Natural Language Processing Sequence labeling: CRFs

Sofia Serrano sofias6@cs.washington.edu

Credit to Xiaochuang Han for slides

Announcements

- A2 is due a week from tonight
- Extra office hours next week- we'll update the <u>course google calendar</u> (also embedded on the course website below the calendar table) with those extra office hours by Sunday evening (and send out an Ed announcement once that's done)
- A1 grades are out!
 - We'll be taking A1 regrade requests through the end of Thursday 2/16

A couple of closing words about Viterbi (because there's always something)

- Multiplying together a bunch of probabilities → we want to do our calculations in log space instead!
- We can think about doing Viterbi either by filling in a table, or by recursively filling out column through column- *as long as we don't accidentally throw out old columns' backpointers by doing so*
- Make sure your table of transition probabilities and your table of observation likelihoods are all estimated *before* you start decoding for any particular input. (They're tables, but they're separate from your Viterbi dynamic-programming table!)

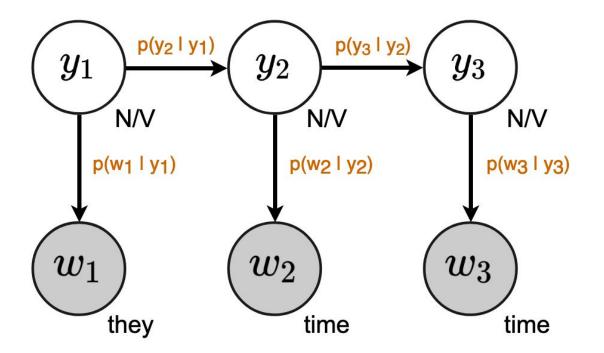
A POS-tagging example

POS? POS? POS?

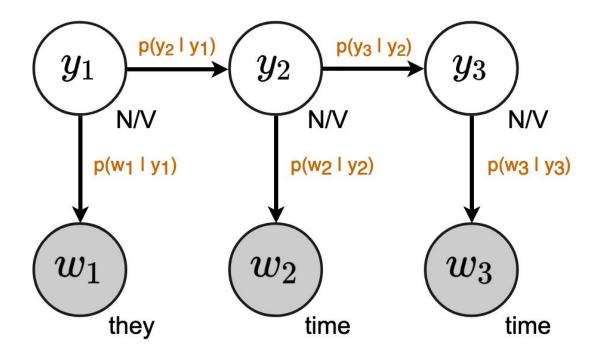
they time time

A POS-tagging example

Our POS-tagging example as an HMM



Our POS-tagging example as an HMM

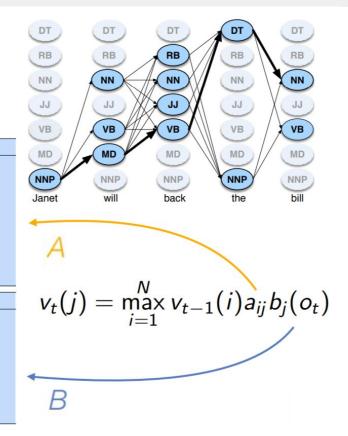


Review: Parameters of our HMM model

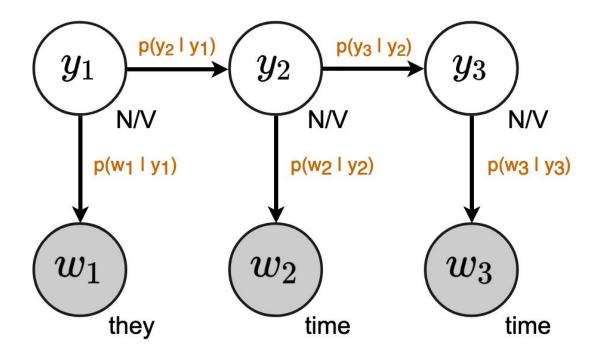
We learned these parameters using count-based estimation.

	NNP	MD	VB	JJ	NN	RB	DT
$\langle s \rangle$	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

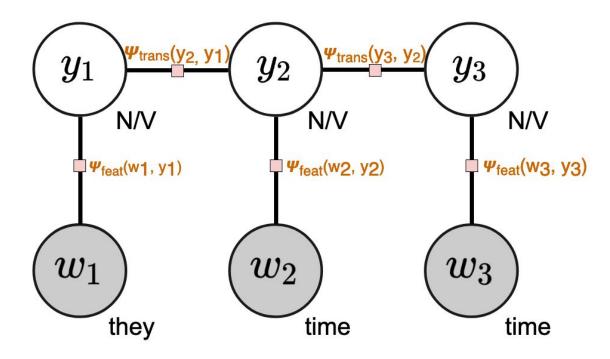
	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0



Our POS-tagging example as an HMM

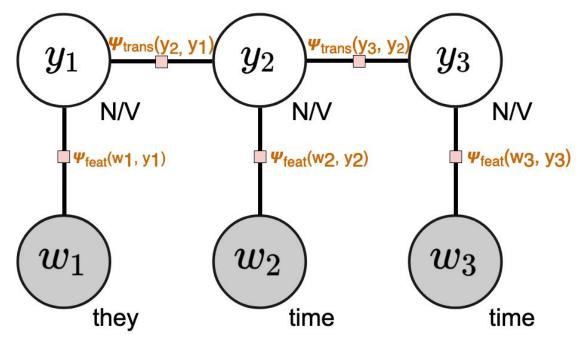


Switching to a CRF: $p(A | B) \rightarrow \Psi(A, B)$



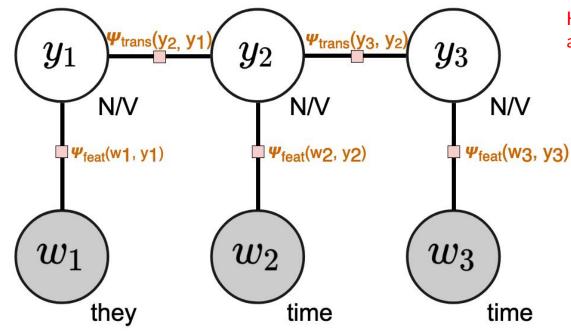
Switching to a CRF: $p(A | B) \rightarrow \Psi(A, B)$

Key change: we allow **\psi** functions to output *any positive number*



Switching to a CRF: $p(A | B) \rightarrow \Psi(A, B)$

Key change: we allow **\psi** functions to output *any positive number*



How do we do this? Exponentiate as the final part of each $\pmb{\Psi}$

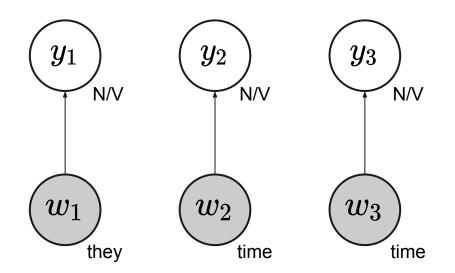
Where have we seen this shift from parameters representing probabilities to learned weights before?

In moving from Naive Bayes to Logistic Regression!

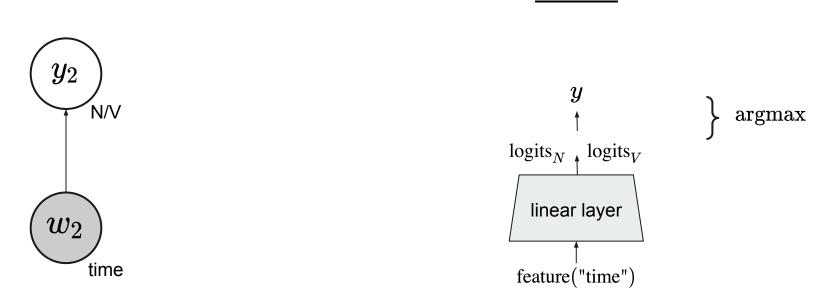
In switching from an HMM to a CRF, we've moved from a generative sequence labeling model to a discriminative one.

How do we learn the parameters for the **potentials** (those Ψ functions)?

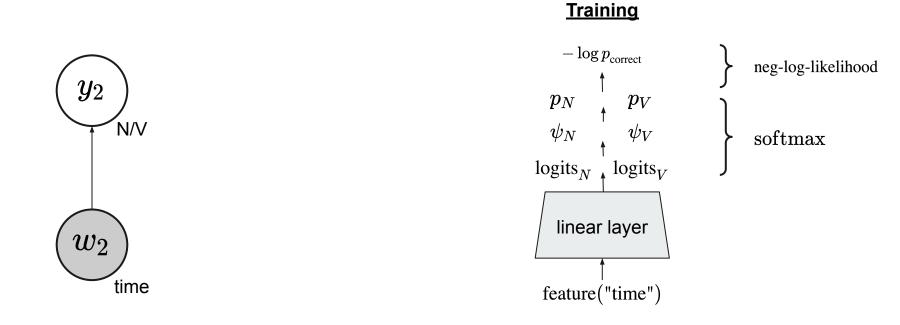
Follow our strategy that we used for learning a logistic regression model!

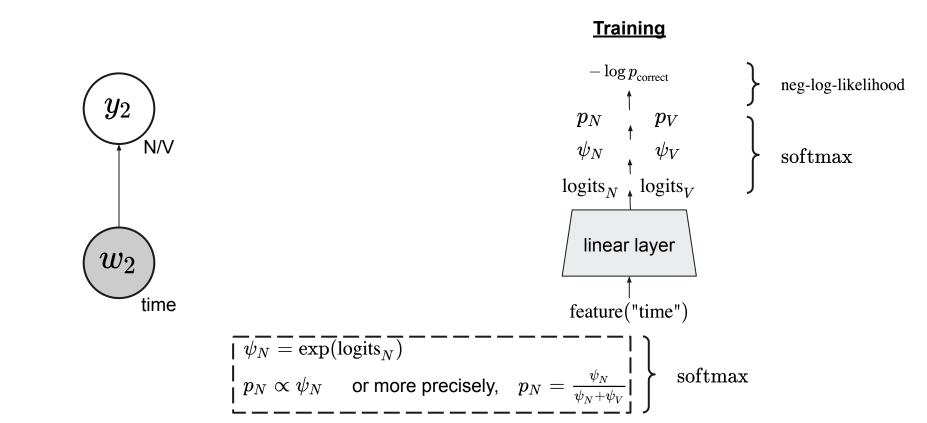


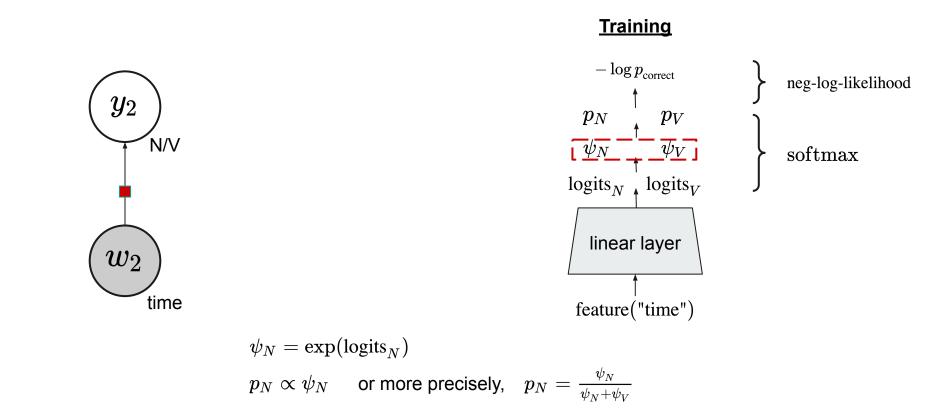
Predict each individual tag with logistic regression

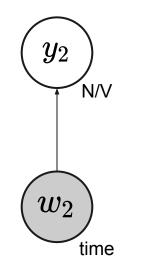


Inference

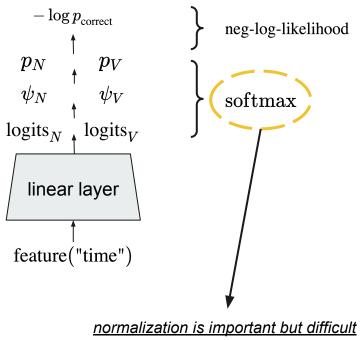




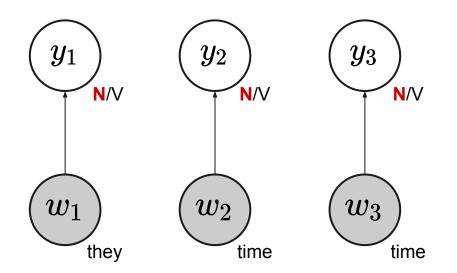




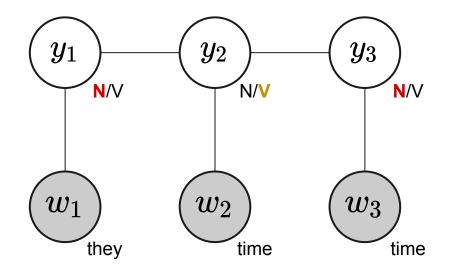
Training



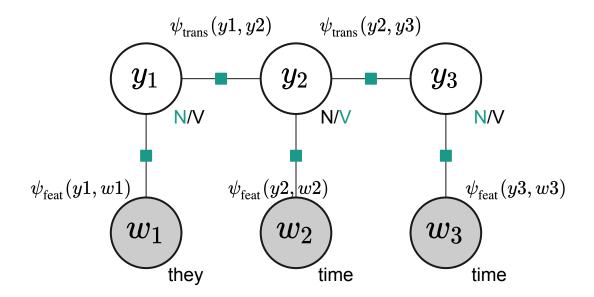
in the sequence setup



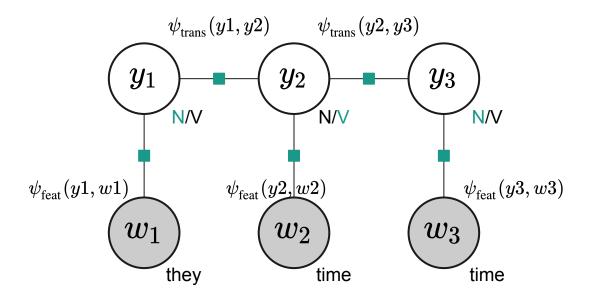
Predicting each individual tag with logistic regression is suboptimal



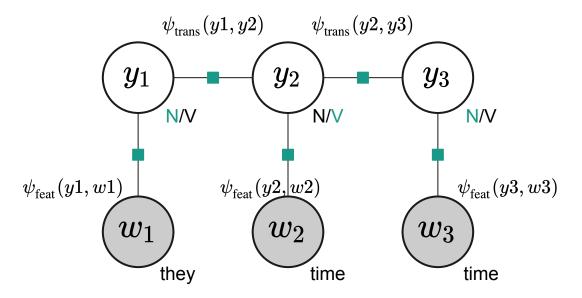
Incorporate structures between the labels



We define a series of scores $\,\psi\,$

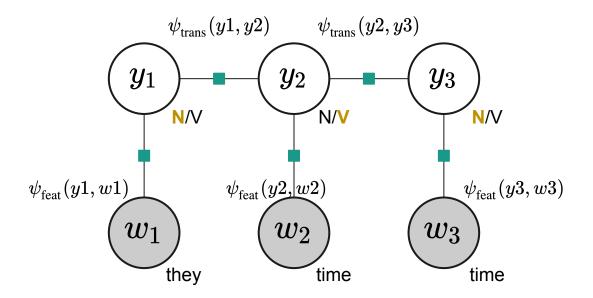


These scores are similar to their counterparts in logistic regression: (0, +inf)

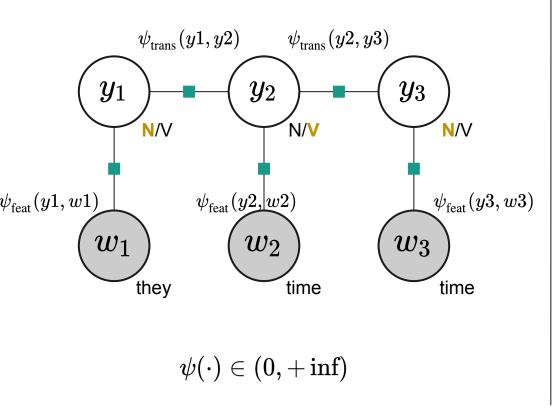


Again like in LR, these scores come from models with learnable parameters. In the homework:

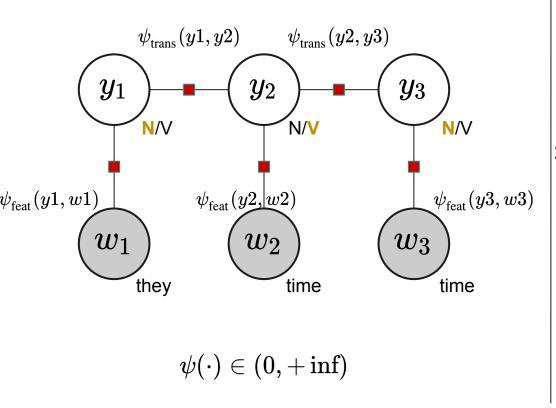
- ψ_{feat} is parameterized by a bidirectional LSTM
- + $\psi_{\rm trans}\,$ is parameterized by a simple lookup table



The goal of training a CRF is to obtain the gold label sequence, and optimize the model parameters to maximize that sequence's probability.

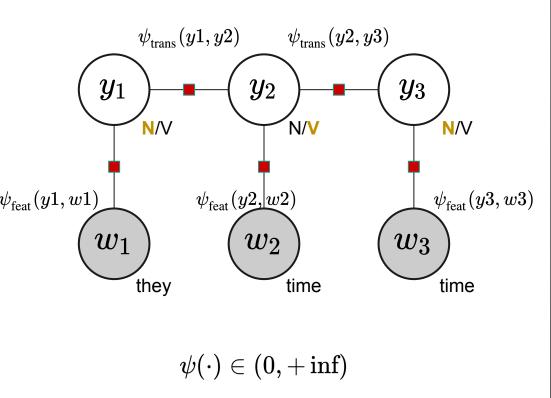


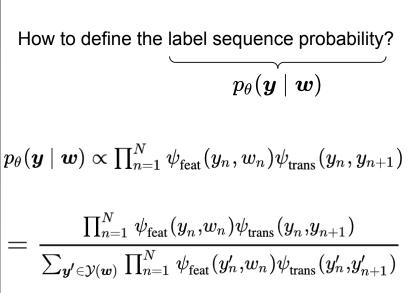
How to define the label sequence probability? $\underbrace{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}_{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}$

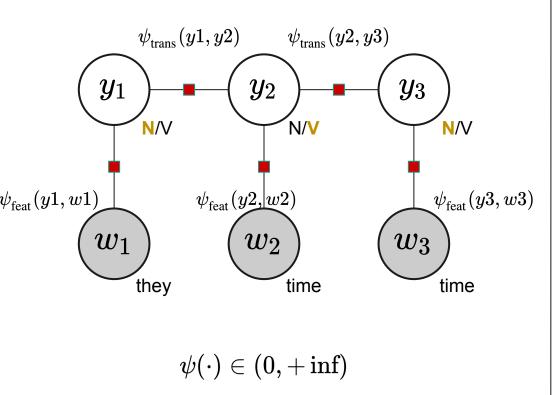


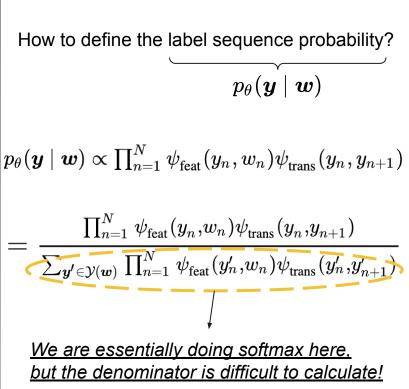
How to define the label sequence probability? $\underbrace{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}_{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}$

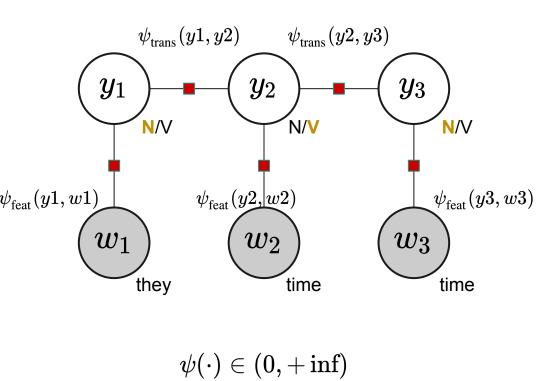
$$p_{ heta}(oldsymbol{y} \mid oldsymbol{w}) \propto \prod_{n=1}^N \psi_{ ext{feat}}(y_n, w_n) \psi_{ ext{trans}}(y_n, y_{n+1})$$

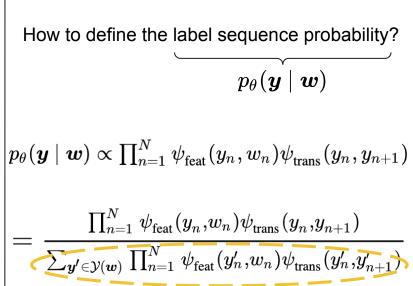




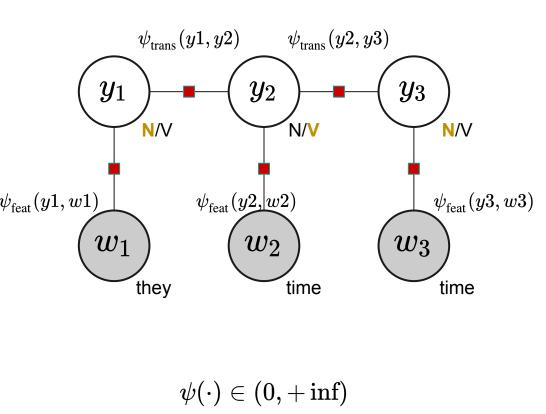






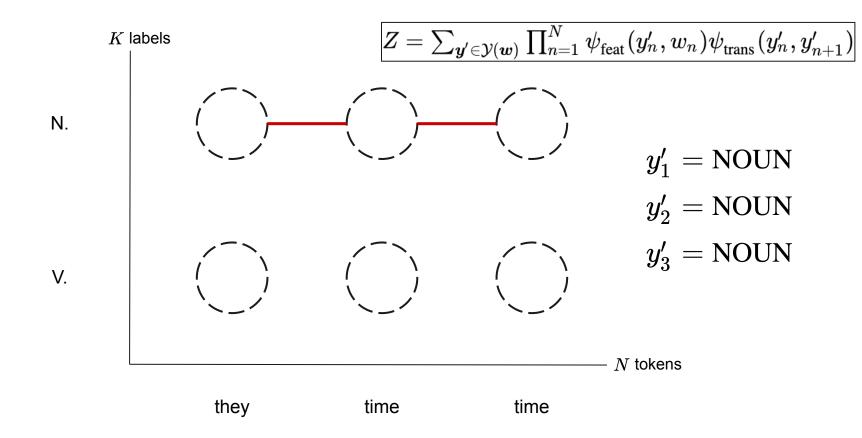


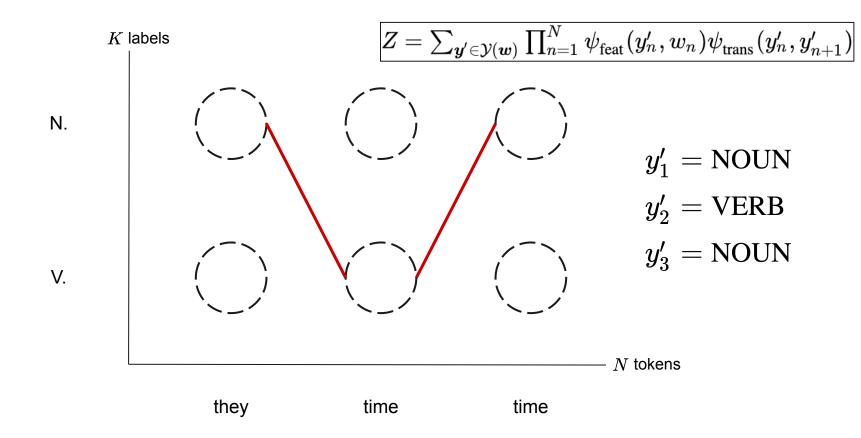
We introduce the forward algorithm (a.k.a. sum-product algorithm) to obtain the denominator (a.k.a. partition function).

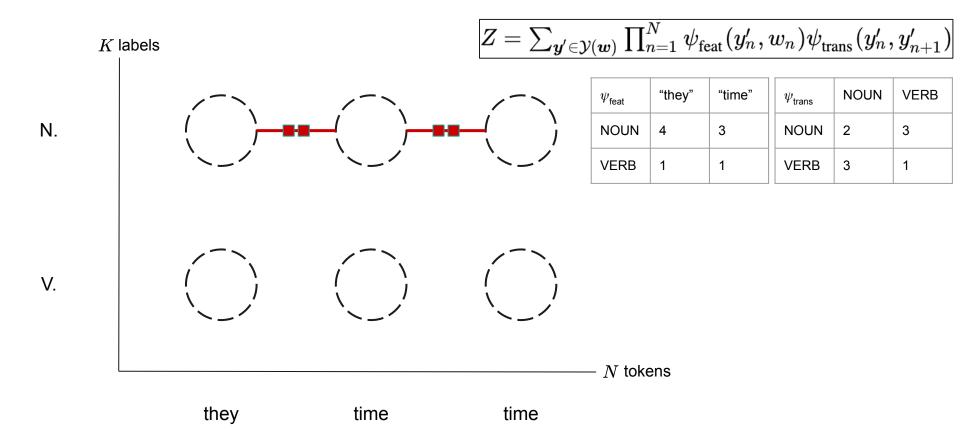


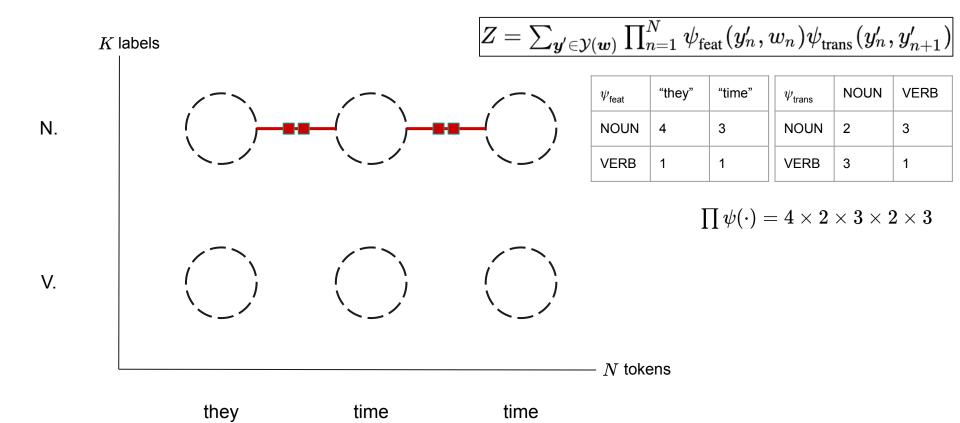
How to define the label sequence probability? $p_{ heta}(\boldsymbol{y} \mid \boldsymbol{w})$ $ig| p_{ heta}(oldsymbol{y} \mid oldsymbol{w}) \propto \prod_{n=1}^N \psi_{ ext{feat}}(y_n, w_n) \psi_{ ext{trans}}(y_n, y_{n+1})$ HW 6.2 $\frac{\prod_{n=1}^{N}\psi_{\text{feat}}(y_n, w_n)\psi_{\text{trans}}(y_n, y_{\overline{n+1}}) - -}{\sum_{\boldsymbol{y}'\in\mathcal{Y}(\boldsymbol{w})}\prod_{n=1}^{N}\psi_{\text{feat}}(y'_n, w_n)\psi_{\text{trans}}(y'_n, y'_{\underline{n+1}})}$ HW 6.1

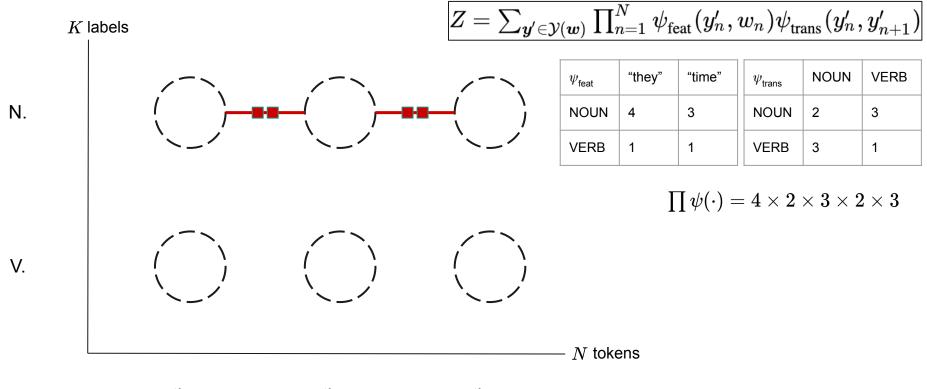
We introduce the forward algorithm (a.k.a. sum-product algorithm) to obtain the denominator (a.k.a. partition function).







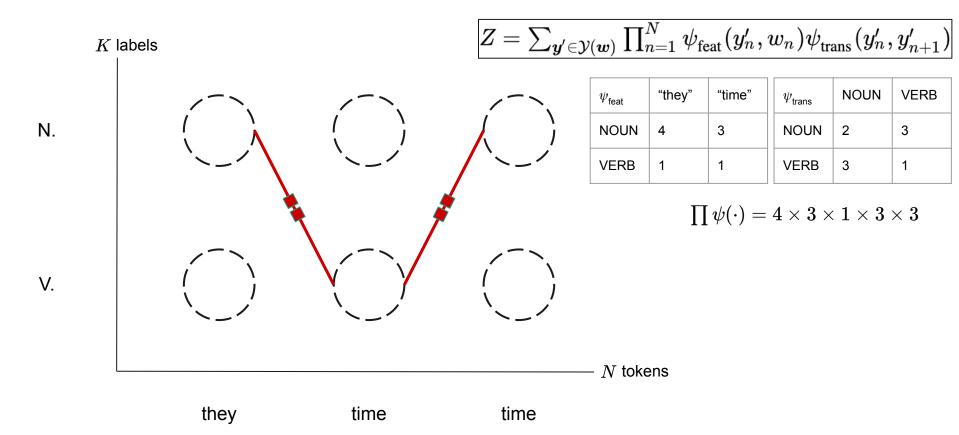


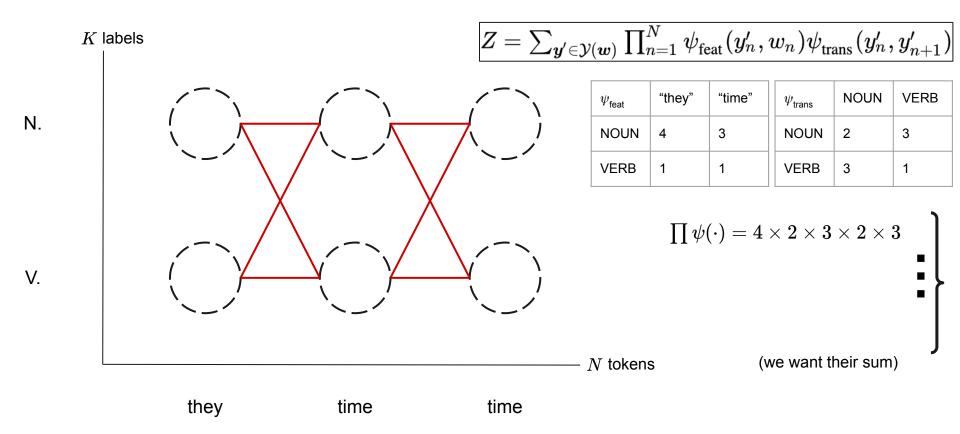


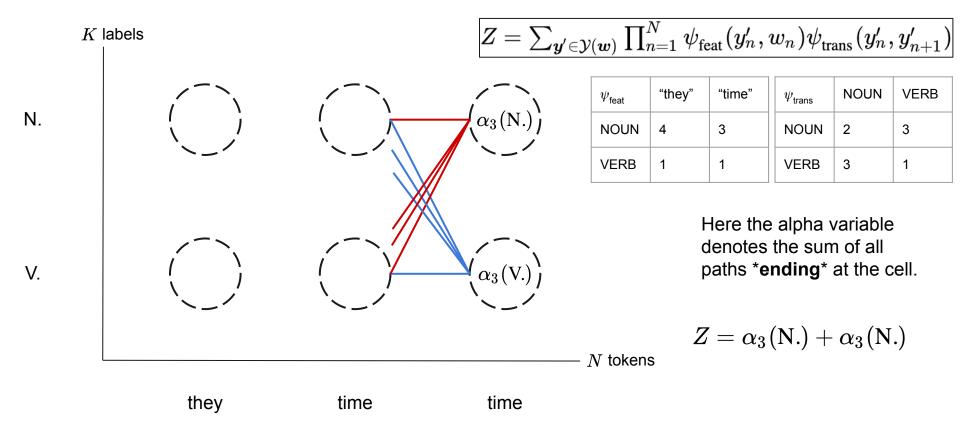
they

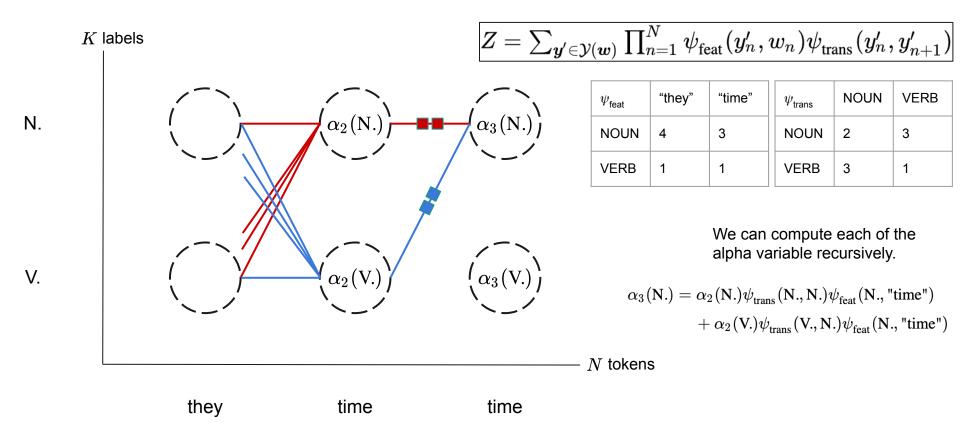
time

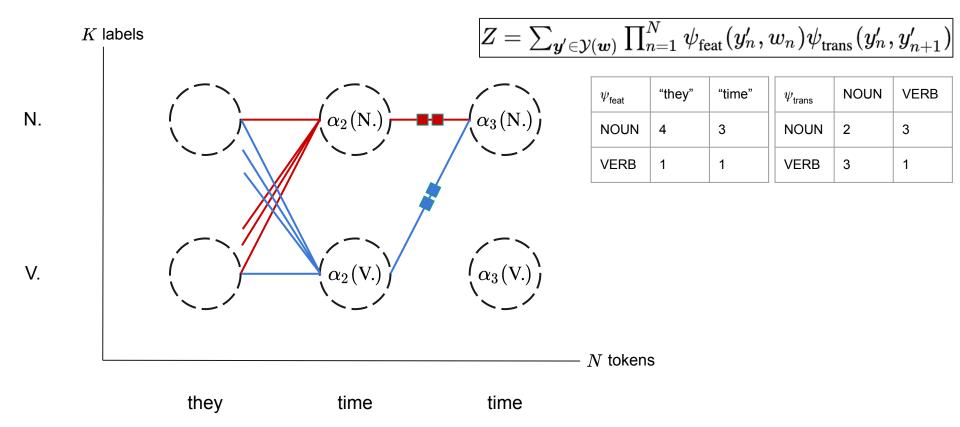
time

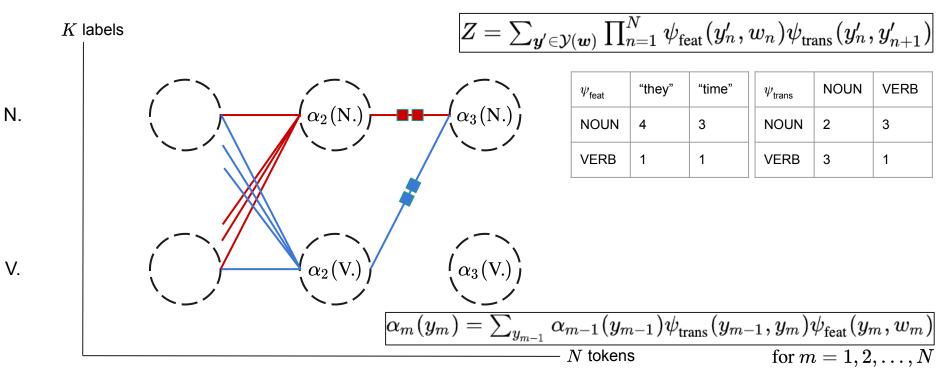






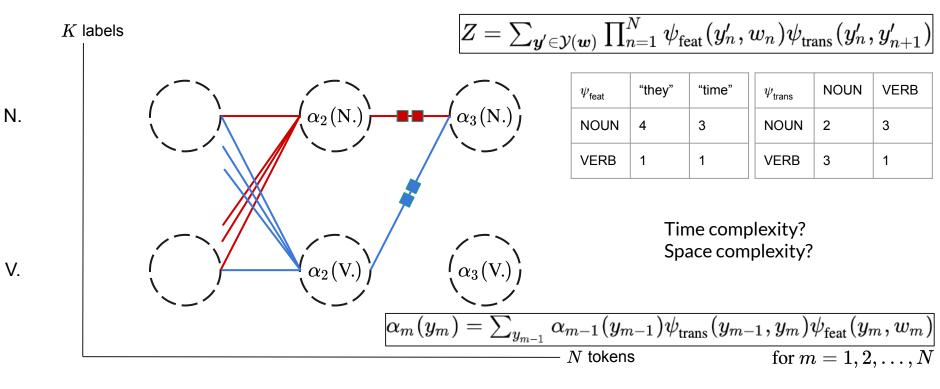




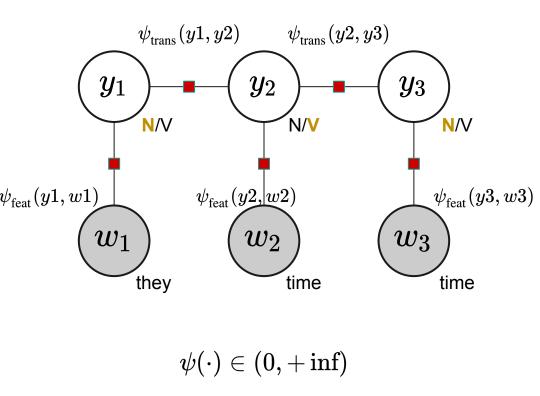


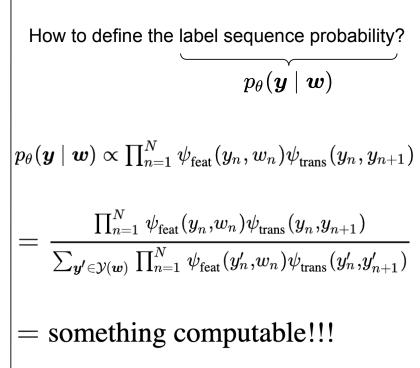
they

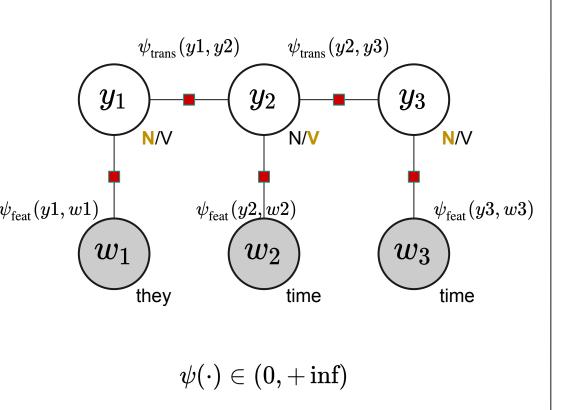
time



they



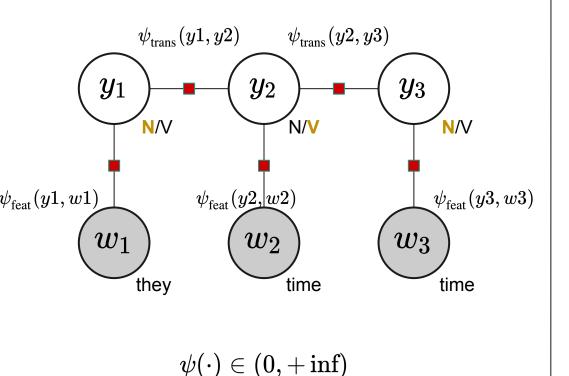




How to maximize the gold sequence probability? $\underbrace{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}_{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}$

$$heta \leftarrow heta - \eta
abla_ heta (-\log p_ heta(oldsymbol{y} \mid oldsymbol{w}))$$

Gradient descent, or any of your favorite optimizers :)



How to do inference on test-time inputs with the learned model?

The Viterbi algorithm, a.k.a. max-product algorithm (This part is the same as HMMs)

Further details can be found in Chapter 7 of the Eisenstein textbook <u>here</u>.

Other types of CRF

