
Natural Language Processing
Dependency parsing

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov for slides

Announcement(s)

● A3 is out!

● Quiz 7 goes out on Canvas on Wednesday 3/1 at the end of lecture
○ Available until Friday 3/3 at 2:20pm; you’ll have 15 minutes to complete it once you

start.

○ Remember that you can use your notes during the quiz

○ Will cover material from last Wednesday’s lecture through the end of today’s lecture

(so, parsing)

● For this Wednesday and this Friday’s lectures: you have a choice of whether to

join live over zoom or come to our usual classroom!
○ Our 3/1 and 3/3 guest speakers will be joining virtually to give their talks, so I’ll be

sending the zoom link that they’ll be using to all of you this afternoon via Ed

○ But if you’d rather come to the usual classroom, I’ll be here and projecting their lectures

on the big screen!

Dependency representation

3

Operations
Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

● Shift

● LeftArc or Reduce left

● RightArc or Reduce right

4

Shift-Reduce Parsing

Configuration:

● Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

● Shift
○ remove w1 from the buffer, push it onto the stack as s1

● LeftArc or Reduce left
○ assert a head-dependent relation between s1 and s2 (s1 → s2)
○ pop s1 from the stack; pop s2 from the stack; then push (s2← s1) onto the stack

● RightArc or Reduce right
○ assert a head-dependent relation between s2 and s1 (s2 → s1)
○ pop s1 from the stack; pop s2 from the stack; then push (s2 → s1) onto the stack

5

Or as A3/Eisenstein do it…

6

Operations by a classifier at each step:

● Shift
○ remove w1 from the buffer, push it onto the

stack as s1
● LeftArc or Reduce left

○ assert a head-dependent relation between
s1 and s2 (s1 → s2)

○ pop s1 from the stack; pop s2 from the
stack; then push (s2 ← s1) onto the stack

● RightArc or Reduce right
○ assert a head-dependent relation between

s2 and s1 (s2 → s1)
○ pop s1 from the stack; pop s2 from the

stack; then push (s2 → s1) onto the stack

Operations by a classifier at each step:

● Shift
○ remove w1 from the buffer, push it onto the

stack as s1
● LeftArc or Reduce left

○ assert a head-dependent relation between
b1 and s1 (b1 → s1)

○ pop s1 from the stack; pop b1 from the
buffer; then push (s1 ← b1) onto the buffer

● RightArc or Reduce right
○ assert a head-dependent relation between

s1 and b1 (s1 → b1)
○ pop s1 from the stack; pop b1 from the

buffer; then push (s1 → b1) onto the buffer

Want to see an(other) example of transition-based
parsing in action?
Slides 30-44 of this slide deck by Noah Smith do a really nice job of walking through the

full transition-based assembly of a sentence’s parse visually.

7

https://drive.google.com/file/d/1NSMq7XuspmC7BKigiHAIjMHrPjEviFuN/view?usp=sharing

Shift-Reduce Parsing (Arc-standard)

8

Shift-Reduce Parsing

9

Shift-Reduce Parsing

10

Shift-Reduce Parsing

11

Shift-Reduce Parsing

12

Shift-Reduce Parsing

13

Shift-Reduce Parsing

14

Shift-Reduce Parsing

15

Shift-Reduce Parsing

16

Shift-Reduce Parsing

17

Shift-Reduce Parsing

18

Shift-Reduce Parsing

19

Shift-Reduce Parsing

20

Shift-Reduce Parsing

21

Shift-Reduce Parsing

22

Shift-Reduce Parsing

23

Shift-Reduce Parsing

24

Shift-Reduce Parsing

25

Shift-Reduce Parsing

26

Shift-Reduce Parsing

27

Or as A3/Eisenstein do it…

28

(now just has to end with a SHIFT
action)

Note: for A3, the buffer
shouldn’t actually be empty,
it should consist of just
<EOS>

Shift-Reduce Parsing

Configuration:

● Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

● Shift
○ remove w1 from the buffer, push it onto the stack as s1

● LeftArc or Reduce left
○ assert a head-dependent relation between s1 and s2 (s1 → s2)
○ pop s1 from the stack; pop s2 from the stack; then push (s2← s1) onto the stack

● RightArc or Reduce right
○ assert a head-dependent relation between s2 and s1 (s2 → s1)
○ pop s1 from the stack; pop s2 from the stack; then push (s2 → s1) onto the stack

29

Oracle decisions can
correspond to unlabeled
or labeled arcs

Complexity?

Training an Oracle

● Oracle is a supervised classifier that learns a function from the configuration to the

next operation

● How to extract the training set?

30

Training an Oracle

● Given a gold tree, how to extract the gold set of steps

for training?
○ if LeftArc → LeftArc

○ if RightArc

■ if s1 dependents have been processed →

RightArc
○ else → Shift

31

● Given a gold tree, how to extract the gold set of steps

for training?
○ if LeftArc → LeftArc

○ if RightArc

■ if s1 dependents have been processed →

RightArc
○ else → Shift

Training an Oracle

32

Training an Oracle

● Oracle is a supervised classifier that learns a function from the configuration to the

next operation

● Given a gold tree, how to extract the gold set of steps for training?
○ if LeftArc → LeftArc

○ if RightArc

■ if s1 dependents have been processed → RightArc
○ else → Shift

● What features to use?

33

● POS, word-forms, lemmas on the stack/buffer

● morphological features for some languages

● previous relations

● conjunction features (e.g. Zhang&Clark’08;

Huang&Sagae’10; Zhang&Nivre’11)

Features

34

In other words, features are usually some combination
of…

● Information about the word(s) left in the buffer (often just the first)

● Information about the top elements in the stack (often just the top two)

35

Or as A3/Eisenstein do it…

● Information about the word(s)

left in the buffer (often just the

first)

● Information about the top

elements in the stack (often

just the top two)

36

● Information about the word(s)

left in the buffer (often just the

first two)

● Information about the top

elements in the stack (often

just the top one)

Learning

● Before 2014: Support Vector Machines (SVMs),

● After 2014: Neural Nets

37

Chen & Manning 2014

Slides by Danqi Chen &

Chris Manning
38

Chen & Manning 2014

39

Chen & Manning 2014

● Features
○ s1, s2, s3, b1, b2, b3

○ leftmost/rightmost children of

s1 and s2

○ leftmost/rightmost

grandchildren of

 s1 and s2

○ POS tags for the above

○ arc labels for

children/grandchildren

40

Evaluation of Dependency Parsers

● LAS - labeled attachment score

● UAS - unlabeled attachment score

41

Chen & Manning 2014

42

Follow-up

43

Stack LSTMs (Dyer et al. 2015)

44

Arc-Eager version (in A3/Eisenstein speak)

● LEFTARC: Assert a head-dependent relation from b1 to s1; pop the stack.

● RIGHTARC: Assert a head-dependent relation from s1 to b1; shift b1 to be s1

instead of dropping it from the stack/buffer.

● SHIFT: Remove b1 and push it to be the new s1.

● REDUCE: Pop the stack.

45

Arc-Eager

46

Parsing algorithms

● Transition based
○ greedy choice of local transitions guided by a good classifier

○ deterministic

○ MaltParser (Nivre et al. 2008), Stack LSTM (Dyer et al. 2015)

● Graph based
○ Minimum Spanning Tree for a sentence

○ non-projective

○ globally optimized

○ McDonald et al.’s (2005) MSTParser

○ Martins et al.’s (2009) Turbo Parser

47

Summary

● Transition-based
○ + Fast
○ + Rich features of context
○ - Greedy decoding

● Graph-based
○ + Exact or close to exact decoding
○ - Weaker features

Well-engineered versions of the approaches achieve comparable accuracy (on English), but
make different errors

→ combining the strategies results in a substantial boost in performance

48

Previewing the last few
lectures of the quarter

49

Remaining lecture topics

● Wednesday 3/1: Saadia Gabriel on commonsense reasoning, factuality, also

touches on toxic language detection [virtual; your choice whether to join Zoom

meeting or come to classroom]
● Friday 3/3: Alane Suhr on multimodal NLP and grounding for NLP [virtual; your

choice whether to join Zoom meeting or come to classroom]
● Monday 3/6: Sewon Min on prompting and in-context learning using large

language models [back to in-person]

● Wednesday 3/8: Akari Asai on multilingual NLP [in-person]

● Friday 3/10: I’ll be giving the wrap-up lecture and leaving time for Q&A/chatting

about NLP more broadly. Have questions about NLP? Bring ‘em!! :)

50

https://homes.cs.washington.edu/~skgabrie/
https://www.alanesuhr.com/
https://shmsw25.github.io/
https://akariasai.github.io/

Preview of remaining announcements for the quarter

● Remember: this Wednesday’s quiz is on parsing!
● A2 grades should be out sometime late tomorrow or on Wednesday; regrade

requests can be submitted (via private Ed post) up to a week after A2 grades are
posted on Canvas

● We’ll be holding extra office hours next week (3/6-3/10) leading up to the A3
deadline (which is 11:59pm on Friday 3/10, the last day of class)
○ Mind your late days! The number of late days you have available to use on A3 is

min(3, 5 - your total late days used so far this quarter). Send us a message to ask what
your total late day usage so far has been if you’re not sure!

● The last quiz of the quarter, Wednesday of next week (3/8), will be on a
combination of topics from Saadia, Alane, and Sewon’s lectures

51

