
Natural Language Processing
Neural Networks II: Transformers

Sofia Serrano
sofias6@cs.washington.edu

Announcements

● A2 is due on Friday at 11:59pm
○ Careful with the number of late days you have left! If you used three late days on the

last assignment, you have two late days left for the quarter.

○ Make sure to commit/push your .preds files by the deadline, in addition to your code

and writeup

● Extra office hours this week– the course google calendar lists the OH schedule

● Quiz 5 goes out on Canvas today at the end of lecture
○ Available until Friday at 2:20pm; you’ll have 15 minutes to complete it once you start.

○ Remember that you can use your notes during the quiz

○ Will cover material from last Wednesday’s lecture through the end of Monday’s lecture

(so, Viterbi, CRFs, and neural sequence labeling)

https://calendar.google.com/calendar/embed?src=c_07535d20442f0980f8a1f05ab8036c52c4ef91994204c0a68731b46b3347d17f%40group.calendar.google.com&ctz=America%2FLos_Angeles

Transformers: outline

LSTMs: their pros and cons

The transformer architecture at a high level and how it addresses LSTMs’ cons

Attention mechanisms

The transformer architecture at a slightly lower level

The additional idea behind BERT and co. (pretraining and finetuning!)

Things we like about LSTMs

Can deal with arbitrary-length sequences (like text!) while taking the order of the

sequence into account (like text does!)

Were the dominant model architecture in NLP for years for a wide range of tasks

Things we don’t like as much about LSTMs

Recency bias (references at end)

LSTMs were designed to mitigate this issue compared to Elman RNNs, but

still suffer from it

Time required to train an LSTM

Diagram from a
Medium post by
Eugine Kang

A brief aside about some visual shorthand I’ll be using

A 3-layer LSTM’s calculations for an input of 10 tokens

One layer of the transformer architecture (Vaswani et al.
2017)

One layer of the transformer architecture (Vaswani et al.
2017)

ok but how does this
mess help anything sofia

Recency bias is not as much of a problem as in LSTMs

Comparing training times: how many functions do we need to backpropagate
through?

Comparing training times: how many functions do we need to backpropagate
through?

Transformers parallelize a lot of the computations that LSTMs make us do in sequence

Comparing training times: how many functions do we need to backpropagate
through?

Transformers parallelize a lot of the computations that LSTMs make us do in sequence
And (a very specific, but nonempty, subset of) you can therefore train a transformer on a

ridiculously large amount of data in a way that you cannot for an LSTM.

What kind of function can take in a variable
number of inputs like that without recursively

applying an operation a bunch of times?

Attention mechanisms

Building up to the attention mechanism

What about an average?

But we probably don’t want to weight all input

vectors equally…

How about a weighted average?

Great idea! How can we automatically decide the
weights for a weighted average of the input
vectors? What kind of function can take in a

variable number of inputs like that
without recursively applying an operation

a bunch of times?

Bahdanau attention (Bahdanau et al. 2014)

Parameter vector

(Variable number
of) input vectors

Computed how?
1. Dot product between param vector
and each input vector
2. Softmax the set of resulting scalars.

M
ultiply

M
ultiply

M
ultiply

M
ultiply

https://arxiv.org/abs/1409.0473

Pros and cons

Pros:

● We have a function that can compute a weighted
average (largely) in parallel of an arbitrary number
of vectors!

● The parameters determining what makes it into our
output representation are learned

Cons:

● We’re also hoping to produce n different output
token representations… and this just produces
one…

Enter “self attention”

“What if instead of comparing each vector of
the sequence to a single learned vector, we

compared the sequence to itself?”

Hooray for self attention!

Our function is still made up almost entirely of matrix multiplications! Which are very
parallelizable (→ efficient!)

Our function is still made up almost entirely of matrix multiplications! Which are very
parallelizable (→ efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with an

arbitrary length

Our function is still made up almost entirely of matrix multiplications! Which are very
parallelizable (→ efficient!)

We still learn fixed-size blocks of parameters that can be used for a sequence with an

arbitrary length

We’re now capable of producing n different new token representations!

Self attention is the key component of the transformer

Filling in some last transformer
details

The full figure of a layer from the transformer

From Vaswani et al. 2017

https://arxiv.org/abs/1706.03762

Position embeddings

From Vaswani et al. 2017

https://arxiv.org/abs/1706.03762

Position embeddings

Probably the least intuitive part of a transformer.

A transformer’s only sense of the order of words is
a set of position embeddings, one per token index,
that are added to the corresponding tokens of an
input.

In practice, this also means that unlike for LSTMs, the
maximum length of a sequence for a transformer is
capped [at the number of position embeddings it’s
got].

The original transformer paper experimented with
both learned positional embeddings and
sine/cosine-based positional embeddings (sec 3.5).

https://arxiv.org/abs/1706.03762

Masked attention

From Vaswani et al. 2017

https://arxiv.org/abs/1706.03762

Masked attention

If you’re learning a model that’s supposed to be able to

generate text token by token (an “autoregressive
model”)… then looking ahead to previous tokens during

training would be cheating.

In practice, we mask and renormalize the attention

distributions to include only the tokens that that time

step has seen so far. (In other words, for the token

representation at position t, only take an attention

distribution over the first t tokens.)

Encoder AND decoder??

From Vaswani et al. 2017

https://arxiv.org/abs/1706.03762

Encoder AND decoder??

Only for some tasks! (For example, machine translation,

where having the input space and output space have

different sets of trained word embeddings makes more

sense)

Notably, BERT: GPT___:

So we like this architecture,
but what will we train it to do?

Issues with just training the model to do your task of
interest
Your task of interest might not have that much labeled data available

Even if that weren’t an issue, these models are quite large, and take a lot of resources

to properly train

Feels like a waste to have each separate project consume all those resources

(Never mind that a lot of people who’d like to use these models don’t have

access to those kinds of resources)

Pretraining and finetuning

Based on idea of transfer learning (not a new idea in machine learning-- Pan and Yang

2010 cite a NeurIPS ‘95 workshop as already discussing this idea)

Pretraining and finetuning is basically transfer learning, BUT with the understanding

that the vast majority of training is accomplished in the pretraining stage.

What kinds of tasks make good, generalizable pretraining tasks?

ELMo (Peters et al. 2018)

The big takeaway:

if you train a language model,

then just replace the model’s output layer and use the

parameters from the original language model to adjust your

word embeddings in the model’s first few layers,

those new word embeddings can help you perform really well

on a whole range of NLP tasks, especially if you finetune the

parameters (i.e., train them to perform your actual task of

interest).

https://arxiv.org/abs/1802.05365

The BERT training objective (Devlin et al. 2018)

Very similar idea to ELMo, but

● used the transformer architecture (unlike ELMo)

● used masked language modeling as its pretraining objective

instead

The quick brown ______
The quick brown fox _______

The ______ brown fox jumps ______ the...
The quick _______ ______ jumps over the...

https://arxiv.org/abs/1810.04805

Side note: the reason for this little red box

Want a good representation of a sentence?

It’s common to use BERT (or RoBERTa or

something) to encode the sentence, and then just

take the first representation (corresponding to

the special [CLS] token) from the final layer in the

transformer as a representation of the sentence

as a whole.

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692

Sampling from a trained
autoregressive LM transformer

Lots of different sampling strategies proposed

For example, Nucleus Sampling (which we won’t talk about today due to time).

The way in which you sample from a language model’s output probability distribution

can have a big effect on the kind of text you get!

We’ll briefly go over the top-K sampling algorithm as an example.

https://arxiv.org/abs/1904.09751

The top-K sampling algorithm

← from
https://huggingface.co/blog/how-to-generate
(Optional reading)

Slide by Tianxing He

https://huggingface.co/blog/how-to-generate

Examples from the GPT2 model
● Prompt: MIT is a private research university in Cambridge, Massachusetts. It is one of the best

universities in the U.S.,

● GPT2 with naive sampling: but the teaching of traditional African-American studies and
African-American literacy continued. Soon thereafter, MIT was renamed The International
Comparative University by Lord (then), …

● GPT2 with topk40 sampling: and the home of most of the top international universities in the
world. Our alumni are internationally renown, but our mission is unique. We are the only
university in the world where there is a chance to take on the challenge of making an impact, …

● topk40 another sample: with a reputation for innovation and open and flexible public systems.
Its principal research area deals with autonomous vehicles, robotics and artificial intelligence.
To date, MIT has published 40 peer-reviewed papers on this topic, …

● Message: sampling algorithms provide a sweet quality-diversity trade-off.
● (which is the key difference to decoding e.g., beam-search)
● Tianxing did not cherry-pick these examples!

Slide by Tianxing He

References (optional reading)

On recency bias in LSTMs, and comparing LSTMs to the transformer:

● Michał Daniluk et al., “Frustratingly Short Attention Spans in Neural Language
Modeling.” 2017. https://arxiv.org/abs/1702.04521.

● Jared Kaplan et al., “Scaling Laws for Neural Language Models.” 2020.
https://arxiv.org/abs/2001.08361.

● Urvashi Khandelwal et al., “Sharp Nearby, Fuzzy Far Away: How Neural Language
Models Use Context.” 2018. https://arxiv.org/abs/1805.04623.

Sinno Jialin Pan and Qiang Yang, “A Survey on Transfer Learning.” 2010.
10.1109/TKDE.2009.191.

Noah A. Smith, “Contextual Word Representations: A Contextual Introduction.” 2019.
https://arxiv.org/abs/1902.06006.

https://arxiv.org/abs/1702.04521
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1805.04623
https://doi-org.offcampus.lib.washington.edu/10.1109/TKDE.2009.191
https://arxiv.org/abs/1902.06006

