Natural Language Processing Sequence labeling

Sofia Serrano sofias6@cs.washington.edu

Credit to Tianxing He, Yulia Tsvetkov, and Noah Smith for slides

Announcements

- A2 is out for < 12 more full days! Please start early!
- A1 grades will be released sometime on Wednesday
 - We'll be accepting regrade requests for A1 for a week (Feb. 8 through Feb. 15)
- Thanks for midterm course eval feedback!
 - I'll go over takeaways from this at the beginning of class on Wednesday
- Quiz 4 will go out at 2:20pm on Wednesday
 - 5 multiple-choice questions
 - Will cover lexical semantics, neural networks we've seen so far, and sequence labeling content up through the end of today
 - Remember that you're allowed to use your notes

Wrapping up RNNs

Recurrent neural network language model

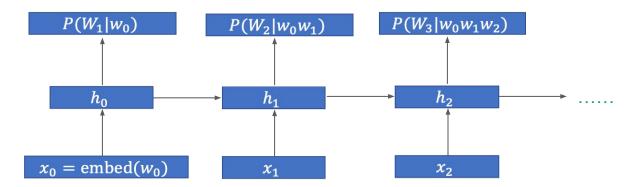
• Complete formulation:

$$h_t = \sigma(W_{ih}x_t + W_{hh}h_{t-1} + b_h)$$

$$y_t = \text{softmax}(W_{ho}h_t + b_o)$$

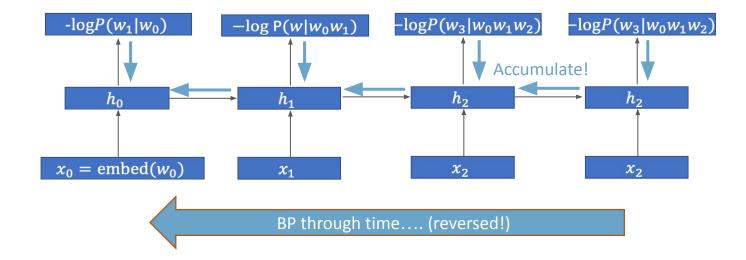
$$L(w) = \sum_i -\log P(w_i | w_{0..i-1})$$

• It's efficient: During training, we just feed the sequence (sentence) once into the RNN, and we get the output (loss) on every timestep.



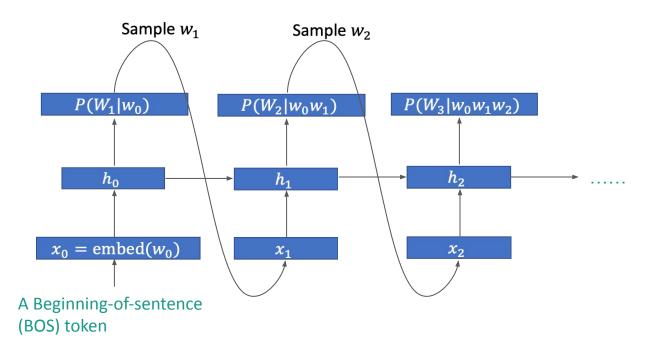
Backpropagation through time (BPTT)

- To do BP, again follow the reverse topological order.
- The error vector of h_t is an accumulation of errors from time t and future time steps!



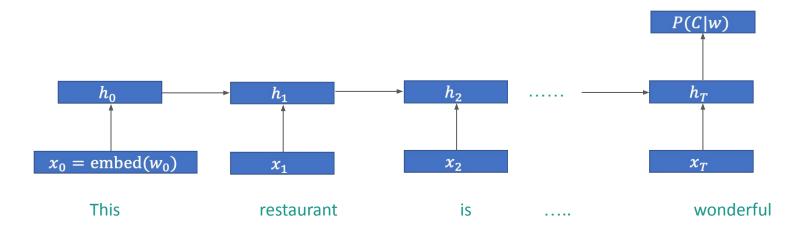
Generation with an RNN language model

- We can do text generation with a trained RNNLM:
- At each time step t, we sample w_t from $P(W_t | ...)$, and feed it to the next timestep!
- LM with this kind of generation process is called autoregressive LM.



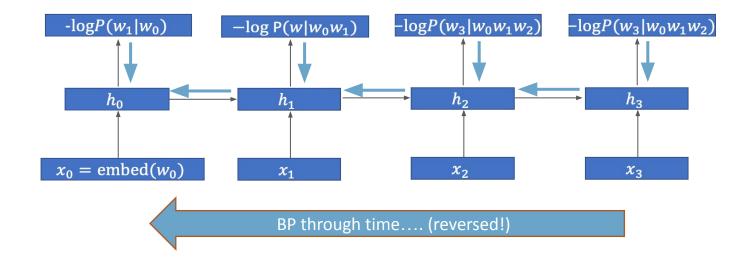
RNN for text classification

• The last hidden state h_t can be regarded as an encoding of the whole sentence, on which you can add a linear classifier head.



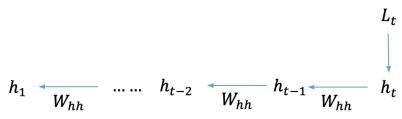
Gradient exploding and gradient vanishing

- In BPTT, we could meet two serious problems. They are called gradient exploding (error vector become too large) and gradient vanishing (error vector become too small).
- Gradient exploding is more serious because it makes training impossible.



Intuition: Gradient exploding and gradient vanishing

We make two crude simplifications: Simplify: $h_t = W_{hh}h_{t-1} + W_{ih}x_t$ And only considering L_t



Simplify: $h_t = W_{hh}h_{t-1} + W_{ih}x_t$, we get the following during backprop:

$$\frac{\partial L_t}{\partial W_{hh}} = \frac{\partial L_t}{\partial h_t} W_{hh}^{T t-1} \otimes h_1 + \frac{\partial L_t}{\partial h_t} W_{hh}^{T t-2} \otimes h_2 + \dots + \frac{\partial L_t}{\partial h_t} \otimes h_t$$

Further approximation, think everything as a scalar...

$$W_{hh} < 1$$
: Gradient Vanishing -> LSTM ...
 $W_{hh} > 1$: Gradient Exploding -> Gradient Clipping

Gradient clipping for the exploding problem

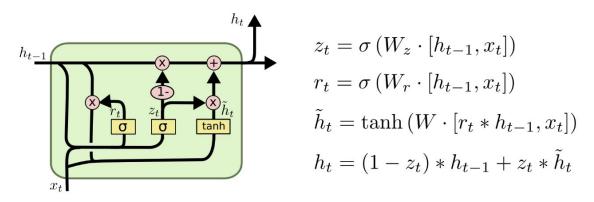
It's simple! Assume we want to set the maximum norm of gradient to be γ $\operatorname{clip}(\nabla L) = \min\left\{1, \frac{\gamma}{||\nabla L||_2}\right\} \nabla L.$

In practice, γ is a hyper-parameter, and is usually set to be 1 or 0.5.

LSTMs and GRUs (Long Short-Term Memory and Gated Recurrent Units)

LSTM or GRU for gradient vanishing

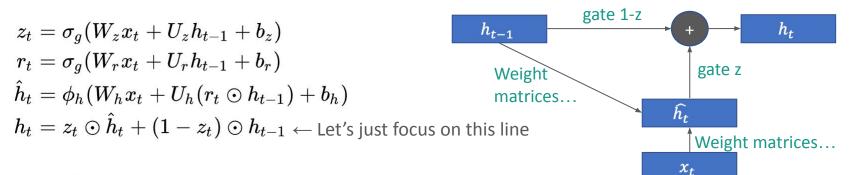
- Historical note: The LSTM (long-short term memory) network was first used in (Sundermeyer et.al. 2012), dealing with the g-vanishing problem.
- Then, GRU (gated recurrent unit) is proposed as a simplification of LSTM.
- We will discuss GRU because it's simpler and has the same core idea.



Christopher Olah's blog post on Understanding LSTM Networks is great btw

Gated recurrent unit for gradient vanishing

GRU is by itself, a small neural network, input: x_t , h_{t-1} , output: h_t



Variables

- x_t : input vector
- h_t : output vector
- \hat{h}_t : candidate activation vector
- z_t : update gate vector
- r_t : reset gate vector
- W, U and b: parameter matrices and vector

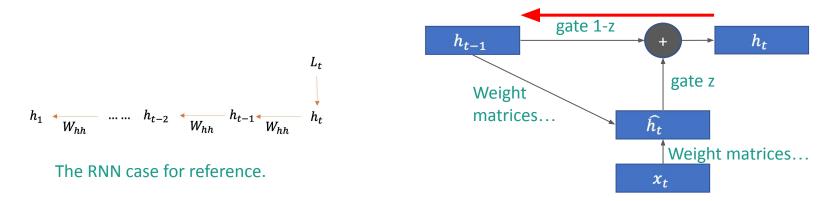
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Junyoung Chung Caglar Gulcehre KyungHyun Cho Université de Montréal Un

Yoshua Bengio Université de Montréal CIFAR Senior Fellow

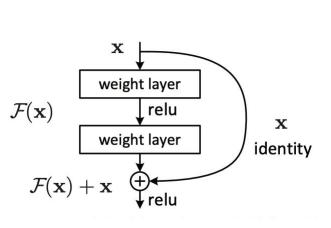
Gated recurrent unit for gradient vanishing

- Think about back-propagation from h_t to h_{t-1} .
- There will be multiple paths, and the errors will be summed up. But in the red path, it does not involve any weight matrix! It's just $(1 z) \odot h_{t-1}$.
- This path alleviates gradient vanishing.



Residual connection in deep feedforward NN

- (Diverge topic a bit) Similar idea can be used to help us build deeper networks.
- Adding a direct link between hidden layers:
- $h_{l+1} = h_l + F(h_l)$
- F may include linear transform,ReLU, gating, etc.



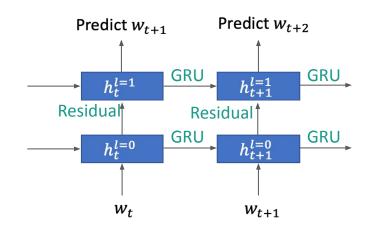
We will revisit this residual connection in transformers!

Deep Residual Learning for Image Recognition

- Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com
- 34-layer residual

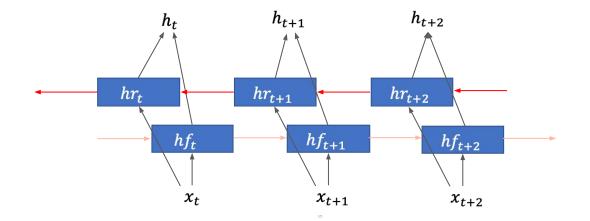
Philosophy: Combining NN modules

- We have now learnt several neural modules (rnn, lstm/gru, etc.), which are by themselves, a small neural network. We can combine different modules together to form a large neural model.
- For example, we build a AR-LM by stacking several GRU layers, and linking them with a residual link:



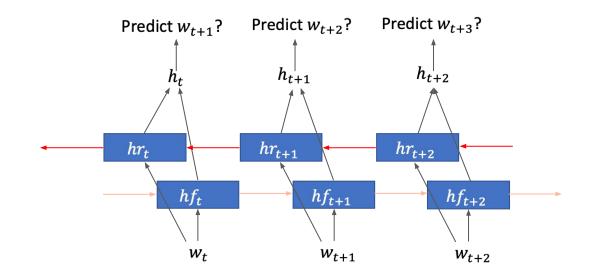
Bi-directional RNN

- In uni-directional RNN, h_t has context from the "left".
- For some applications (e.g., part-of-speech tagging), it would be useful if h_t has bi-directional context.
- We can achieve this by adding a layer of RNN with reversed direction.
- Exercise: what's the topological order of this graph (it's still a DAG!)?



Bi-directional RNN for language modeling?

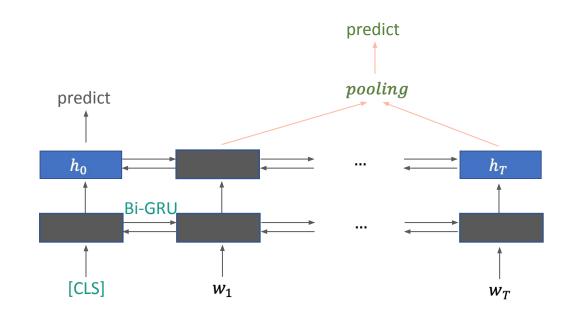
- Exercise: When we switch from a uni-rnn to a bi-rnn, and we don't change anything else, can we still do language modelling?
- Answer: No! In a language model, we can not utilize information from the future!



Bi-directional RNN for encoding a sequence as a fixed-length vector?

There are several ways to get a fixed-length sequence encoding from a bi-rnn: Way1: add a special token to the input.

Way2: do a max-pooling or mean-pooling of the hidden states.



RNNs, GRUs, and LSTMs: conclusion

- Powerful way of modeling text that takes word order into account
- Fully differentiable!
- Can choose whether or not to use hidden state representation of each token

Sequence labeling

Levels of linguistic knowledge

spe	ech	text		
phon	etics	orthography		
phone	ology	orthography		
t	morph	ology		
	lexe	mes		
"shallower"	syn	tax		
"deeper"	sema	ntics		
	pragm	natics		
¥	disco	ourse		

Phonetics	The study of the sounds of human language
Phonology	The study of sound systems in human language
Morphology	The study of the formation and internal structure of words
Syntax	The study of the formation and internal structure of sentences
Semantics	The study of the meaning of sentences
Pragmatics	The study of the way sentences with their semantic meanings are used for particular communicative goals

Ingredients for linguistic analysis

- Formalism
 - Map text to some abstraction
- Theoretical grounding from linguistics
 - Why does linguistics support that our formalism makes sense?
- An algorithmic solution
 - How to solve the mapping problem?
 - Rule based
 - Supervised learning: symbolic or neural solutions
 - Unsupervised learning

Supervised algorithms for sequence labeling problems

Map a sequence of words to a sequence of labels

- Part-of-speech tagging (Church, 1988; Brants, 2000)
- Named entity recognition (Bikel et al., 1999)
- Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
- Word alignment of parallel text (Vogel et al., 1996)
- Compression (Conroy and O'Leary, 2001)
- Acoustic models, discourse segmentation, etc.

Part of speech tagging

PART OF SPEECHDTVBZDTJJNNWORDSThisisasimplesentence

Parts of speech

- Open classes
 - o nouns
 - \circ verbs
 - \circ adjectives
 - adverbs

Closed classes

- prepositions
- determiners
- pronouns
- conjunctions
- auxiliary verbs

Parts of speech, more fine-grained classes

- Open classes
 - o nouns
 - proper
 - common
 - count
 - mass
 - \circ verbs
 - \circ adjectives
 - \circ adverbs
 - directional
 - degree
 - manner
 - temporal

Actually, I ran home extremely quickly yesterday

Parts of speech, closed classes

prepositions: on, under, over, near, by, at, from, to, with particles: up, down, on, off, in, out, at, by determiners: a, an, the conjunctions: and, but, or, as, if, when pronouns: she, who, I, others auxiliary verbs: can, may, should, are numerals: one, two, three, first, second, third

Part of speech tagsets

• Penn treebank tagset (Marcus et al., 1993)

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating conjunction	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg present	eat
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRPS	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/ subordin-conj	of, in, by	RBR	comparative adverb	faster	WRB	wh-adverb	how, where
JJ	adjective	yellow	RBS	superlaty, adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	**	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	"	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate		comma	
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.1?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	:;

Example of POS tagging

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

There/EX are/VBP 70/CD children/NNS there/RB

Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN 's/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

The Universal Dependencies

Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic dependencies) across different human languages. UD is an open community effort with over 300 contributors producing more than 150 treebanks in 90 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation guidelines.

- Short introduction to UD
- <u>UD annotation guidelines</u>
- More information on UD:
 - How to contribute to UD
 - Tools for working with UD
 - Discussion on UD
 - UD-related events
- Query UD treebanks online:
 - SETS treebank search maintained by the University of Turku
 - <u>PML Tree Query</u> maintained by the Charles University in Prague
 - Kontext maintained by the Charles University in Prague
 - Grew-match maintained by Inria in Nancy
 - INESS maintained by the University of Bergen
- Download UD treebanks

Open class words	Closed class words	Other
ADJ	ADP	PUNCT
ADV	AUX	SYM
INTJ	CCONJ	X
NOUN	DET	
PROPN	NUM	
VERB	PART	
	PRON	
	SCONJ	

Why POS tagging

- Goal: resolve ambiguities
- Text-to-speech
 - record, lead, protest
- Lemmatization
 - $\circ \quad \mathsf{saw/V} \mathop{\rightarrow} \mathsf{see}, \mathsf{saw/N} \mathop{\rightarrow} \mathsf{saw}$
- Preprocessing for harder disambiguation problems
 - syntactic parsing
 - semantic parsing

Ambiguities in POS tags

Types:		WSJ	Brown
Unambiguous	(1 tag)	44,432 (86%)	45,799 (85%)
Ambiguous	(2 + tags)	7,025 (14%)	8,050 (15%)

Ambiguities in POS tags

Types:		WS	SJ	Bro	wn	
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)	
Ambiguous	(2 + tags)	7,025	(14%)	8,050	(15%)	
Tokens:						
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)	
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)	

34

Most frequent class baseline

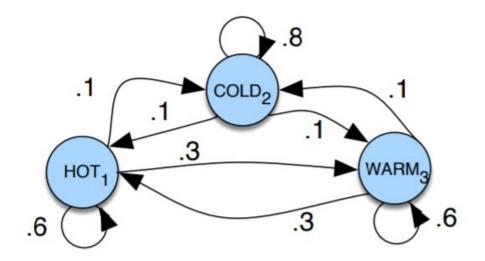
- Assigning each token to **the class it occurred in most often** in the training set
- Always compare a classifier against a baseline at least as good as the most frequent class baseline
- The WSJ training corpus and test on sections 22-24 of the same corpus the most-frequent-tag baseline achieves an accuracy of 92.34%.
- 97% tag accuracy achievable by most algorithms (HMMs, MEMMs, neural networks, rule-based algorithms)

Sequence labeling as text classification

$$\hat{y}_i = \operatorname*{argmax}_{y \in \mathcal{L}} s(\boldsymbol{x}, i, y)$$

Generative sequence labeling: Hidden Markov Models

Markov Chain: weather



Markov Assumption: $P(q_i = a | q_1 ... q_{i-1}) = P(q_i = a | q_{i-1})$

the future is independent of the past given the present

Markov chain

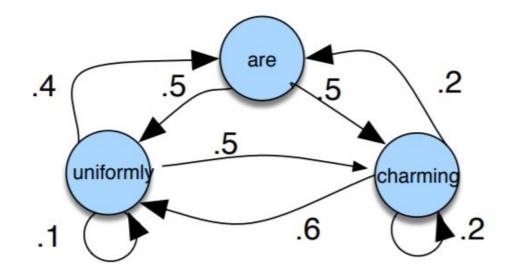
Formally, a Markov chain is specified by the following components:

 $Q = q_1 q_2 \dots q_N$ $A = a_{11}a_{12}\ldots a_{n1}\ldots a_{nn}$ $\pi = \pi_1, \pi_2, ..., \pi_N$

a set of N states

- a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$
- an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state *i*. Some states *j* may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

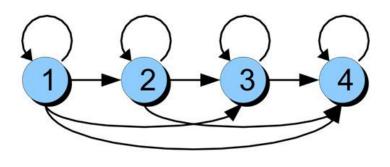
Markov chain: words

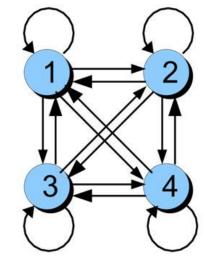


 $\pi = [0.1, 0.7, 0.2]$

the future is independent of the past given the present

Types of Markov chains





Bakis = left-to-right

41

Ergodic = fully-connected

Hidden Markov Models (HMMs)

a set of N states

 $A = a_{11} \dots a_{ij} \dots a_{NN}$

 $Q = q_1 q_2 \dots q_N$

 $0 = o_1 o_2 \dots o_T$

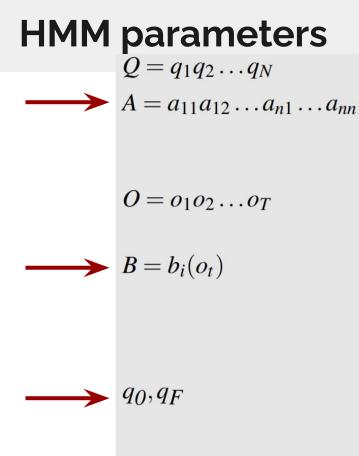
 $B = b_i(o_t)$

a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{N} a_{ij} = 1 \quad \forall i$

a sequence of *T* observations, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$

a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state q_i

 $\pi = \pi_1, \pi_2, ..., \pi_N$ an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state *i*. Some states *j* may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$



a set of N states

a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$

a sequence of *T* observations, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$

a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state *i*

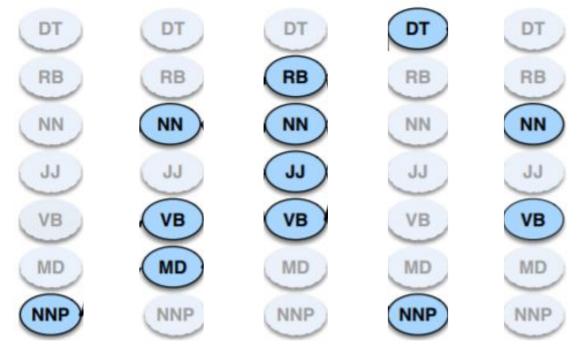
a special **start state** and **end (final) state** that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state

HMMs in language technologies

- Part-of-speech tagging (Church, 1988; Brants, 2000)
- Named entity recognition (Bikel et al., 1999) and other information extraction tasks
- Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
- Word alignment of parallel text (Vogel et al., 1996)
- Acoustic models in speech recognition (emissions are continuous)
- Discourse segmentation (labeling parts of a document)

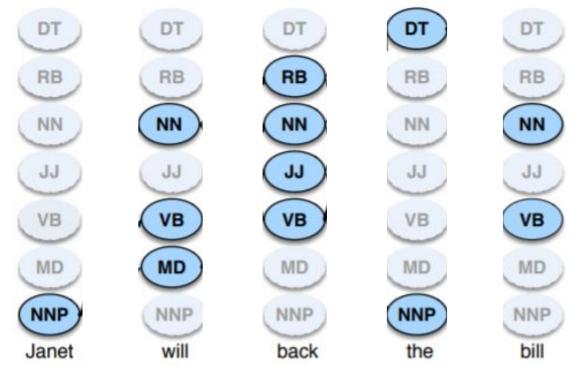
Modeling POS tagging with a HMM

(Imagine all these circles are colored in)



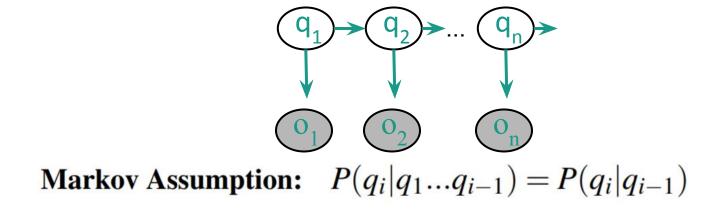
Modeling POS tagging with a HMM

(Imagine all these circles are colored in)



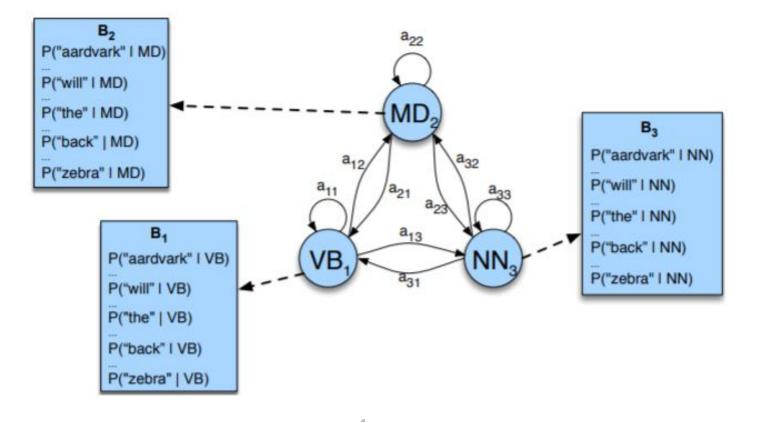
Hidden Markov Models

- In real world many events are not observable
- Speech recognition: we observe acoustic features but not the phones
- POS tagging: we observe words but not the POS tags



Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

HMM example



HMMs: algorithms

Forward

Viterbi

Problem 1 (Likelihood):Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.Problem 2 (Decoding):Given an observation sequence O and an HMM $\lambda = (A, B)$, discover the best hidden state sequence Q.Problem 3 (Learning):Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

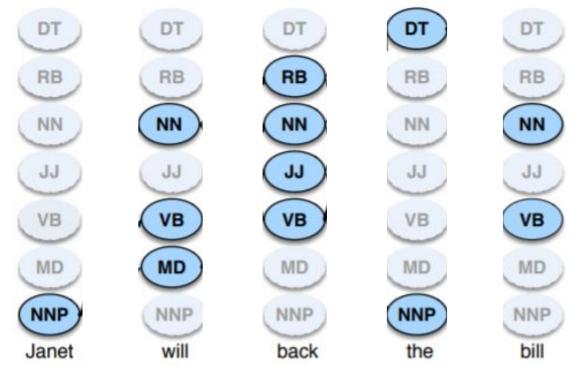
HMM tagging as decoding

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n \underbrace{P(w_i | t_i)}_{P(w_i | t_i)} \underbrace{P(t_i | t_{i-1})}_{P(t_i | t_{i-1})}$$

Could we brute force this?

(Imagine all these circles are colored in)



HMM tagging as decoding

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n \underbrace{P(w_i | t_i)}_{P(w_i | t_i)} \underbrace{P(t_i | t_{i-1})}_{P(t_i | t_{i-1})}$$

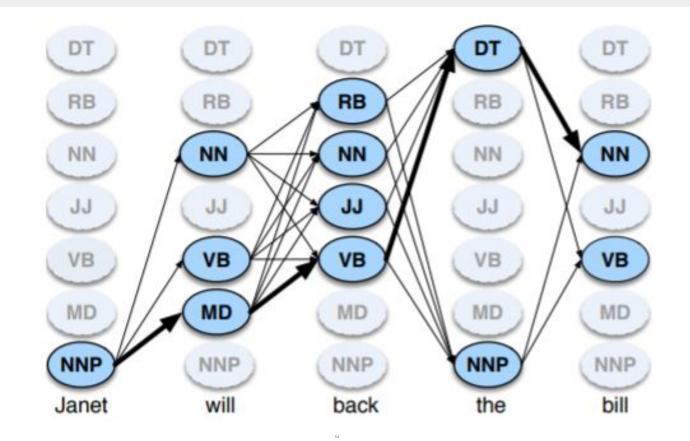
How many possible choices?

Part of speech tagging example

		suspect	the	present	forecast	is	pessimistic	
noun	•	•	•	•	•	•		
adj.		•		•	•		•	
adv.				•				
verb	8	•		•	•	•		
num.	•							
det.			•					
punc.								•

With this very simple tag set, $7^8 = 5.7$ million labelings. (Even restricting to the possibilities above, 288 labelings.)

The Viterbi algorithm

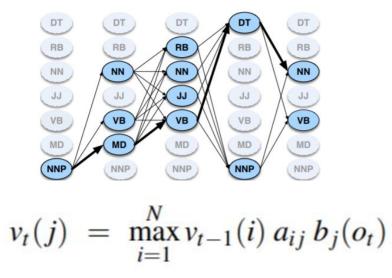


Viterbi

- n-best decoding
- relationship to sequence alignment

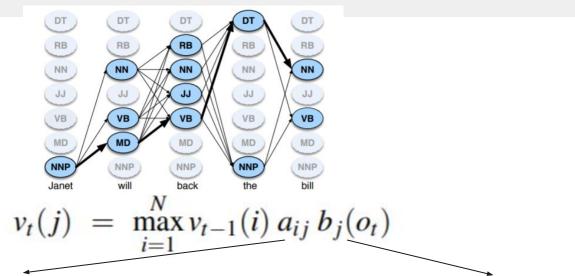
Citation	Field
Viterbi (1967)	information theory
Vintsyuk (1968)	speech processing
Needleman and Wunsch (1970)	molecular biology
Sakoe and Chiba (1971)	speech processing
Sankoff (1972)	molecular biology
Reichert et al. (1973)	molecular biology
Wagner and Fischer (1974)	computer science

The Viterbi algorithm



 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

The Viterbi algorithm



	NNP	MD	VB	JJ	NN	RB	DT
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0