Language Grounding

Alane Suhr
March 3, 2023
CSE 447
World Scopes
(Bisk et al., 2020)

1. Corpora and representations: curated resources used for parsing, lexical semantics

2. The written world: large unstructured collections of texts used for language modeling, text understanding

3. The world of sight and sounds: multimodal resources pairing language and vision, speech, etc.

4. Embodiment and action: language in dynamic environments

5. The social world: language as it is used and learned in interaction with people

Experience grounds language
(Bisk et al. 2020, EMNLP)
What do we want our systems to do?

- Identify concepts in images
- Describe images
- Jointly reason about text and images
- Generate images given a description
Identifying Concepts in Images
Identifying Concepts in Images

Image classification: What object(s) is/are in the image? What is the most salient feature?

- Pascal VOC ([Everingham et al. 2010, IJCV](#))
- ImageNet ([Deng et al. 2009, CVPR](#))
- Microsoft COCO ([Lin et al. 2014](#))
- KiloGram ([Ji et al. 2022, EMNLP](#))
Identifying Concepts in Images

Scene graph generation:
What’s the relationship between objects in the image?
What are their parts?

- Visual Genome (Krishna et al. 2016)
- KiloGram (Ji et al. 2022, EMNLP)
Describing Images

- **General-purpose captioning**: evaluation is difficult!
 - Microsoft COCO Captions ([Chen et al. 2015](#))
 - Conceptual Captions ([Sharma et al. 2018, ACL](#))

- **Context-dependent descriptions**: text has a purpose — easier to evaluate
 - VizWiz ([Bigham et al. 2010, UIST](#))
 - ReferItGame ([Kazemzadeh et al. 2014, EMNLP](#))
 - CapWAP ([Fisch et al. 2020, EMNLP](#))

The cat is sleeping.

Your blue mug is on the table.
Jointly Reasoning about Text and Images

- **Visual question answering:** map text and image to natural language answer
 - VQA [Agrawal et al. 2015, ICCV]
 - CLEVR [Johnson et al. 2017, CVPR], GQA [Hudson and Manning 2019, NeurIPS]
 - VCR [Zellers et al. 2019, CVPR], Sherlock [Hessel et al. 2022, ECCV]

- **Image-text entailment:** determine whether text describes image
 - NLVR [Suhr et al. 2017, ACL], NLVR2 [Suhr et al. 2019, ACL]
 - MaRVL [Liu et al. 2021, EMNLP]
 - CLIP [Radford et al. 2021]

Example Questions and Answers:

Q: How many mugs are there?
A: two

Q: There is exactly one black triangle not touching any edge: True
Generating Images from Text

Tools that allow image generation / editing conditioned on text

- DALL-E (OpenAI)
- Stable diffusion (Stability.AI)

Someone giving a virtual talk in a natural language processing class
Modeling Methods

• **Joint vs. separate image and text representations:** whether to learn text/image features independently, or jointly — LXMERT *(Tan and Bansal 2019, EMNLP)* vs. CLIP *(Radford et al. 2021)*

• **Masked autoencoding:** learn to reconstruct training data that has been perturbed, e.g., by “masking” words or image patches *(Wang et al. 2022)*

• **Diffusion models:** latent variable model trained using variational inference that iteratively generate images by denoising step-by-step *(Ho et al. 2020, NeurIPS)*

• **Modalities beyond vision:** video, speech, databases, etc.
WS4: Embodiment and Action

Why embodiment?

• **Embodiment**: an agent is able to manipulate its environment by taking action

• With static environments, agents are not evaluated on their ability to generalize to new environment states due to *world dynamics*

• Our language-using agents should be able to act in the world they share with us

• This requires them to take into account both **perception** and how their **actions influence the world state**
Vision-Language Navigation

- **Task:** navigate a *static* environment given a natural language instruction

- **Evaluation:** did agent end up in the correct location? Did it follow the correct path?

- **Datasets:** instructions and gold-standard action sequences or stopping positions
 - SAIL *(MacMahon et al. 2006, AAAI)*
 - Room2Room *(Anderson et al. 2018, CVPR)*
 - Touchdown *(Chen et al. 2018, CVPR)*
Embodied Question Answering

- **Task:** navigate a static environment until a question can be answered by the agent.

- **Evaluation:** did agent give the correct answer?

- **Datasets:** questions and correct answers
 - EQA (Das et al. 2018, CVPR)
 - IQA (Gordon et al. 2018, CVPR)
Manipulable Environments

- **Task**: act in a *dynamic* environment to execute a natural language instruction

- **Evaluation**: are we in the correct final state?

- **Datasets**: instructions and gold-standard action sequences or stopping positions
 - SCONE *(Long et al. 2016, ACL)*
 - CerealBar *(Suhr et al. 2019)*
 - ALFRED *(Shridhar et al. 2020)*
 - MindCraft *(Bara et al. 2021)*

Put the cup with the knife on the table.
Learning Methods: Imitation Learning

• **Goal:** match what a human would do as closely as possible (hence “imitation”)

• **Training data:** either exact sequences the instruction-follower should take, or an “oracle” that tells it what it should do in specific situations

• **Learning style:** supervised learning; given some environment state, model gets direct supervision on the action to take
Learning Methods: Reinforcement Learning

- **Goal**: optimize some external reward
- **Training data**: current version of the agent takes actions in the environment given a training instruction, and receives a scalar reward (e.g., in [-1, 1])
- Rewards can be derived from the training dataset, e.g., how close the agent is getting to the goal state
- **Learning style**: lots of options coming from RL; policy gradient, PPO, etc.
Instruction-Following in the Real World

SayCan (Ahn et al. 2022)
WS5: Human-Agent Language-Based Interaction

Why interaction?

- **Interaction**: two or more agents act in an environment, and observe each others’ actions
- Without interaction, agents are not exposed to *dynamics* that arise as agents adapt to one another
- Our language-using agents should be able to coordinate with us, and learn from us, through language
- This requires them to also take into account behavior of the other agents
Collaborative Interactions

- Two agents act in a shared world towards a common goal
- Coordinate their actions using natural language
- Tasks to study: **language understanding** and **language generation**
- Opportunities within collaborative interactions
 - Dynamics: convention formation, adaptation to mistakes
 - Continual learning through explicit and implicit feedback
Reference Games

• Task: two agents view identical or similar environments
 • Agent 1 chooses something in the environment
 • Agent 1 writes a referring expression for that thing
 • Agent 2 should try their best to identify what Agent 1 is referring to

• E.g.: sets of colors ([Monroe et al. 2017, TACL](#))

• The expressions generated depend heavily on:
 • Surrounding context in environment
 • What you know about the other agent
Reference Games

• This requires agents to maintain a model of the other (a.k.a. Theory of Mind)

• In linguistics, this the subject of pragmatics

• Formal models describe how we might consider each others’ state of mind (e.g., RSA; Frank and Goodman 2012, Science)
Reference Games

PhotoBook
(Haber et al. 2019, ACL)

OneCommon
(Udagawa and Aizawa 2019, AAAI)
Continual Learning through Interaction

Why continual learning?

- **Continual learning**: agent adapts constantly within and across interactions given explicit/implicit user feedback
- This allows the models to adjust *on the fly* to the user’s actual behavior
- Very natural way of learning:
 - We use feedback to drive our own language learning and change
 - We expect our interlocutors to adapt their language via feedback we give
- Our systems should be able to adjust to feedback we provide!
Continual Learning through Interaction

Explicit feedback

Hold this for a second
Continual Learning through Interaction

Explicit feedback

Hold this for a second
Learning from Explicit Feedback

• **Task:** follow instructions

• In live interactions, get users to write new instructions

• Agent maps user-written instructions to actions

• Users provide binary feedback as the agent moves

Suhr and Artzi 2022
Learning from Explicit Feedback

- Over many rounds of human-agent games, rate at which it follows instructions correctly increases!
- Confounding factor: user adaptation
- User adaptation produces an effect, but agent is still improving from the learning process

Suhr and Artzi 2022
Implicit feedback

Bring me a saw

Probably didn’t say it right

Continual Learning through Interaction
Learning from Implicit Feedback

- **Task:** generate instructions

- In live interactions, agent generates an **intent** given game objective

- Agent maps intent to an instruction

- User’s response to instruction provides implicit feedback on how correct the instruction was wrt. intent

Kojima et al. 2021, TACL
Learning from Implicit Feedback

- Model continually improves its ability to convey its intent via natural language
- We did not observe any user adaptation over time to agent-generated instructions

Kojima et al. 2021, TACL
Summary

Multimodal Corpora
- Static datasets
- Static environments

Embodied Corpora
- Static datasets
- Dynamic environments

Interaction
- Dynamic datasets
- Dynamic environments
- Continual learning