Natural Language Processing Sequence labeling

Sofia Serrano sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

- A2 is out for < 10 more full days! Please start early!
- A1 grades will be released sometime today(?)
 - We'll be accepting regrade requests for A1 for a week (Feb. 8 through Feb. 15)
- Quiz 4 will go out at 2:20pm today
 - 5 multiple-choice questions
 - Will cover lexical semantics, neural networks we've seen so far, and sequence labeling content up through the end of Monday's lecture
 - Remember that you're allowed to use your notes
 - From now on (including this quiz), you'll have **15 minutes** to complete the quiz
 - From now on (including this quiz), quizzes will be available from 2:20pm on Wednesdays to 2:20pm on Fridays

Midterm eval feedback: Takeaways

What's working:

- Lectures
- Asynchronous availability of slides/lecture recordings

What could use work:

- Quizzes- quiz-taking time window was the repeated issue that came up here
- Walking through equations in a bit more detail/using more visualizations when possible
- Computing setup instructions that assume less familiarity with git, etc.

(Back to) Generative sequence labeling: Hidden Markov Models

Markov Chain: words

 $\pi = [0.1, 0.7, 0.2]$

the future is independent of the past given the present

Hidden Markov Models

- In the real world many events are not observable
- Speech recognition: we observe acoustic features but not the phones
- POS tagging: we observe words but not the POS tags

Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

Hidden Markov Models

Hidden Markov Models

Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

Hidden Markov Models (HMMs)

a set of N states

 $A = a_{11} \dots a_{ij} \dots a_{NN}$

 $Q = q_1 q_2 \dots q_N$

 $O = o_1 o_2 \dots o_T$

 $B = b_i(o_t)$

- a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{N} a_{ij} = 1 \quad \forall i$
 - a sequence of *T* observations, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$
- a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state q_i
- $\pi = \pi_1, \pi_2, ..., \pi_N$ an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state *i*. Some states *j* may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

POS tagging with HMMs

HMM parameters

 $Q = q_1 q_2 \dots q_N$ $A = a_{11} \dots a_{ij} \dots a_{NN}$ $0 = o_1 o_2 \dots o_T$ $B = b_i(o_t)$ $\pi = \pi_1, \pi_2, ..., \pi_N$

a set of N states

- a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{N} a_{ij} = 1 \quad \forall i$
 - a sequence of *T* observations, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$
 - a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state q_i
- an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state *i*. Some states *j* may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

HMMs: algorithms

Forward

Viterbi

Problem 1 (Likelihood):	Given an HMM $\lambda = (A, B)$ and an observation se-
	quence O, determine the likelihood $P(O \lambda)$.
Problem 2 (Decoding):	Given an observation sequence O and an HMM $\lambda =$
	(A,B), discover the best hidden state sequence Q .
Problem 3 (Learning):	Given an observation sequence O and the set of states
_	in the HMM, learn the HMM parameters A and B.

Forward	Problem 1 (Likelihood):	Given an HMM $\lambda = (A, B)$ and an observation sequence <i>O</i> , determine the likelihood $P(O \lambda)$.
Viterbi	Problem 2 (Decoding):	Given an observation sequence O and an HMM $\lambda = (A, B)$ discover the best hidden state sequence O
		(A,B), discover the best hidden state sequence Q .
	Problem 3 (Learning):	Given an observation sequence O and the set of states
		in the HMM, learn the HMM parameters A and B.

"What is the best sequence of tags (given the parameters of this HMM) that corresponds to 'Janet will back the bill?"

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, \dots, o_n$, find the most probable sequence of states $Q = q_1, q_2, \dots, q_n$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n \mid w_1^n)$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = O_1, O_2, ..., O_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$egin{aligned} & \mathcal{P}(t_1^n \mid w_1^n) \ & t_1^n \ & = rgmax \ t_1^n \ & t_1^n \ & rac{P(w_1^n \mid t_1^n)P(t_1^n)}{P(w_1^n)} \end{aligned}$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, ..., o_n$, find the most probable sequence of states $Q = q_1, q_2, ..., q_n$

$$P_1^n = \operatorname{argmax}_{t_1^n} P(t_1^n \mid w_1^n)$$

$$= \operatorname{argmax}_{t_1^n} \frac{P(w_1^n \mid t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$= \operatorname{argmax}_{t_1^n} P(w_1^n \mid t_1^n) P(t_1^n)$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, \dots, o_n$, find the most probable sequence of states $Q = q_1, q_2, \dots, q_n$

$$\hat{t}_1^n = \operatorname{argmax}_{t_1^n} P(t_1^n \mid w_1^n)$$

$$= \operatorname{argmax}_{t_1^n} \frac{P(w_1^n \mid t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$= \operatorname{argmax}_{t_1^n} P(w_1^n \mid t_1^n) P(t_1^n)$$

simplifying assumptions:

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, \dots, o_n$, find the most probable sequence of states $Q = q_1, q_2, \dots, q_n$

$$\hat{t}_{1}^{n} = \operatorname{argmax}_{t_{1}^{n}} P(t_{1}^{n} \mid w_{1}^{n})$$

$$= \operatorname{argmax}_{t_{1}^{n}} \frac{P(w_{1}^{n} \mid t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$= \operatorname{argmax}_{t_{1}^{n}} P(w_{1}^{n} \mid t_{1}^{n})P(t_{1}^{n})$$

$$\stackrel{\text{simplifying assumptions:}}{P(w_{1}^{n} \mid t_{1}^{n})} \approx \prod_{i=1}^{n} P(w_{i} \mid t_{i})$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, \dots, o_n$, find the most probable sequence of states $Q = q_1, q_2, \dots, q_n$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, \dots, o_n$, find the most probable sequence of states $Q = q_1, q_2, \dots, q_n$

$$\hat{t}_{1}^{n} = \operatorname{argmax}_{t_{1}^{n}} P(t_{1}^{n} \mid w_{1}^{n}) \approx \operatorname{argmax}_{t_{1}^{n}} \prod_{i=1}^{n} \frac{P(w_{i} \mid t_{i})}{P(t_{i} \mid t_{i-1})} P(t_{i} \mid t_{i-1})$$

Decoding: Given as input an HMM $\lambda = (A, B)$ and sequence of observations $O = o_1, o_2, \dots, o_n$, find the most probable sequence of states $Q = q_1, q_2, \dots, q_n$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n \mid w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n \frac{\operatorname{emission}, B \operatorname{transition}, A}{P(w_i \mid t_i)} P(t_i \mid t_{i-1})$$

How many possible choices?

Could we brute force this?

(Imagine all these circles are colored in)

Part of speech tagging example

		suspect	the	present	forecast	is	pessimistic	
noun	•	•	•	•	•	•		
adj.		•		•	•		•	
adv.				•				
verb	· · · · · · ·	•		•	•	•		
num.	•							
det.		17	•					
punc.								•

With this very simple tag set, $7^8 = 5.7$ million labelings. (Even restricting to the possibilities above, 288 labelings.)

The best possible paths ending in any specific tag at position i

The best possible paths ending in any specific tag at position i

The best possible paths ending in any specific tag at position i

29

How do we use those to assemble the best possible paths ending in any specific tag at position i + 1?

The best possible paths ending in any specific tag at position i

How do we use those to assemble the best possible paths ending in any specific tag at position i + 1?

 $v_{t-1}(i)$ the previous Viterbi path probability from the previous time step a_{ij} the transition probability from previous state q_i to current state q_j $b_j(o_t)$ the state observation likelihood of the observation symbol o_t given the current state j

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

the **previous Viterbi path probability** from the previous time step $v_{t-1}(i)$ a_{ij} $b_j(o_t)$

the **transition probability** from previous state q_i to current state q_j the state observation likelihood of the observation symbol o_t given the current state j

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

previous Viterbi path probability

 $v_{t-1}(i)$ the previous Viterbi path probability from the previous time step a_{ij} the transition probability from previous state q_i to current state q_j $b_j(o_t)$ the state observation likelihood of the observation symbol o_t given the current state j

 $v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$ previous
Viterbi path
probability
$v_{t-1}(i)$ the previous Viterbi path probability from the previous time step a_{ij} the transition probability from previous state q_i to current state q_j $b_j(o_t)$ the state observation likelihood of the observation symbol o_t given the current state j

 $v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t) \text{ state observation} \\ \text{previous} \\ \text{Viterbi path} \\ \text{probability} \end{cases}$

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1]\leftarrow 0
for each time step t from 2 to T do
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{a_{s',s}}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
      backpointer[s,t] \leftarrow \operatorname{argmax}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
                                  2-1
bestpathprob \leftarrow \max^{N} viterbi[s, T]
bestpathpointer \leftarrow \operatorname{argmax}^{N} viterbi[s, T]
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


function VITERBI(*observations* of len *T*,*state-graph* of len *N*) **returns** *best-path*, *path-prob*

NN JJ

								JJ VB	
	NNP	MD	VB	JJ	NN	RB	DT		MD
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026	MD	MD
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025	NNP	NNP
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041	Janet	will
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231		
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036		
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068	Δ	
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479	<u></u>	
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017		
		Janet	will	back	the	b	ill	$V_{t}(i)$	= r
NN	Р	0.000032	0	0	0.00	00048 0			
MD		0	0.308431	0	0	0			
VB		0	0.000028	0.0006	572 0	0	.000028		
JJ		0	0	0.0003	340 0	0		24	
NN		0	0.000200	0.0002	223 0	0	.002337		
RB		0	0	0.0104	146 0	0		B	
DT		0	0	0	0.50)6099 0			

43

Details about finishing Viterbi

- Transitioning to an end state
 - Not all POS tags are equally likely to end a sequence! (For example, DET (corresponding to words like "the"))
 - Our algorithm should account for that!
 - Solution? Multiply candidate best paths at last time step by p(<EOS> | tag)
- Assembling your best tag sequence using that max score at the last timestep
 - Here's where we use our backpointers!
 - Just trace backwards by using the backpointers (that extra piece of information that we stored about how we got to our current tag at timestep i + 1) :)

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1]\leftarrow 0
                                                                 Computational complexity in N and T?
for each time step t from 2 to T do
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{as',s}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
      backpointer[s,t] \leftarrow \operatorname{argmax}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
                                2-1
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]
bestpathpointer \leftarrow \operatorname{argmax}^{N} viterbi[s, T]
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

HMMs: algorithms

Forward	Problem 1 (Likelihood):	Given an HMM $\lambda = (A, B)$ and an observation sequence <i>O</i> , determine the likelihood $P(O \lambda)$.
Viterbi	Problem 2 (Decoding):	Given an observation sequence <i>O</i> and an HMM $\lambda =$
		(A, B), discover the best hidden state sequence Q .
	Problem 3 (Learning):	Given an observation sequence O and the set of states
		in the HMM, learn the HMM parameters A and B.

"What is the best sequence of tags (given the parameters of this HMM) that corresponds to 'Janet will back the bill?"

HMMs: algorithms

Forward	Problem 1 (Likelihood):	Given an HMM $\lambda = (A, B)$ and an observation se-
		quence <i>O</i> , determine the likelihood $P(O \lambda)$.
Viterbi	Problem 2 (Decoding):	Given an observation sequence O and an HMM $\lambda =$
		(A, B), discover the best hidden state sequence Q .
	Problem 3 (Learning):	Given an observation sequence O and the set of states
		in the HMM, learn the HMM parameters A and B.

"What is the probability (given the parameters of this HMM) of observing the text 'Janet will back the bill?"

The Forward algorithm

48

Viterbi

- n-best decoding
- relationship to sequence alignment

Citation	Field
Viterbi (1967)	information theory
Vintsyuk (1968)	speech processing
Needleman and Wunsch (1970)	molecular biology
Sakoe and Chiba (1971)	speech processing
Sankoff (1972)	molecular biology
Reichert et al. (1973)	molecular biology
Wagner and Fischer (1974)	computer science

49