
Natural Language Processing
(A brief look at CKY, and then)
Dependency parsing

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov for slides

Announcement(s)

● A3 is out on gitlab!

The CKY algorithm for parsing
with PCFGs

3

Parsing

● Parsing is search through the space of all possible parses
○ e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):

● Bottom-up:
○ One starts from words and attempt to construct the full tree

● Top-down
○ Start from the start symbol and attempt to expand to get the sentence

arg max P (T)
T ∈G(x)

4

CKY algorithm (aka CYK)

● Cocke-Kasami-Younger algorithm
○ Independently discovered in late 60s / early 70s

● An efficient bottom up parsing algorithm for (P)CFGs
○ can be used both for the recognition and parsing problems

○ Very important in NLP (and beyond)

● We will start with the non-probabilistic version

5

Constraints on the grammar

● The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

Unary preterminal rules (generation of words given PoS
tags)

Binary inner rules

6

Constraints on the grammar

● The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

● Any CFG can be converted to an equivalent CNF
○ Equivalent means that they define the same language

○ However (syntactic) trees will look differently

○ It is possible to address it by defining such transformations that allows for easy reverse

transformation

7

Transformation to CNF form

● What one need to do to convert to CNF form

○ Get rid of rules that mix terminals and non-terminals

○ Get rid of unary rules:

○ Get rid of N-ary rules:

Crucial to process them, as
required for efficient parsing

8

Transformation to CNF form: binarization

● Consider

● How do we get a set of binary rules which are equivalent?

9

Transformation to CNF form: binarization

● Consider

● How do we get a set of binary rules which are equivalent?

10

Transformation to CNF form: binarization

● Consider

● How do we get a set of binary rules which are equivalent?

● A more systematic way to refer to new non-terminals

11

Transformation to CNF form: binarization

● Instead of binarizing tuples we can binarize trees on preprocessing:

Can be easily reversed
on postprocessing

Also known as lossless
Markovization in the
context of PCFGs

12

CKY: Parsing task

● We are given
○ a grammar <N, T, S, R>

○ a sequence of words

● Our goal is to produce a parse tree for w

13

CKY: Parsing task

● We a given
○ a grammar <N, T, S, R>

○ a sequence of words

● Our goal is to produce a parse tree for w

● We need an easy way to refer to substrings of w

14

indices refer to fenceposts

span (i, j) refers to words between fenceposts i and j

Parsing one word

15

Parsing one word

16

Parsing one word

17

Parsing longer spans

Check through all
C1, C2, mid

18

Parsing longer spans

Check through all
C1, C2, mid

19

Parsing longer spans

20

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

Chart (aka
parsing
triangle)

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

mid=1

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

mid=2

P
re

te
rm

in
al

ru

le
s

In
ne

r
ru

le
s

Apparently the sentence is ambiguous for the grammar: (as the grammar
overgenerates)

Ambiguity

No subject-verb agreement, and
poison used as an intransitive verb

42

Dependency parsing

43

Dependency representation

44

Dependency trees

● Nodes are words (along with part-of-speech tags)

● Directed arcs encode syntactic dependencies between

them

● Labels are types of relations between the words

○ poss – possessive

○ dobj – direct object

○ nsub - subject

○ det - determiner

45

Recovering shallow semantics

46

● Some semantic information can be (approximately) derived from syntactic
information
○ Subjects (nsubj) are (often) agents ("initiator / doers for an action")
○ Direct objects (dobj) are (often) patients ("affected entities")

Recovering shallow semantics

47

● Some semantic information can be (approximately) derived from syntactic
information
○ Subjects (nsubj) are (often) agents ("initiator / doers for an action")
○ Direct objects (dobj) are (often) patients ("affected entities")

● But even for agents and patients consider:
○ Mary is baking a cake in the oven
○ A cake is baking in the oven

● In general it is not trivial even for the most shallow forms of semantics
○ E.g., consider prepositions: in can encode direction, position, temporal information, …

root My
PN

dog
N

ate
V

a
D

sausage
 N

root

poss nsubj

dobj
det

Constituent and dependency representations

48

● Constituent trees can (potentially) be converted to dependency trees

● Dependency trees can (potentially) be converted to constituent trees

Dependency representation

● A dependency structure can be defined as a directed graph G, consisting of

○ a set V of nodes – vertices, words, punctuation, morphemes
○ a set A of arcs – directed edges,

○ a linear precedence order < on V (word order).

● Labeled graphs

○ nodes in V are labeled with word forms (and annotation).

○ arcs in A are labeled with dependency types

○ is the set of permissible arc labels;

○ Every arc in A is a triple (i,j,k), representing a dependency from to with

label .

49

Conversion from constituency to dependency

● Xia and Palmer (2001)
○ mark the head child of each node in a phrase structure, using the appropriate head rules

○ make the head of each non-head child depend on the head of the head-child

50

Dependency vs Constituency

● Dependency structures explicitly represent
○ head-dependent relations (directed arcs),

○ functional categories (arc labels)

○ possibly some structural categories (parts of speech)

● Phrase (aka constituent) structures explicitly represent
○ phrases (nonterminal nodes),

○ structural categories (nonterminal labels)

51

Dependency vs Constituency trees

52

Parsing Languages with Flexible Word Order

I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер

53

I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер

Я предпочитаю через Денвер утренний перелет

Утренний перелет я предпочитаю через Денвер

Перелет утренний я предпочитаю через Денвер

Через Денвер я предпочитаю утренний перелет

Я через Денвер предпочитаю утренний перелет

...

Languages with free word order

54

Dependency relations

55

Types of relationships

● The clausal relations NSUBJ and DOBJ identify the arguments: the subject and

direct object of the predicate cancel

● The NMOD, DET, and CASE relations denote modifiers of the nouns flights and

Houston.

56

Grammatical functions

57

Dependency Constraints

● Syntactic structure is complete (connectedness)
○ connectedness can be enforced by adding a special root node

● Syntactic structure is hierarchical (acyclicity)
○ there is a unique pass from the root to each vertex

● Every word has at most one syntactic head (single-head constraint)
○ except root that does not have incoming arcs

This makes the dependencies a tree

58

Projectivity

● Projective parse
○ arcs don’t cross each other

○ mostly true for English

● Non-projective structures are needed to account for
○ long-distance dependencies

○ flexible word order

59

Projectivity

● Dependency grammars do not normally assume that all dependency-trees are

projective, because some linguistic phenomena can only be achieved using

non-projective trees.

● But a lot of parsers assume that the output trees are projective

● Reasons
○ conversion from constituency to dependency

○ the most widely used families of parsing algorithms impose projectivity

60

Non-Projective Statistics

61

Parsing problem

The parsing problem for a dependency parser is to find the optimal dependency tree y given
an input sentence x

This amounts to assigning a syntactic head i

and a label l to every node j corresponding to a

word xj in such a way that the resulting graph

is a tree rooted at the node 0

62

Parsing problem

● This is equivalent to finding a spanning tree in the complete graph containing all

possible arcs

63

Parsing algorithms

● Transition based
○ greedy choice of local transitions guided by a good classifier

○ deterministic

○ MaltParser (Nivre et al. 2008)

● Graph based
○ Minimum Spanning Tree for a sentence

○ McDonald et al.’s (2005) MSTParser

○ Martins et al.’s (2009) Turbo Parser

64

https://aclanthology.org/L06-1084/

Transition Based Parsing

● greedy discriminative dependency parser

● motivated by a stack-based approach called shift-reduce parsing originally

developed for analyzing programming languages (Aho & Ullman, 1972).

● Nivre 2003

65

Configuration

66

Configuration
Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

67

Operations
Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

● Shift

68

Operations
Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

● Shift

● Reduce left

69

s2 s1

Operations
Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

● Shift

● LeftArc or Reduce left

● RightArc or Reduce right

70

s2 s1

Shift-Reduce Parsing

Configuration:

● Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

● Shift
○ remove w1 from the buffer, push it onto the stack as s1

● LeftArc or Reduce left
○ assert a head-dependent relation between s1 and s2 (s1 → s2)
○ pop s1 from the stack; pop s2 from the stack; then push (s2← s1) onto the stack

● RightArc or Reduce right
○ assert a head-dependent relation between s2 and s1 (s2 → s1)
○ pop s1 from the stack; pop s2 from the stack; then push (s2 → s1) onto the stack

71

Want to see an example of transition-based parsing in
action?
Slides 30-44 of this slide deck by Noah Smith do a really nice job of walking through the

full transition-based assembly of a sentence’s parse visually.

72

https://drive.google.com/file/d/1NSMq7XuspmC7BKigiHAIjMHrPjEviFuN/view?usp=sharing

