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Announcement(s)

● A3 is out on gitlab!



The CKY algorithm for parsing 
with PCFGs
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Parsing

● Parsing is search through the space of all possible parses
○ e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):

● Bottom-up:
○ One starts from words and attempt to construct the full tree

● Top-down
○ Start from the start symbol and attempt to expand to get the sentence

arg max P (T )
T ∈G(x)
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CKY algorithm (aka CYK)

● Cocke-Kasami-Younger algorithm
○ Independently discovered in late 60s / early 70s

● An efficient bottom up parsing algorithm for (P)CFGs 
○ can be used both for the recognition and parsing problems

○ Very important in NLP (and beyond)

● We will start with the non-probabilistic version
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Constraints on the grammar

● The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

Unary preterminal rules (generation of words given PoS 
tags)

Binary inner rules
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Constraints on the grammar

● The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

● Any CFG can be converted to an equivalent CNF
○ Equivalent means that they define the same language

○ However (syntactic) trees will look differently

○ It is possible to address it by defining such transformations that allows for easy reverse 

transformation
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Transformation to CNF form

● What one need to do to convert to CNF form

○ Get rid of rules that mix terminals and non-terminals 

○ Get rid of unary rules:   

○ Get rid of N-ary rules: 

Crucial to process them, as 
required for efficient parsing
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Transformation to CNF form: binarization

● Consider 

● How do we get a set of binary rules which are equivalent?
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Transformation to CNF form: binarization

● Consider 

● How do we get a set of binary rules which are equivalent?
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Transformation to CNF form: binarization

● Consider 

● How do we get a set of binary rules which are equivalent?

● A more systematic way to refer to new non-terminals
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Transformation to CNF form: binarization

● Instead of binarizing tuples we can binarize trees on preprocessing:

Can be easily reversed 
on postprocessing 

Also known as lossless 
Markovization in the 
context of PCFGs
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CKY: Parsing task

● We are given 
○ a grammar <N, T, S, R>

○ a sequence of words

● Our goal is to produce a parse tree for w  
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CKY: Parsing task

● We a given 
○ a grammar <N, T, S, R>

○ a sequence of words

● Our goal is to produce a parse tree for w 

● We need an easy way to refer to substrings of w 
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indices refer to fenceposts

span (i, j)  refers to words between fenceposts i and j 



Parsing one word
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Parsing one word
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Parsing one word
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Parsing longer spans

Check through all
C1, C2, mid
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Parsing longer spans

Check through all
C1, C2, mid
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Parsing longer spans
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Apparently the sentence is ambiguous for the grammar:  (as the grammar 
overgenerates)



Ambiguity

No subject-verb agreement, and 
poison used as an intransitive verb 
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Dependency parsing
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Dependency representation
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Dependency trees

● Nodes are words (along with part-of-speech tags)

● Directed arcs encode syntactic dependencies between 

them

● Labels are types of relations between the words

○ poss – possessive

○ dobj – direct object

○ nsub - subject

○ det - determiner
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Recovering shallow semantics

46

● Some semantic information can be (approximately) derived from syntactic 
information
○ Subjects (nsubj) are (often) agents ("initiator / doers for an action")   
○ Direct objects (dobj) are  (often) patients ("affected entities")



Recovering shallow semantics
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● Some semantic information can be (approximately) derived from syntactic 
information
○ Subjects (nsubj) are (often) agents ("initiator / doers for an action")   
○ Direct objects (dobj) are  (often) patients ("affected entities")

● But even for agents and patients consider:
○ Mary is baking a cake in the oven                                           
○ A cake is baking in the oven

● In general it is not trivial even for the most shallow forms of semantics
○ E.g., consider prepositions: in can encode direction, position, temporal information, …

root My 
PN

dog 
N

ate 
V

a 
D

sausage 
     N

root

poss nsubj

dobj
det



Constituent and dependency representations
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● Constituent trees can (potentially) be converted to dependency trees

● Dependency trees can (potentially) be converted to constituent trees 



Dependency representation

● A dependency structure can be defined as a directed graph G, consisting of 

○ a set V of nodes – vertices,  words, punctuation, morphemes
○ a set A of arcs  – directed edges, 

○ a linear precedence order < on V (word order). 

● Labeled graphs

○ nodes in V are labeled with word forms (and annotation).

○ arcs in A are labeled with dependency types

○                             is the set of permissible arc labels;

○ Every arc in A is a triple (i,j,k),  representing a dependency  from       to      with 

label     .
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Conversion from constituency to dependency

● Xia and Palmer (2001)
○ mark the head child of each node in a phrase structure, using the appropriate head rules

○ make the head of each non-head child depend on the head of the head-child
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Dependency vs Constituency

● Dependency structures explicitly represent
○ head-dependent relations (directed arcs),

○ functional categories (arc labels)

○ possibly some structural categories (parts of speech)

● Phrase (aka constituent) structures explicitly represent
○ phrases (nonterminal nodes),

○ structural categories (nonterminal labels)
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Dependency vs Constituency trees
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Parsing Languages with Flexible Word Order

I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер
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I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер

Я предпочитаю через Денвер утренний перелет

Утренний перелет я предпочитаю через Денвер

Перелет утренний я предпочитаю через Денвер

Через Денвер я предпочитаю  утренний перелет

Я через Денвер предпочитаю  утренний перелет

...

Languages with free word order
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Dependency relations
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Types of relationships

● The clausal relations NSUBJ and DOBJ identify the arguments: the subject and 

direct object of the predicate cancel

● The NMOD, DET, and CASE relations denote modifiers of the nouns flights and 

Houston.
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Grammatical functions
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Dependency Constraints

● Syntactic structure is complete (connectedness)
○ connectedness can be enforced by adding a special root node

● Syntactic structure is hierarchical (acyclicity)
○ there is a unique pass from the  root to each vertex

● Every word has at most one syntactic head (single-head constraint)
○ except root that does not have incoming arcs

This makes the dependencies a tree
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Projectivity

● Projective parse
○ arcs don’t cross each other

○ mostly true for English

● Non-projective structures are needed to account for
○ long-distance dependencies

○ flexible word order
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Projectivity

● Dependency grammars do not normally assume that all dependency-trees are 

projective, because some linguistic phenomena can only be achieved using 

non-projective trees.

● But a lot of parsers assume that the output trees are projective

● Reasons
○ conversion from constituency to dependency

○ the most widely used families of parsing algorithms impose projectivity
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Non-Projective Statistics
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Parsing problem

The parsing problem for a dependency parser is to find the optimal dependency tree y given 
an input sentence x

This amounts to assigning a syntactic head i

and a label l to every node j corresponding to a

word xj  in such a way that the resulting graph 

is a tree rooted at the node 0
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Parsing problem

● This is equivalent to finding a spanning tree in the complete graph containing all 

possible arcs
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Parsing algorithms

● Transition based
○ greedy choice of local transitions guided by a good classifier

○ deterministic

○ MaltParser (Nivre et al. 2008)

● Graph based
○ Minimum Spanning Tree for a sentence

○ McDonald et al.’s (2005) MSTParser

○ Martins et al.’s (2009) Turbo Parser
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https://aclanthology.org/L06-1084/


Transition Based Parsing

● greedy discriminative dependency parser

● motivated by a stack-based approach called shift-reduce parsing originally 

developed for analyzing programming languages (Aho & Ullman, 1972).

● Nivre 2003
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Configuration

66



Configuration
Buffer: unprocessed words

Stack: partially 
processed words

Oracle: a classifier
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Operations
Buffer: unprocessed words

Stack: partially 
processed words

Oracle: a classifier

At each step choose:

● Shift
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Operations
Buffer: unprocessed words

Stack: partially 
processed words

Oracle: a classifier

At each step choose:

● Shift

● Reduce left

69

s2        s1



Operations
Buffer: unprocessed words

Stack: partially 
processed words

Oracle: a classifier

At each step choose:

● Shift

● LeftArc or Reduce left

● RightArc or Reduce right 
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Shift-Reduce Parsing

Configuration: 

● Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

● Shift
○ remove w1 from the buffer, push it onto the stack as s1

● LeftArc or Reduce left
○ assert a head-dependent relation between s1 and s2 (s1 → s2)
○ pop s1 from the stack; pop s2 from the stack; then push (s2← s1) onto the stack

● RightArc or Reduce right 
○ assert a head-dependent relation between s2 and s1 (s2 → s1)
○ pop s1 from the stack; pop s2 from the stack; then push (s2 → s1) onto the stack

71



Want to see an example of transition-based parsing in 
action?
Slides 30-44 of this slide deck by Noah Smith do a really nice job of walking through the 

full transition-based assembly of a sentence’s parse visually.
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https://drive.google.com/file/d/1NSMq7XuspmC7BKigiHAIjMHrPjEviFuN/view?usp=sharing

