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Announcements

e A2isoutfor <12 more full days! Please start early!
e A1l grades will be released sometime on Wednesday
o We'll be accepting regrade requests for Al for a week (Feb. 8 through Feb. 15)
e Thanks for midterm course eval feedback!
o I'll go over takeaways from this at the beginning of class on Wednesday
e Quiz4 will go out at 2:20pm on Wednesday
o 5 multiple-choice questions
o  Will cover lexical semantics, neural networks we've seen so far, and sequence labeling
content up through the end of today
o Remember that you're allowed to use your notes



Wrapping up RNNs



Recurrent neural network language model

* Complete formulation:
hy = c(Winxe + Wpphe—1 + bp)

y: = softmax(Wy,h; + b,)
L(w)=X; -logP (w;|wpo_i-1)

* |t’s efficient: During training, we just feed the sequence (sentence) once into the RNN, and we get
the output (loss) on every timestep.
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Backpropagation through time (BPTT)

* To do BP, again follow the reverse topological order.

* The error vector of h; is an accumulation of errors from time t and future time steps!

-logP (w1 |wp) —log P(w|wow,) logP (w3 |wowiwy) logP (ws|wowyw,)
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BP through time.... (reversed!)



Generation with an RNN language model

* We can do text generation with a trained RNNLM:
* At each time step t, we sample w; from P(W¢| ...), and feed it to the next timestep!

* LM with this kind of generation process is called autoregressive LM.

Sample w; Sample w,

P(W3|lwow;wy)

xo = embed(wo)

A Beginning-of-sentence
(BOS) token



RNN for text classification

* The last hidden state hican be regarded as an encoding of the whole sentence, on which you can
add a linear classifier head.
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This restaurant is wonderful




Gradient exploding and gradient vanishing

* In BPTT, we could meet two serious problems. They are called gradient exploding (error vector
become too large) and gradient vanishing (error vector become too small).

* Gradient exploding is more serious because it makes training impossible.

-logP (w1|wp) —log P(w|wow;) logP (w3 |wowyw,) logP (w3 |wowyw,)
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Intuition: Gradient exploding and gradient vanishing

We make two crude simplifications: Simpilify: hy = Wyphe—q + Winx:

And only considering L,

h ...... ht_z ht—l h
! Whh Whh Whh ‘

Simpilify: hy = Wpphe—1 + Winxe, we get the following during backprop:

dLy 0L, wi, t—2
W 6ht Q@ hy, +- +—®ht

Tt 1
®hy+ dh,

aht

Further approximation, think everything as a scalar...
W, < 1: Gradient Vanishing -> LSTM ...
Wy, > 1: Gradient Exploding -> Gradient Clipping



Gradient clipping for the exploding problem

It's simple!
Assume we want to set the maximum norm of gradient to be y

|4
clip(VL) = min}1, VL.
{ ||VL||2}

In practice, y is a hyper-parameter, and is usually set to be 1 or 0.5.



LSTMs and GRUs
(Long Short-Term Memory and
Gated Recurrent Units)

11



LSTM or GRU for gradient vanishing

e Historical note: The LSTM (long-short term memory) network was first used in
(Sundermeyer et.al. 2012), dealing with the g-vanishing problem.

e Then, GRU (gated recurrent unit) is proposed as a simplification of LSTM.
e We will discuss GRU because it’s simpler and has the same core idea.
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Christopher Olah’s blog post on Understanding LSTM Networks is great btw
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated recurrent unit for gradient vanishing

GRU is by itself, a small neural network, input: x;,h;_1 , output: h;

=

Zt = a-g(szt 4= Uzht_l s bz)
Ug(Wrmt + U’r‘ht—l -+ br) Welght gate z

hi = ¢n(Whay + Up(re © he—1) + bp) matrices. ..
t

\3
o~
I

ht =zt © hy + (1 - 2t) ©hi_1 Let’s just focus on this line Y _
Weight matrices...
Xt
Variables
« Iy input vector
« h;: output vector Empirical Evaluation of
A . L Gated Recurrent Neural Networks
« h;: candidate activation vector on Sequence Modeling
« 2;: update gate vector
+T¢: reset gate vector e, Bigtliy, Tmituts | Bhelod

CIFAR Senior Fellow

« W, U and b: parameter matrices and vector



Gated recurrent unit for gradient vanishing

e Think about back-propagation from h; to h;_;.

* There will be multiple paths, and the errors will be summed up. But in the red
path, it does not involve any weight matrix! It’s just (1 — z)®Oh;_;.

* This path alleviates gradient vanishing.

The RNN case for reference.

Weight
matrices...

< gate 1-z
©

gate z

Weight matrices...



Residual connection in deep feedforward NN

 (Diverge topic a bit) Similar idea can be
used to help us build deeper networks.

X

* Adding a direct link between hidden layers: Y

weight layer
* hjy1 =h +F(h) F(x) relu
* F may include linear transform,RelLU, weight layer o *

_ identity
gating, etc.
F(x) +x
« We will revisit this residual connection in Deep Besidual Learning for Image Kecognition
transformers!

Kaiming He Xiangyu Zhang Shaoqging Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com




Philosophy: Combining NN modules

e We have now learnt several neural modules (rnn, Istm/gru, etc.), which are by
themselves, a small neural network. We can combine different modules together to
form a large neural model.

e For example, we build a AR-LM by stacking several GRU layers, and linking them with
aresidual link:

Predict wy Predict wg,
— -
Residual Residual

— R

Wi Wit




Bi-directional RNN

* In uni-directional RNN, h; has context from the “left”.

* For some applications (e.g., part-of-speech tagging), it would be useful if
h; has bi-directional context.

* We can achieve this by adding a layer of RNN with reversed direction.
* Exercise: what’s the topological order of this graph (it’s still a DAG!)?

A N
-

Xt Xt+1 Xt+2



Bi-directional RNN for language modeling?

e Exercise: When we switch from a uni-rnn to a bi-rnn, and we don’t change anything
else, can we still do language modelling?

e Answer: No!

Predict w,,,?  Predictw.,,?  Predict w;,3?

| | |

h; heta hi+z

- ———— Y 0T N ———————————

-

Wi Wii1 Wiy2



Bi-directional RNN for encoding a sequence as a
fixed-length vector?

There are several ways to get a fixed-length sequence encoding from a bi-rnn:
Way1: add a special token to the input.
do a max-pooling or mean-pooling of the hidden states.

predict

predict pooling

e - i

Bi-GRU

—_— _—
aes
——— -—



RNNs, GRUs, and LSTMs: conclusion

e Powerful way of modeling text that takes word order into account
e Fully differentiable!
e Canchoose whether or not to use hidden state representation of each token



Sequence labeling



Levels of linguistic knowledge

speech Phonetics | The study of the sounds of human language

phonetics

Phonology | The study of sound systems in human language

phonology

Morphology | The study of the formation and internal structure of

Pragmatics | The study of the way sentences with their semantic
pragmatics meanings are used for particular communicative
goals

words
—
Syntax The study of the formation and internal structure of
"shallower" sentences
Semantics | The study of the meaning of sentences

discourse



Ingredients for linguistic analysis

e Formalism

o  Map text to some abstraction
e Theoretical grounding from linguistics

o  Why does linguistics support that our formalism makes sense?
e An algorithmic solution

o How to solve the mapping problem?
m Rulebased
m Supervised learning: symbolic or neural solutions
m Unsupervised learning



Supervised algorithms for sequence labeling problems

Map a sequence of words to a sequence of labels

Part-of-speech tagging (Church, 1988; Brants, 2000)

Named entity recognition (Bikel et al., 1999)

Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
Word alignment of parallel text (Vogel et al., 1996)

Compression (Conroy and O’Leary, 2001)

Acoustic models, discourse segmentation, etc.



Part of speech tagging

PART OF SPEECH DT VBZ DT 2] NN

WORDS This is a simple sentence



Parts of speech

e Openclasses

@)

©)
©)
©)

nouns
verbs
adjectives
adverbs

e Closed classes

O

o O O O

prepositions
determiners
pronouns
conjunctions
auxiliary verbs



Parts of speech, more fine-grained classes

e Openclasses

O nouns
m proper
[ | common
e count
L] mass
o verbs
o adjectives
o adverbs
m directional

degree Actually, | ran home extremely quickly yesterday

|
B manner
m temporal



Parts of speech, closed classes

prepositions: on, under, over, near, by, at, from, to, with
particles: up, down, on, off, in, out, at, by
determiners: a, an, the

conjunctions: and, but, or, as, if, when

pronouns: she, who, I, others

auxiliary verbs: can, may, should, are

numerals: one, two, three, first, second, third



Part of speech tagsets

e Penntreebank tagset (Marcus et al., 1993)

Tag  Description Example Tag Description Example Tag Description Example

CcC coordinating and, but, or PDT predeterminer all, both  VBP verb non-3sg eat

conjunction present
CD  cardinal number one, two POS possessiveending s VBZ verb 3sg pres  eats
DT determiner a, the PRP personal pronoun [, you, he WDT wh-determ.  which, that
EX existential ‘there’ there PRPS possess. pronoun your, one’s WP wh-pronoun  what, who
FW  foreign word mea culpa RB  adverb quickly WPS wh-possess.  whose
IN preposition/ of, in, by RBR comparative faster WRB wh-adverb how, where
subordin-conj adverb
J) adjective yellow RBS superlatv. adverb fastest $ dollar sign s
JJR  comparative adj  bigger RP  particle up, off = pound sign  #
JIS superlative adj wildest SYM symbol +,%, & o left quote Sar
LS listitemmarker /,2,0ne TO “w” 1o " right quote or”
MD  modal can, should UH interjection ah, oops  ( left paren G <
NN  sing or mass noun [llama VB  verbbase form  eat ) rightparen  ],), }, >
NNS  noun, plural llamas VBD verbpasttense  ate s comma :
NNP  proper noun, sing. IBM VBG verb gerund eating - sent-endpunc . ! ?

NNPS proper noun, plu. Carolinas VBN verb past part. eaten : sent-mid punc : ;.. —-



Example of POS tagging

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN
other/JJ topics/NNS /.

There/EX are/VBP 70/CD children/NNS there/RB

Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN
’s/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.



The Universal Dependencies

W Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic
dependencies) across different human languages. UD is an open community effort with over 300 contributors producing more than 150 treebanks in
90 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation guidelines.

e Short introduction to UD
e UD annotation guidelines
e More information on UD:

o How to contribute to UD Open class words Closed class words Other
o Tools for working with UD
o Discussion on UD ADJ ADP PUNCT
o UD-related events ADV AUX SYM
e Query UD treebanks online: INTJ CCONJ X
o SETS treebank search maintained by the University of Turku NOUN DE
o PML Tree Query maintained by the Charles University in Prague
o Kontext maintained by the Charles University in Prague EROP U
VERB PART

o Grew-match maintained by Inria in Nancy
o |INESS maintained by the University of Bergen PRON
Download UD treebanks SCONJ




Why POS tagging

e Goal: resolve ambiguities
e Text-to-speech
o record, lead, protest
e Lemmatization
o saw/V — see, saw/N — saw
e Preprocessing for harder disambiguation problems
o syntactic parsing
o semantic parsing



Ambiguities in POS tags

Types: WSJ Brown
Unambiguous (1 tag) 44432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)



Ambiguities in POS tags

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45.799 (85%)
Ambiguous  (2+ tags) 7,025 (14%) 8.050 (15%)

Tokens:

Unambiguous (I tag) 577.421 (45%) 384.349 (33%)

Ambiguous  (2+ tags) 711,780 (55%) 786,646 (67%)



Most frequent class baseline

e Assigning each token to the class it occurred in most often in the training set

e Always compare a classifier against a baseline at least as good as the most
frequent class baseline

e The WSJ training corpus and test on sections 22-24 of the same corpus the
most-frequent-tag baseline achieves an accuracy of 92.34%.

e 97% tag accuracy achievable by most algorithms (HMMs, MEMMs, neural
networks, rule-based algorithms)



Sequence labeling as text classification

A

y; = argmax s(x, i, y)
yeL



Generative sequence labeling:
Hidden Markov Models



Markov Chain: weather

Markov Assumption: P(g; = alq...qi—1) = P(q;i = a|qi—1)

the future is independent of the past given the present



Markov chain

Formally, a Markov chain is specified by the following components:

Q=q192-..9n

Azallalz...anl..

n=m,M,...,TN

. ann

a set of N states

a transition probability matrix A, each a;; represent-
ing the probability of moving from state i to state j, s.t.
Z;ZI aijj — 1 Vi

an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i.

Some states j may have 7; = 0, meaning that they cannot
be initial states. Also, Y ", m; = 1



Markov chain: words

7 =[0.1,0.7,0.2]

the future is independent of the past given the present



Types of Markov chains

0000
as s

Bakis = left-to-right Ergodic =
fully-connected




Hidden Markov Models (HMMs)

Q=q192...9N
A=aj)...qaij...aNN
0O=0107...01
B:bi(()l)
n=m,M,....,TN

a set of N states

a transition probability matrix A, each g;; representing the probability
of moving from state i to state j, s.t. lezl ajj=1 Vi

a sequence of T observations, each one drawn from a vocabulary V =
Vi, V2,...,VV

a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation o, being generated
from a state g;

an initial probability distribution over states. 7; is the probability that
the Markov chain will start in state i. Some states j may have 7; = 0,
meaning that they cannot be initial states. Also, > ", m; = |



HMM parameters
Q=q192...9n
é A =dai11412..-Qau1 - - -Apup

O =0103...0T

—_— B = bi(ot)

—> 490:9F

a set of N states

a transition probability matrix A, each a;; rep-
resenting the probability of moving from state i
to state j, s.t. D _ja;; =1 Vi

a sequence of 7" observations, each one drawn
from a vocabulary V = vy,vy,...,vy

a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation o; being gen-
erated from a state i

a special start state and end (final) state that are
not associated with observations, together with
transition probabilities agiaq; . ..ap, out of the
start state and ajrarf .. .a,F Into the end state



HMMs in language technologies

e Part-of-speech tagging (Church, 1988; Brants, 2000)

Named entity recognition (Bikel et al., 1999) and other information extraction
tasks

Text chunking and shallow parsing (Ramshaw and Marcus, 1995)

Word alignment of parallel text (Vogel et al., 1996)

Acoustic models in speech recognition (emissions are continuous)

Discourse segmentation (labeling parts of a document)



Modeling POS tagging with a HMM

(Imagine all these circles are colored in)



Modeling POS tagging with a HMM

(Imagine all these circles are colored in)

A
y J
- < X / - | -
" \ r' 3 @ .. - @\ 5 .\ (-—_‘

Janet Wili béék the biii



Hidden Markov Models

e Inreal world many events are not observable
e Speechrecognition: we observe acoustic features but not the phones
e POS tagging: we observe words but not the POS tags

Markov Assumption: P(g;|q1...qi—1) = P(qi|qi—1)

Output Independence: P(0;|q;...qi,...,q7,01,...,0i,...,07) = P(0i|q;)



HMM example

B,
P("aardvark” | MD)|
P(“will" | MD)
P(the"IMD) [¥~~——------- =
P{back: | MO) P("aardvark” | NN)
P("zebra" | MD) PR
_ P("the” | NN)
P('aud:Uk' | VB) b
S v8) P("zebra" | NN)
P(the" | VB)
P("back” | VB)
P('zebra" | VB)




HMMs: algorithms

Forward

Viterbi

Problem 1 (Likelihood):
Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|1).

Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.



HMM tagging as decoding

Decoding: Given as input an HMM A = (A, B) and a sequence of ob-
servations O = 01,03, ...,0r, find the most probable sequence of states

0=q19293...9r.

. emission transition
f"— ny n\ .|t At
| = argmax P(t]|w]) =~ argmaxH P(wilt;) P(t;|ti—1)

n n
g h i=1



Could we brute force this?

(Imagine all these circles are colored in)

DT
S,

RB
N

NN
) S

DT
S

RB

@
JJ

RB

NN



HMM tagging as decoding

Decoding: Given as input an HMM A = (A, B) and a sequence of ob-
servations O = 01,03, ...,0r, find the most probable sequence of states

0=q19293...9r.

. emission transition
oan n g I~ il e
f; = argmax P(t]|w]) = argmaxH P(wilt;) P(t;|ti—1)

n n
h h i=1

How many possible choices?



Part of speech tagging example

suspect | the | present | forecast | is | pessimistic
noun ® E 2 . ®
ad)j. ® ® ® ®
adv. @
verb ® ® 6 ®
num.
det. ®
punc.

With this very simple tag set, 7° = 5.7 million labelings.
(Even restricting to the possibilities above, 288 labelings.)




The Viterbi algorithm




Viterbi

e n-bestdecoding
e relationship to sequence alignment

Citation Field

Viterbi (1967) information theory
Vintsyuk (1968) speech processing

Needleman and Wunsch (1970) molecular biology

Sakoe and Chiba (1971) speech processing

Sankoff (1972) molecular biology

Reichert et al. (1973) molecular biology

Wagner and Fischer (1974) computer science



The Viterbi algorithm

N

vi(J) = r?:alxvt—l(i) ajjbj(or)

v;—1(i)  the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢;

bj(o;)  the state observation likelihood of the observation symbol o, given
the current state j



The Viterbi algorithm

s

DT

RB

Janet back the bill
- N -
V:(J) = maxvt—l(’) aijj bj(Ot)
’: \
NNP MD VB JJ NN RB DT i .
> 02767 _0.0006 0.0031 0.0453 0.0439 0.0510 0.2026 Janet  will back _the bill
NNP 03777 00110 0.0009 0.0084 0.0584 0.0090 0.0025 NNP 0.000032 0 0 0.000048 0
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041 z‘;’ 0 0.308431 0 0 0
VB 0.0322  0.0005 0.0050 0.0837 0.0615 0.0514 02231 g 8-000028 g-wn g 8-000028
1 00366 00004 00001 0.0733 04509 0.0036 0.0036 3 :000340
NN 0.0096 00176 0.0014 0.0086 0.1216 0.0177 0.0068 NN 0 0.000200 0.000223 0 0.002337
RB 0.0068 00102 0.1011 0.1012 0.0120 0.0728 0.0479 gg 8 g 8-0'0“468 g
DT 0.1147 00021 0.0002 02157 04744 0.0102 0.0017 506099




