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Announcements

● A2 is due on Friday at 11:59pm
○ Careful with the number of late days you have left! If you used three late days on the 

last assignment, you have two late days left for the quarter.

○ Make sure to commit/push your .preds files by the deadline, in addition to your code 

and writeup

● Extra office hours this week– the course google calendar lists the OH schedule

● Quiz 5 goes out on Canvas Wednesday at 2:20pm
○ Available until Friday at 2:20pm; you’ll have 15 minutes to complete it once you start.

○ Remember that you can use your notes during the quiz

○ Will cover material from last Wednesday’s lecture through the end of today’s lecture 

(so, Viterbi, CRFs, and neural sequence labeling)

https://calendar.google.com/calendar/embed?src=c_07535d20442f0980f8a1f05ab8036c52c4ef91994204c0a68731b46b3347d17f%40group.calendar.google.com&ctz=America%2FLos_Angeles


Generative vs Discriminative Models

● Generative Models specify a joint distribution over the labels and the data. e.g. 

HMMs

● Discriminative models compute the conditional distribution of the labels given the 

input. You want to discriminate between different labels. 

● Training: Maximum Likelihood Estimation (Count and Divide)

● Estimation: 



An aside: MEMMs, another 
discriminative model for 
sequence labeling



Last time we talked about a particular structure of CRF

The get-score-and-then-normalize approach works for other discriminative (non-CRF) 

models too! 



The get-score-and-then-normalize approach works for other discriminative (non-CRF) 

models too! 

Switching from our CRF to a Maximum Entropy Markov 
Model

MEMM

…

CRF



What’s changed?

LEARNING.

We’re back to learning a probability distribution over next states, not over only entire 

sequences.

Denominator involves only [number of features] terms– no forward algorithm necessary.

…



How to define features

● What is the current word, xi?
○ Number of features: size of vocabulary

Example: I will run.

● What is the previous label y_{i-1}
○ Number of features: total number of tags

Basically, for MEMMs, any combination of information about yi, yi-1, and xt you want.

xi=run

yi=VB yi-1=MD

t



Local Normalization to Global Normalization 
Conditional Random Fields 

● If we do global normalization, we get back to “conditional random fields” or CRFs.



Let’s revisit features



“Wait, you’re telling us THIS is a CRF now??”

“We talked about CRFs on Friday! This doesn’t look like a sum of 
𝞧

trans
(yi-1, yi) and 𝞧

feat
(xi, yi) terms!!” 😱



Let me explain!

On Friday, we were implicitly working with a feature vector I hadn’t told you about:

Any hypothetical pairing of tags with our observed tokens got boiled down to the feature vector

(tag, tag) cells, one per 
possible (tag, tag) pairing

(where each holds the count 
of (tag, tag) transitions in 

our sequence of tags)

(token, tag) cells, one per possible (token, 
tag) pairing 

(where each holds the count of (token, 
tag) emissions in our pairing of tags with 

our observed tokens)



Notice that this is equivalent to the CRF we talked about 
on Friday!

Any hypothetical pairing of tags with our observed tokens got boiled down to the feature vector

(tag, tag) cells, one per 
possible (tag, tag) pairing

(where each holds the count 
of (tag, tag) transitions in 

our sequence of tags)

(token, tag) cells, one per possible (token, 
tag) pairing 

(where each holds the count of (token, 
tag) emissions in our pairing of tags with 

our observed tokens)



Now that’s got us thinking about additional options for 
features…



Features we gave as examples for a MEMM

● What is the current word, xi?
○ Number of features: size of vocabulary

Example: I will run.

● What is the previous label y_{i-1}
○ Number of features: total number of tags

xi=run

yi=VB yi-1=MD

t



Recap: Sequence Labeling

What if we encounter a word we haven’t seen? Could we still capture some 
information about that word?



More interesting (base) features

● Is the current word capitalized?

● Does the current (or previous) word end in -ly, -ed, … 

● Does the current word contain digits, or a period?

I will absolutely friend you on Facebook.

And then consider every combination of these with 
each possible tag



How do we combine these feature vectors across 
multiple time steps?
Just add the feature vectors together.

xi=run

yi=VB yi-1=MD

t

Local feature vector
Global Feature vector



There’s yet another type of feature we haven’t 
considered… context
For example:

● What was the previous word x
i-1

?



For example, BIO tagging. (Beginning, Inside, Outside)

Here, just crossing features of individual words with our really limited tag set might 

not be enough. We probably want information about the surrounding context of 

words!

For example, BIO tagging. (Beginning, Inside, Outside)

Consider a less informative tag set



One way of adding information about context…

● What is the current word, xi?
○ Number of features: size of vocabulary

Example: I will run.

● What is the previous label y_{i-1}
○ Number of features: total number of tags

● What is the previous word x_{i-1} … ?
○ Number of features: size of vocabulary

xi=run

yi=VB yi-1=MD



But that vector will be enormous!

We don’t want to have to learn that many different parameters!

What if there were a more condensed way of creating a vector that added information 

about the context of a word?

… what does that ring a bell from?



Word embeddings and neural networks that use them!
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Features can also be learned

Using neural networks.

Basic Idea: encode the sequence of words into a sequence of vectors



Features can also be learned

Using neural networks.

Basic Idea: encode the sequence of words into a sequence of vectors



Implications of this switch for 
inference and learning



Does introducing a dependence between tokens affect 
our graphical model?
… Yes.



Does this change in the graphical model change our 
strategy for inference?
We’re used to thinking of Viterbi as finding us the best path, but it looks like there are 

now cycles!! Is this a problem??

No, because any cycle in our graph goes through observed variables in our data (in 

other words, the variables that we’re not trying to infer values for– our input tokens).



Does this change in the graphical model change our 
strategy for inference?

Given observed tokens, f(x
i
) is constant.

→ As long as we process our sequence of hidden variables from one end to the other 

(as usual), Viterbi is still guaranteed to find us the best-scoring sequence.

(In A2, each f(x
i
) is an input to BiLSTM.hidden2tag)



Does this change in the graphical model change our 
strategy for inference?

Nope! Still Viterbi algorithm.



Does this change in the graphical model change our 
strategy for learning?

“Ok but wouldn’t this be a problem for learning? If we’re learning parameters in our 
featurizing function, they’re definitely not constant then!”

True, but… the same is true when we’re moving all the parameters of a deep neural 
network at once, and that doesn’t stop us from using gradient descent then!

So, provided we take reasonably sized small steps after calculating each gradient, we’re 
still good to use the forward algorithm and then backpropagate.



Does this change in the graphical model change our 
strategy for learning?

Nope! Still Forward algorithm (just with 
extra backpropagation that goes further 

back into the network).



What kinds of featurizing 
functions can we use?



We have lots of options!

● Feedforward neural networks, perhaps including k tokens to either side of current 

token

● Convolutional neural networks

● RNNs, including BiRNNs

● Transformers



Convolutional neural networks (CNNs)

Commonly used in computer vision models.

Idea: slide a linear learned function (a “kernel”) over 

cross sections of your input (in our case, a matrix of 

word embeddings representing the sequence 

tokens)

● For NLP purposes, usually sweep over whole 

word vectors for parts of the sequence

Can do a bunch of these in parallel and max pool 

across them or average pool across them

Visualization by vdumoulin

https://github.com/vdumoulin/conv_arithmetic


Bi-RNN-CRF



To summarize:

CRFs:

Features:

● Hand engineered or based on neural networks. (Though you have a similar sort of choice for how 
to featurize tokens for other discriminative graphical models!)

Training: 

● Cross Entropy Loss (and Gradient Descent) + Forward Algorithm

Decoding

● Viterbi Algorithm


