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Announcement(s)

e A3isoutongitlab!



The CKY algorithm for parsing
with PCFGs



Parsing

e Parsingis search through the space of all possible parses
o e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):

arg max P (T)

T € G(x)

e Bottom-up:
o One starts from words and attempt to construct the full tree

e Top-down
o Start from the start symbol and attempt to expand to get the sentence



CKY algorithm (aka CYK)

e Cocke-Kasami-Younger algorithm
o Independently discovered in late 60s / early 70s

e An efficient bottom up parsing algorithm for (P)CFGs
o can be used both for the recognition and parsing problems
o Veryimportantin NLP (and beyond)

e We will start with the non-probabilistic version



Constraints on the grammar

e The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

Unary preterminal rules (generation of words given PoS

C =z 1209

C — 0102

N — telescope D — the

Binary innerrules  §—= NP VF NP 1) N



Constraints on the grammar

e The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):
C —x
C — CC5

e Any CFG can be converted to an equivalent CNF
o Equivalent means that they define the same language
o However (syntactic) trees will look differently
o ltis possible to address it by defining such transformations that allows for easy reverse
transformation



Transformation to CNF form

e What one need to do to convert to CNF form

o Getrid of rules that mix terminals and non-terminals
o Getrid of unary rules: C — C;
o Getrid of N-ary rules: C—-Ci0y...C, (n>2)

Crucial to process them, as
required for efficient parsing



Transformation to CNF form: binarization

e Consider NP - DT NNP VBG NN
NP
DT NNP VBG NN
|
the Dutch publishing group

e How do we get a set of binary rules which are equivalent?



Transformation to CNF form: binarization

NP — DT NNP VBG NN
NP

e Consider

DT NNP VBG NN

\ | | |
the Dutch publishing group

e How do we get a set of binary rules which are equivalent?
NP - DT X

X —+NNPY
Y > VBG NN



Transformation to CNF form: binarization

NP — DT NNP VBG NN
NP

e Consider

DT NNP VBG NN

\ | | |
the Dutch publishing group

e How do we get a set of binary rules which are equivalent?

NP - DT X
X >NNPY
Y - VBG NN
e A more systematic way to refer to new non-terminals
NP — DT QNP|DT
QNP|DT - NNP QNP|DT.NNP
QNP|DT_NNP — VBG NN



Transformation to CNF form: binarization

e Instead of binarizing tuples we can binarize trees on preprocessing:

NP
DT NNP VBG NN
| | |
the Dutch  publishing group
NP
DT @QNP->_DT

|
the

NNP @QNP->_DT_NNP

|
Dutch VBG NN

| |
publishing group

Also known as lossless
Markovization in the
context of PCFGs

Can be easily reversed
on postprocessing



CKY: Parsing task

e Wearegiven
o agrammar <N, T,S,R>

o asequence of words w = (’w1, wa, . .

e Our goalisto produce a parse tree for w



CKY: Parsing task

e Weagiven

o agrammar <N, T,S,R>

o asequence of words

w = (wy,ws, ..., W,)

e Our goalisto produce a parse tree for w

e We need an easy way to refer to substrings of w

/\

/\

/\

/\

/\

/\

0

span (1, ]) refers to words between fenceposts i and |

2

3

4

14

5

indices refer to fenceposts



Parsing one word

C-)ZUZ'



Parsing one word




Parsing one word

C' — w;

covers all words
betweeni— | and i




Parsing longer spans
C — 01 OQ

Check through all
C1, C2, mid




Parsing longer spans
C — 01 OQ

Check through all
C1, C2, mid




Parsing longer spans

C

covers all words
between min and max




lead can | poison

max =1

max = 3

min=90

S?

min =1

min=2

S— NP VP

VP—-MV

VP -V

NP — N
NP -+ N NP

Inner
rules

N — can
N — lead
N — poison

M — can
M — must

Chart (aka
parsing
triangle)

V' — poison
V — lead

Preterminal
rules
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poison
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can

poison

S— NP VP

VP—-MYV

VP -V

NP — N
NP —- N NP

Inner
rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



lead

can

poison

lead

can

poison

S— NP VP

VP—-MV

VP -V

NP — N
NP — N NP
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can

poison

lead

can

poison

S— NP VP

VP—-MV

VP -V

NP — N
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Inner
rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
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rules



S— NP VP

VP—-MYV

VP -V

NP — N
NP — N NP

Inner
rules

lead can | poison
0 1 2 3
max = 1 max = 2 max = 3
min=90 S?
min =1
min=2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



S— NP VP

VP—-MYV

VP -V

NP — N
NP — N NP

Inner
rules

lead can | poison
0 1 2 3
max = 1 max = 2 max = 3
1 4
min=90 S?
2
min =1
min=2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



S— NP VP

VP—-MYV

VP -V

NP — N
NP —- N NP

Inner
rules

lead can | poison
0 1 2 3
max = 1 max = 2 max = 3
1 4 6
min=90 S?
2 5
min =1
3
min=2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



S— NP VP

VP—-MYV

VP -V

NP — N
NP — N NP

Inner
rules

lead can | poison
0 1 2 3
max =1 max =2 max = 3
:
min =0 7
2
min =1 ?
3
?
min = 2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



lead can | poison

min=10

min =1

min =2

S— NP VP

VP —-MYV
VP -V

Inner
rules

NP — N

NP — N NP

Preterminal
rules



lead can | poison

min=10

min =1

min =2

max = 1

max = 2

max =3

S— NP VP

VP —-MYV
VP -V

Inner
rules

NP — N

NP — N NP

N, M

Preterminal
rules



lead can | poison

min=10

min =1

min =2

S— NP VP

VP—-MYV

VP -V

NP — N
NP — N NP

Inner
rules

max = 1 max = 2 max = 3
1 N,V 4
neve| 7
2
N,M
NP
3 N,V
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



S— NP VP

lead can | poison

=== === - -

NP — N NP

max = 1 max = 2 max =3 1
Lo o o oo o oo oo o e

Inner
rules

1NV 4 N — can

min =0 y
NP VP ? N — lead

N — poison

2
N, M
min = 1 NP M — can

M — must

3 N,V

min = 2 NP, V.P V' — poison
V — lead

Preterminal
rules



S— NP VP

lead can | poison

=== === - -

NP — N NP

max = 1 max = 2 max =3 1
Lo o o oo o oo oo o e

Inner
rules

1NV 4NP N — can

min=20 i
NP.VP N — lead

N — poison

2
N, M
min = 1 NP M — can

M — must

3 N,V

min = 2 NP, V.P V' — poison
V — lead

Preterminal
rules



lead can | poison

min=10

min =1

min =2

S— NP VP

VP—-MYV

VP -V

NP — N
NP — N NP

Inner
rules

max =1 max = 2 max =3
"Nv |* NP
NP.VP
N |° o
NP !
3 N,V
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



lead can | poison

min=10

min =1

min =2

Inner
rules

max =1 max = 2 max =3
"Nv |* NP
NP.VP
N.M |°s, v,
NP NP
3 N,V
NP, VP

N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



lead can | poison

min=10

min =1

min =2

S— NP VP

VP—-MYV

VP -V

NP — N
NP — N NP

Inner
rules

max = 1 max = 2 max = 3
1 4 6
N,V NP o
NP,VP '
2 5
N,M | 8, VP,
NP NP
5 N,V
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
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Preterminal
rules



lead can | poison

min=10

min =1

min =2

S— NP VP

VP—-MV

VP -V

NP — N
NP — N NP

Inner
rules

max =1 max =2 max =3
"Ny |*np °
’ ?
NP VP
2 5
N M |°s P,
NP P
3 N|v
NAlvP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



Inner
rules

lead can | poison
0 1 2 3
max = 1 max = 2 max = 3
4 6
"~ v " Np s, NP
min =90
o NE L P
mid=1 '
2 5
N, M S, VE
min = 1 NP NP
S N,V
min =2 NP, VP

N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



lead can | poison
0 1 2 3
min=90
mid=2
min =1
min =2

NP — N
NP — N NP

Inner
rules

max = 1 max = 2 max = 3
"nv |*np s, NP
NP, VP S(?)
2 5

NM |’s,vp

N NP

S N,V
NP,VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules
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lead can | poison

min=90

min =1

min=2

Apparently the sentence is ambiguous for the grammar: (as the grammar
overgenerates)

NP — N
NP —- N NP

Inner
rules

max = 1 max = 2 max = 3
"nv |*np s, NP
NP, VP S(?)
2 5

NM |’s,vp

N NP

S N,V
NP,VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal
rules



Ambiguity

NP VP
| /\
N M \4

| | |

lead can poison

S
NP VP
P |
N NP Vv

| | |
lead N poison

can

No subject-verb agreement, and
poison used as an intransitive verb



Dependency parsing



Dependency representation

Y

I prefer the morning flight through Denver



Dependency trees

e Nodes are words (along with part-of-speech tags)

dOb]
e Directed arcs encode syntactic dependencies betwee/_\
them root My dog ate sausage
PN N

e Labels are types of relations between the words
O poss — possessive
o dobj - direct object
o nsub - subject
o det-determiner



Recovering shallow semantics

/\

root My dog ate sausage

e Some semantic information can be (approximately) derived from syntactic
information
o Subjects (nsubj) are (often) agents ("initiator / doers for an action")
o Direct objects (dobj) are (often) patients ("affected entities")



Recovering shallow semantics

(dobj )
“
root My dog ate a sausage
PN N Vv D N

e Some semantic information can be (approximately) derived from syntactic
information
o Subjects (nsubj) are (often) agents ("initiator / doers for an action")
o Direct objects (dobj) are (often) patients ("affected entities")
e Buteven for agents and patients consider:
o Mary is baking a cake in the oven
o Acakeis bakinginthe oven
e Ingeneralitisnot trivial even for the most shallow forms of semantics
o E.g.,consider prepositions: in can encode direction, position, temporal information, ...



Constituent and dependency representations

e Constituent trees can (potentially) be converted to dependency trees

PNON Y

| R

My dog ate D N
| |

a  sandwich

e Dependency trees can (potentially) be converted to constituent trees

- S root

I S &

: _____A : l l
N NP VP ' !
N | ¥ |
' PN N |V ' root :: My dog! barked !
(I | | | | | |: PN N | V |
1 My dog barked ! e ——p - ' |
T Y S [t G



Dependency representation

e A dependency structure can be defined as a directed graph G, consisting of
o asetV of nodes - vertices, words, punctuation, morphemes
o asetAofarcs -directed edges,
o alinear precedence order < onV (word order). T/ \ / \
® La beled graph S I prefer the morning flight through Denver
o nodesinV are labeled with word forms (and annotation).
arcs in A are labeled with dependency types
L={l,..., i Jis the set of permissible arc labels;
Every arcin Ais a triple (i,j,k), representing a dependency from w. tow,with
label i;.

O O O



Conversion from constituency to dependency

e Xiaand Palmer (2001)
o mark the head child of each node in a phrase structure, using the appropriate head rules
o make the head of each non-head child depend on the head of the head-child

S(dumped)
/\
NP(workers) VP(dumped)
il D
NNS(\Jorkers) VBD(dumped) NP(sacks) PP(into)
wor‘kers a'umlped NNS(Lacks) P/}P(bin)
sal‘ks in‘to DT{N\N(bin)
c‘z bl"n

IOTNCHUINEY A lexicalized tree from Collins (1999).



Dependency vs Constituency

e Dependency structures explicitly represent
o head-dependent relations (directed arcs),
o functional categories (arc labels)
o possibly some structural categories (parts of speech)

e Phrase (aka constituent) structures explicitly represent
o phrases (nonterminal nodes),
o structural categories (nonterminal labels)



Dependency vs Constituency trees

ro

dObj

ot
(det]
Y

I prefer the morning flight through Denver

S
Plo Verb/\NP
Y T

/\/\

Nom Noun

Noun  flight through  Pro

morning Denver



Parsing Languages with Flexible Word Order

| prefer the morning flight through Denver

LV

A npegnoynTato yTpeHHUM nepenet Yepes [eHBep




Languages with free word order

| prefer the morning flight through Denver

AL

A npegnoyunTtalro yTpeHHUW Nnepenert vye

A npegnoyunTtato Yepes [leHBep yTpeHHUN nepeneT
YTpeHHUU nepeneT s npegnoyunTtaro Yepes [leHsep
[MepeneT yTpeHHUU 4 npegnoyvnTato Yyepes [leHsep
Uepes [leHBep A npegnoynTtaro yTpeHHUn nepenet

A yepes [leHBep npegnovnTard yTpeHHUN neperner



Dependency relations

e Label
e Relation
* Type

N

eat, fish,

* Head
* Governor
* Parent

* Modifier
* Dependent
* Child




Types of relationships

e The clausal relations NSUBJ and DOBJ identify the arguments: the subject and
direct object of the predicate cancel

e The NMOD, DET, and CASE relations denote modifiers of the nouns flights and
Houston.

-

dobj

(@)
f

I prefer the morning flight through Denver




Grammatical functions

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

10BJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

cC Coordinating conjunction

QT R®]  Selected dependency relations from the Universal Dependency set. (de Marn-

effe et al., 2014)



Dependency Constraints

e Syntactic structure is complete (connectedness)
o connectedness can be enforced by adding a special root node

e Syntactic structure is hierarchical (acyclicity)
o thereisaunique pass from the root to each vertex

e Everyword has at most one syntactic head (single-head constraint)
o except root that does not have incoming arcs

This makes the dependencies a tree

-1'00l

I prefer the morning flight through Denver



Projectivity

e Projective parse
o arcsdon’t cross each other
o mostly true for English
e Non-projective structures are needed to account for
o long-distance dependencies
o flexible word order

o) o

nmod (mod

s
v

JetBlue canceled our flight this morning which was already late




Projectivity

e Dependency grammars do not normally assume that all dependency-trees are
projective, because some linguistic phenomena can only be achieved using
non-projective trees.

e But alot of parsers assume that the output trees are projective

e Reasons
o conversion from constituency to dependency
o the most widely used families of parsing algorithms impose projectivity



Non-Projective Statistics

Arabic: 11.2 %
Bulgarian: 5.4 %
Chinese: 0.0 %
Czech: 23.2 %
Danish: 15.6 %
Dutch: 36.4 %
German: 27.8 %
Japanese: 5.3 %
Polish: 18.9 %
Slovene: 22.2 %
Spanish 1.7 %
Swedish: 9.8 %
Turkish: 11.6 %
English: 0.0% (SD: 0.1%)

Percentage of non-projective trees for some treebanks of the CoNLL-X Shared Task and English.



Parsing problem

The parsing problem for a dependency parser is to find the optimal dependency treey given
an input sentence x

This amounts to assigning a syntactic head i
and a label I to every node j corresponding to a
word X; in such a way that the resulting graph

is a tree rooted at the node O



Parsing problem

e Thisis equivalent to finding a spanning tree in the complete graph containing all
possible arcs

root
Peter bought \
bought
root - Peta/\,
picture
d \

a

picture



Parsing algorithms

e Transition based
o greedy choice of local transitions guided by a good classifier

o deterministic
o MaltParser (Nivre et al. 2008)



https://aclanthology.org/L06-1084/

Transition Based Parsing

e greedy discriminative dependency parser
e motivated by a stack-based approach called shift-reduce parsing originally

developed for analyzing programming languages (Aho & Ullman, 1972).
e Nivre 2003

4 &=

I prefer the morning flight through Denver



Configuration

Input buffer
wi w2 wn
- \L D d
™ ependency
& j i Parser Relations
Stack | -
——
sn

DTG REY  Basic transition-based parser. The parser examines the top two elements of the
( O ) /8 ) A) stack and selects an action based on consulting an oracle that examines the current configura-
tion.

Q
|



Configuration

Input buffer  Buffer: unprocessed words

w1 w2 wn
Stack: partially ? }< e “Dependency
elations
processed words &
Stack | - Oracle: a classifier
S—

sn
——

Cinitial = ([ROOT], w, @)




Operations

Input buffer  Buffer: unprocessed words
At each step choose:

w1 w2 wn
e Shift
Stack: partially ” }< e “Dependency
elations
processed words £ —_—
Stack | - Oracle: a classifier

N—

sn




Operations

At each step choose:

e Shift
e Reduce left

Stack: partially I\

processed words [ %

sl

Stack

sn

A

Input buffer  Buffer: unprocessed words

wi w2

—

Parser

Oracle

N—

wn

Dependency
Relations

Oracle: a classifier



Operations

Input buffer  Buffer: unprocessed words
At each step choose:

w1 w2 wn
e Shift
e LeftArcor Reduce left
e RightArcor Reduce right
Stack: partially N }< - “Dependency
2 si elations
processed words | ° ——
Stack | - Oracle: a classifier
N—

sn
——

Caccept — ([ROOT], 9, A)



Shift-Reduce Parsing

Configuration:
e Stack, Buffer, Oracle, Set of dependency relations
Operations by a classifier at each step:

e Shift

o remove w1 from the buffer, push it onto the stack as s1
e LeftArcor Reduce left

o assert a head-dependent relation betweens1 ands2 (s1 — s2)

o pop sl from the stack; pop s2 from the stack; then push (s2« s1) onto the stack
e RightArcor Reduceright

o assert a head-dependent relation betweens2 and sl (s2 — s1)

o pop sl from the stack; pop s2 from the stack; then push (s2 — s1) onto the stack



Want to see an example of transition-based parsing in
action?

Slides 30-44 of this slide deck by Noah Smith do a really nice job of walking through the
full transition-based assembly of a sentence’s parse visually.



https://drive.google.com/file/d/1NSMq7XuspmC7BKigiHAIjMHrPjEviFuN/view?usp=sharing

