, y_k)\)
Pattern: \(f\)
Verbalizer: \(v\)

Zero-shot prompting: \(\text{argmax}_{y \in \mathcal{Y}} P_{\text{LM}}(v(y) | f(x))\)

In-context learning: \(\text{argmax}_{y \in \mathcal{Y}} P_{\text{LM}}(v(y) | f(x_1), v(y_1), \ldots, f(x_k), v(y_k), f(x))\)

For simplicity, from now on...

Zero-shot prompting: \(\text{argmax}_{y \in \mathcal{Y}} P_{\text{LM}}(y | x)\)

In-context learning: \(\text{argmax}_{y \in \mathcal{Y}} P_{\text{LM}}(y | x_1, y_1, \ldots, x_k, y_k, x)\)
Limitations & How to improve them?
Variance

Across different training sets and permutations

Across different training sets and patterns/verbalizers

Figure 4. Majority label and recency biases cause GPT-3 to become biased towards certain answers and help to explain the high variance across different examples and orderings. Above, we use 4-shot SST-2 with prompts that have different class balances and permutations, e.g., [P P N N] indicates two positive training examples and then two negative. We plot how often GPT-3 2.7B predicts Positive on the balanced validation set. When the prompt is unbalanced, the predictions are unbalanced (majority label bias). In addition, balanced prompts that have one class repeated near the end, e.g., end with two Negative examples, will have a bias towards that class (recency bias).

Problem 1: some labels are preferred than others

A boring story. It was ________

Language Model

great 55%
terrible 45%

N/A. It was ________

Language Model

great 75%
terrible 25%

Holtzman et al 2021. "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"
Problem 1: some labels are preferred than others

A beautiful film. It was great.
A master class. It was great.
A boring story. It was ________

Language Model

A beautiful film. It was great.
A master class. It was great.
N/A. It was ________

Language Model

Holtzman et al 2021. "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"
Problem 2: Surface form competition

A three-hour cinema master class. It was ________

Language Model

great
awesome
elegant
fantastic
perfect
terrific
wonderful
exceptional

Holtzman et al 2021. "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"
Problem 2: Surface form competition

A three-hour cinema master class. It was ________

Language Model

great (3%)
awesome
elegant (90%)
fantastic
perfect
terrific
wonderful
exceptional

Holtzman et al 2021. "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"
Solution 1: Calibrate model scores

<table>
<thead>
<tr>
<th>Subpar acting.</th>
<th>It was terrible.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beautiful film.</td>
<td>It was great.</td>
</tr>
<tr>
<td>A master class.</td>
<td>It was _________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subpar acting.</th>
<th>It was terrible.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beautiful film.</td>
<td>It was great.</td>
</tr>
<tr>
<td>N/A</td>
<td>It was _________</td>
</tr>
</tbody>
</table>

P(“terrible”)
P(“great”)

How much did a likelihood of terrible change?

How much did a likelihood of great change?

\[
\log P_{\text{final}}(\text{“terrible”}) = \log P(\text{“terrible”}) - \log P_{\text{n/a}}(\text{“terrible”})
\]

\[
\log P_{\text{final}}(\text{“great”}) = \log P(\text{“great”}) - \log P_{\text{n/a}}(\text{“great”})
\]

Holtzman et al. 2021. "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"
Solution 2: Noisy Channel

\[P(y|x) = \frac{P(x|y)P(y)}{P(x)} \propto P(x|y)P(y) \]

Min et al. 2022. "Noisy Channel Language Model Prompting for Few-Shot Text Classification"
Solution 2: Noisy Channel

(Original conditional prob) (+ calibration)

Min et al. 2022. "Noisy Channel Language Model Prompting for Few-Shot Text Classification"
How to choose the best k examples?

Assumption: you already have the labeled data that is large enough

A three-hour master class.

The film is a masterpiece.

One of the worst movies of the year

The master of disaster.

Use either an existing encoder (RoBERTa) or learned retrieval

<table>
<thead>
<tr>
<th>The film is a masterpiece.</th>
<th>It was great.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The master of disaster.</td>
<td>It was terrible.</td>
</tr>
</tbody>
</table>
| A three-hour master class.| It was ________.

Liu et al. 2021. What Makes Good In-Context Examples for GPT-3?
How to order k examples?

Review: A mostly tired retread of several other mob tales. Sentiment: negative

Review: The film is the masterpiece. Sentiment: negative

Review: One of the worst movies of the year. Sentiment: negative

Language Model

Positive
Negative
Positive
Negative

Skipping the methodology, but is an important dimension of demonstrations!

How to order k examples?

How to order k examples?

Step 1: Generate \textit{unlabeled dev set}

Step 2: \textbf{Score} each permutation based on unlabeled dev set

Step 3: \textbf{Choose} the best permutation!

\textbf{Lu et al. 2022}. “Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity”
How to order k examples?

Step 1: Generate **unlabeled dev set**

Step 2: **Score** each permutation based on unlabeled dev set

Step 3: **Choose** the best permutation!

Unlabeled dev set

- Review: the ending is ...
- Review: nice movie
- Review: features multiple endings
- ... Review: the greatest musicians

How to order k examples?

1. GlobalE

Intuition: model prediction over $k!$ examples should be evenly distributed

$$\text{GlobalE} = \sum_{v \in V} (-p_v \log p_v)$$

How to order k examples?

2. LocalE

Intuition: model output shouldn’t be overly confident

\[
\text{LocalE} = \sum_{1 \leq i \leq k!} \sum_{v \in V} (-P(v|x_i) \log P(v|x_i))
\]

Multi-task learning for prompting

Language Model Pre-training → Fine-tuning on your task

Language Model Pre-training → Prompting

Language Model Pre-training → Fine-tuning with 100+ tasks → Prompting

Remember, it’s still prompting (no fine-tuning on the target task)

Sanh et al., 2022. Multitask Prompted Training Enables Zero-Shot Task Generalization
Wei et al., 2022. Finetuned Language Models Are Zero-Shot Learners
Min et al., 2022. MetaICL: Learning to Learn In Context
Wang et al., 2022. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
Chung et al., 2022. Scaling Instruction-Finetuned Language Models
Multi-task learning for prompting

- Summarization
 - The picture appeared on the wall of a Poundland store on Whymark Avenue [...] How would you rephrase that in a few words?

- Sentiment Analysis
 - Review: We came here on a Saturday night and luckily it wasn’t as packed as I thought it would be [...] On a scale of 1 to 5, I would give this a

- Question Answering
 - I know that the answer to “What team did the Panthers defeat?” is in “The Panthers finished the regular season [...]”. Can you tell me what it is?

- Natural Language Inference
 - Suppose “The banker contacted the professors and the athlete”. Can we infer that “The banker contacted the professors”?

- Graffiti artist Banksy is believed to be behind [...]
Multi-task learning for prompting

Finetuning tasks

<table>
<thead>
<tr>
<th>TO-SF</th>
<th>Muffin</th>
<th>Natural Instructions v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonsense reasoning</td>
<td>Natural language inference</td>
<td>Cause effect classification</td>
</tr>
<tr>
<td>Question generation</td>
<td>Closed-book QA</td>
<td>Commonsense reasoning</td>
</tr>
<tr>
<td>Closed-book QA</td>
<td>Code instruction gen.</td>
<td>Named entity recognition</td>
</tr>
<tr>
<td>Adversarial QA</td>
<td>Program synthesis</td>
<td>Toxic language detection</td>
</tr>
<tr>
<td>Extractive QA</td>
<td>Dialog context generation</td>
<td>Question answering</td>
</tr>
<tr>
<td>Title/context generation</td>
<td></td>
<td>Question generation</td>
</tr>
<tr>
<td>Topic classification</td>
<td>69 Datasets, 27 Categories, 80 Tasks</td>
<td>Program execution</td>
</tr>
<tr>
<td>Struct-to-text</td>
<td></td>
<td>Text categorization</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>55 Datasets, 14 Categories, 193 Tasks</td>
<td>9 Datasets, 1 Category, 9 Tasks</td>
<td>372 Datasets, 108 Categories, 1554 Tasks</td>
</tr>
</tbody>
</table>

CoT (Reasoning)

Arithmetic reasoning	Explanation generation
Commonsense Reasoning	Sentence composition
Implicit reasoning	...
9 Datasets, 1 Category, 9 Tasks	

Held-out tasks

<table>
<thead>
<tr>
<th>MMLU</th>
<th>BBH</th>
<th>TyDiQA</th>
<th>MGSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract algebra</td>
<td>Boolean expressions</td>
<td>Information seeking QA</td>
<td>Grade school math problems</td>
</tr>
<tr>
<td>College medicine</td>
<td>Tracking shuffled objects</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
| Professional law | Dyck languages | Word sorting | ...
| Sociology | Navigate | 8 languages | |
| Philosophy | ... | 10 languages | |
| 57 tasks | 27 tasks | | |
Multi-task learning for prompting (why?)

- Even though the pretrained language model works for prompting/in-context learning, it actually has never seen the format of prompting/in-context learning.
- Simply exposing to the format of prompting/in-context learning could greatly improve performance.
- We already have a large number of labeled datasets we’ve already collected, so why not use them?
- But if you’ll fine-tune the model... why not fine-tune on the target task?
 - Consider multi-task learning as part of pretraining
 - You do multi-task learning only once, and can use this model frozen for any new downstream task.
Multi-task learning for prompting (method)

Given \((x, y)\), maximize \(P_{LM}(v(y)|f(x))\) where...

- \((x, y)\) is from a dataset sampled from a large collection of datasets
- \(f\) and \(v\) are sampled from a collection of different formats

- Prompt to include in-context examples
- Prompt to include natural language description about the task
- Verbalizer to include rationale about the output

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left?

Answer: Originally, Leah had 32 chocolates and her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39 pieces left in total. The answer is 39.

An effortlessly accomplished and richly resonant work. It was great!
A mostly tired retread of several other mob tales. It was terrible!

“Identify the sentiment of this movie review.”

Chung et al. 2022, Scaling Instruction-Finetuned Language Models
Review

- LM prompting & In-context learning show promising results, but their performance is highly unstable/brittle
- Better scoring
 - Calibration
 - Noisy Channel
- Better formation of demonstrations
 - Better choice of in-context examples
 - Better permutations of in-context examples
- Multi-task learning for prompting
True Few-Shot Learning

“We are unconsciously cheating on the data, and few-shot performance is overestimated”

- Use of large development data
- Choice of patterns and verbalizers
- Choice of various hyperparameters

Should be careful in evaluation

Perez et al 2021. "True Few-Shot Learning with Language Models"
How/Why in-context learning works?
Transition: How/Why in-context learning works?

Any arbitrary task \rightarrow Language Model \rightarrow A few-shot learner
Transition: How/Why in-context learning works?

Any arbitrary task → Language Model → A few-shot learner
How/Why in-context learning works?

- Demonstrations do not teach a new task; instead, it is about locating an already-learned task during pretraining (Reynolds & McDonell, 2021)
- LMs do not exactly understand the meaning of their prompt (Webson & Pavlick, 2021)
- Demonstrations are about providing a latent concept so that LM generates coherent next tokens (Xie et al. 2022)
- In-context learning performance is highly correlated with term frequencies during pretraining (Razeghi et al. 2022)
- LMs do not need input-label mapping in demonstrations, instead, it uses the specification of the input & label distribution separately (Min et al. 2022)
- Data properties lead to the emergence of few-shot learning (burstiness, long-tailedness, many-to-one or one-to-many mappings, a Zipfian distribution) (Chan et al. 2022)
How/Why in-context learning works?

- Demonstrations do not teach a new task; instead, it is about locating an already-learned task during pretraining (Reynolds & McDonell, 2021)
- LMs do not exactly understand the meaning of their prompt (Webson & Pavlick, 2021)
- Demonstrations are about providing a latent concept so that LM generates coherent next tokens (Xie et al. 2022)
- **In-context learning performance is highly correlated with term frequencies during pretraining** (Razeghi et al. 2022)
- **LMs do not need input-label mapping in demonstrations, instead, it uses the specification of the input & label distribution separately** (Min et al. 2022)
- Data properties lead to the emergence of few-shot learning (burstiness, long-tailedness, many-to-one or one-to-many mappings, a Zipfian distribution) (Chan et al. 2022)
Impact of Pretraining Term Frequencies

In-context learning performance is highly correlated with term frequencies during pretraining

- For each task, identify relevant terms from each instance—numbers and units
- Count co-occurrences of these terms in the pretraining data (term pairs or triples within a fixed window)

Razeghi et al. 2022. "Impact of Pretraining Term Frequencies on Few-Shot Reasoning"
Impact of Pretraining Term Frequencies

In-context learning performance is highly correlated with term frequencies during pretraining.

Razeghi et al. 2022. "Impact of Pretraining Term Frequencies on Few-Shot Reasoning"
In-context learning performance is highly correlated with term frequencies during pretraining.

Puts a question on how much LMs actually reason to solve numerical task.

Razeghi et al. 2022. "Impact of Pretraining Term Frequencies on Few-Shot Reasoning"
Impact of input-label mapping

Min et al. 2022. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?"

In-context learning does not necessitate correct input-label mapping

- **Input**: An effortlessly accomplished and richly resonant work.
 Label: positive
- **Input**: A mostly tired retread of several other mob tales.
 Label: negative
- **Input**: A three-hour master class.
 Label: _______

Language Model

- **Input**: An effortlessly accomplished and richly resonant work.
 Label: negative
- **Input**: A mostly tired retread of several other mob tales.
 Label: positive
- **Input**: A three-hour master class.
 Label: _______
Impact of input-label mapping

In-context learning does not necessitate correct input-label mapping

Min et al. 2022. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?"
Impact of input-label mapping

In-context learning does not necessitate correct input-label mapping

Input: An effortlessly accomplished and richly resonant work.
Label: positive

Input: A mostly tired retread of several other mob tales.
Label: negative

Input: A three-hour master class.
Label: _______
Impact of input-label mapping

In-context learning does not necessitate correct input-label mapping

Label: positive
Input: Many accompanying marketing ... meaning.
Label: negative
Input: A three-hour master class.
Label: _______

Removing correct input distribution significantly drops performance

Min et al. 2022. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?"
Impact of input-label mapping

In-context learning does not necessitate correct input-label mapping

Input: An effortlessly accomplished and richly resonant work.
Label: Unanimity

Input: A mostly tired retread of several other mob tales.
Label: Wave

Input: A three-hour master class.
Label: _______

Removing correct input distribution significantly drops performance

Removing correct label space significantly drops performance

Input and label distributions matter independently

Min et al. 2022. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?"
How about non-classification?

Demonstration

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left?

Answer: Originally, Leah had 32 chocolates and her sister had 42. So in total they had $32 + 42 = 74$. After eating 35, they had $74 - 35 = 39$ pieces left in total. The answer is 39.

Test input

Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice as many pages as yesterday. How many pages are left?

Answer: _________________

Model output

Julie is reading a 120-page book. Yesterday, she read 12 pages and today, she read 24 pages. So she read a total of $12 + 24 = 36$ pages. Now she has $120 - 36 = 84$ pages left. The answer is 84.

Madaan & Yazdanbakhsh, 2022. Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango

How about non-classification?

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left?
Answer: Originally, Leah had 32 chocolates and her sister had 42. So her sister had 42 - 32 = 10 chocolates more than Leah has. After eating 35, they have 10 + 35 = 45 in total. The answer is 45.

Question: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice as many pages as yesterday. How many pages are left?
Answer: _________________

Language Model

Yesterday, Julie read 12 pages. Today, she read 12 * 2 = 24 pages. So she read a total of 12 + 24 = 36 pages. Now she needs to read 120 - 36 = 84 more pages. The answer is 84.

The correctness of in-context examples is not necessary.

Madaan & Yazdanbakhsh, 2022. Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango
Takeaways

- Does language model magically learn a new task as defined in the demonstration? *Maybe not!*
- Findings 1) Accuracy depends a lot on how many times relevant terms appear in the pretraining data
- Findings 2) Even if demonstrations provided to the language model are incorrect, the model still performs the original task well
- These suggest that in-context learning might be mainly about *recovering the task that is implicitly learned during pre-training*, using the demonstrations as semantic cues.
- This is an ongoing topic of debate and active research!
Summary
Summary & Open questions

- Prompting/In-context learning
 - No need for gradient updates ➔ Much easier to use large models!
- Better calibration, better scoring of model outputs, better formation of demonstrations & multi-task learning lead to great improvements
 - How to make it less sensitive?
 - It increases inference cost – how to make it efficient?
 - How to scale it (longer context, more training examples, wider range of tasks)?
- Need to be cautious in evaluation
- Still in progress on understanding how/why it works, with papers showing that in-context learning is about task location rather than learning a new task
 - Can we predict whether in-context learning would work on a given task or not?
Reminding the timeline

- Before 2018: Supervised training with LSTM/etc...
- 2018: Advent of Pretrained LMs + Fine-tuning
- 2020: The GPT-3 paper introduces Prompting and In-Context Learning
- 2021: Much work about how to improve them
- 2022:
 - Multi-task learning for prompting
 - Understanding prompting and in-context learning
- 2023: ?
Things we didn’t cover

- Multi-task learning with human feedback
- Using language models for various applications
- ChatGPT (!!!)
Things we didn’t cover

- Multi-task learning with human feedback
- Using language models for various applications
- ChatGPT (!!)
- Retrieval (Search) + language modeling

Google shares tank 8% as AI chatbot Bard flubs answer in ad

Shares of Google’s parent company lost more than $100bn after its Bard chatbot advertisement showed inaccurate information.
Questions?

Useful resources

- ACL 2022 Tutorial in Zero-/Few-shot learning with Pretrained Language Models
- Princeton class in Understanding Large Language Models
- Johns Hopkins class on Self-supervised Statistical Models
- An interview with Sameer Singh on ChatGPT, GPT-4 and Cutting Edge Research
- Stanford Blog Post on How In-Context Learning Works