
Natural Language Processing
Neural Networks I

1

Sofia Serrano
sofias6@cs.washington.edu

Credit to Tianxing He, Yulia Tsvetkov, and Noah Smith for slides

Announcements

● Midterm course eval form (online) is out– please let us know how we’re doing!
○ Anonymous, takes at most a few minutes

○ Available through the end of the day today

● A2 is out– start early!! (Please!)

2

https://urldefense.com/v3/__https://uw.iasystem.org/survey/267405__;!!K-Hz7m0Vt54!jbXX8s6WKZ3Gjr3ENgD024Rb_-PXDRIdrLyI038h6wMHycYNt7YFqD7aSyPSmY7R1QAjdwJsxrV7cipMn2Q$

Word2Vec

● [Mikolov et al.’ 13]

3

https://arxiv.org/pdf/1301.3781.pdf

Skip-gram Prediction

● Predict vs Count

the cat sat on the mat

4

● Predict vs Count

Skip-gram Prediction

the cat sat on the mat

context size = 2

w
t
 = the CLASSIFIER

w
t-2

 = <start
-2

>
w

t-1
 = <start

-1
>

w
t+1

 = cat
w

t+2
 = sat

5

Skip-gram Prediction

● Predict vs Count

the cat sat on the mat

context size = 2

w
t
 = cat CLASSIFIER

w
t-2

 = <start
-1

>
w

t-1
 = the

w
t+1

 = sat
w

t+2
 = on

6

the cat sat on the mat

● Predict vs Count

Skip-gram Prediction

context size = 2

w
t
 = sat CLASSIFIER

w
t-2

 = the
w

t-1
 = cat

w
t+1

 = on
w

t+2
 = the

7

● Predict vs Count

the cat sat on the mat

Skip-gram Prediction

context size = 2

w
t
 = on CLASSIFIER

w
t-2

 = cat
w

t-1
 = sat

w
t+1

 = the
w

t+2
 = mat

8

● Predict vs Count

the cat sat on the mat

Skip-gram Prediction

context size = 2

w
t
 = the CLASSIFIER

w
t-2

 = sat
w

t-1
 = on

w
t+1

 = mat
w

t+2
 = <end

+1
>

9

● Predict vs Count

the cat sat on the mat

Skip-gram Prediction

context size = 2

w
t
 = mat CLASSIFIER

w
t-2

 = on
w

t-1
 = the

w
t+1

 = <end
+1

>
w

t+2
 = <end

+2
>

10

● Predict vs Count

Skip-gram Prediction

w
t
 = the CLASSIFIER

w
t-2

 = <start
-2

>
w

t-1
 = <start

-1
>

w
t+1

 = cat
w

t+2
 = sat

w
t
 = the CLASSIFIER

w
t-2

 = sat
w

t-1
 = on

w
t+1

 = mat
w

t+2
 = <end

+1
>

11

Skip-gram Prediction

12

How to compute p(+|t,c)?

13

FastText

14

See also Amit Chaudhary’s blog post explaining FastText

https://amitness.com/2020/06/fasttext-embeddings/

Typical traits of these embeddings

Automatically learn some analogies pretty well

15

Figure from Sutor et al. MIPR 2019

Takeaways from word
representations

16

What we’ve learned

● The contexts in which a word typically appears (i.e., the tokens that typically

appear around it) tell us a lot about that word

● We can use those contexts to automatically learn more powerful representations

of words than just a one-hot encoding

● These “word embeddings” can plug in as parameters in models of your choice

17

Let’s talk about more powerful kinds of functions of our
input text!

18

specifically…

● Feedforward neural networks

● Recurrent neural networks

(Vanilla RNNs, then and LSTMs and GRUs)

19

Feedforward neural networks

20

Bag of words as input
● First we need to encode the input x as a vector…

● Bag of words is a simple way to encode a sentence:

● a |V|-dim vector, the i-th dimension indicates whether the i-th word in V(vocabulary)
exists in x.

● This restaurant is great! Will be mapped to:

● 0(a) 0(the) … 0(that) 1(this) 0 …. 0(amazing) 1(great) 0 ……

● Note: We can easily extend bag-of-words to bag-of-bigrams, which is |V|^2-dim.

Brief Review: logistic regression (LR)

A neural unit for feature extraction
● In order to do the final prediction, we perhaps want to extract some easy binary feature

first.

● Example1: does x contain positive words (good, amazing, etc.) ?

● Example2: does x contain negation words (not, never, etc.) ?

● This kind of low-level features can be extracted by a neural unit (aka., neuron), which is just
a LR model !

← The output y of this single neuron is a scalar value.

One hidden layer of neural network
●A layer of D neurons consists a hidden layer.

 …….

 …….

…….

Stacking multiple hidden layers

 …….

 …….

…….

 …….

…….

Intuition:
High-level feature
(semantic, etc.)

Low-level feature
(syntactic, etc.)

Raw feature
(n-gram, etc.)

This is called a multi-layer perceptron (MLP) or a feedforward neural network.
It’s the simplest type of neural network. (we will learn about more complicated ones in these two
lectures)

Notation: The “2” here does not
mean squared. It means the second
layer.

Choice of activation function
●

Tanh and ReLU have been empirically
shown to outperform sigmoid.

The importance of non-linearity

Figure from
https://towardsdatascience.com/l
ogistic-regression-and-decision-bo
undary-eab6e00c1e8

What it’s like in pytorch

• Below is not real code but it’s very close:

model = sequential(Linear, Sigmoid, Linear, Sigmoid, Linear) #defines the computation graph

z = model(x)

loss = log_softmax(z, y) #forward and compute loss

loss.backward() #backward and gradient computation

#print(model[0].weight.gradient)

optimizer.step() #do a SGD step

How do we learn our neural network’s parameters?

29

f

(Stochastic)
Gradient Descent!

(even though our function’s probably no
longer convex)

Brief summary

We now know how to compute the forward pass and backward pass
of a feedforward NN.

Later we will see more complicated recurrent NN, transformers, etc.
But as long as we know the structure of the computational graph,
it’s the same!

● In previous lectures, we talked about smart ways for extracting features for
word/sentence.

● They need some level of algorithm design or hand crafting.

Philosophy (mindset) of neural networks for NLP

● When using neural networks, we’d like to leave these smart feature extraction
techniques behind, and just feed (almost) raw data into the NN.

● And we let neural networks and SGD “learn” a good feature extraction from data.

● What we care about now is:

● 1: Using a powerful NN architecture

● 2: Using large amounts of data

● 3: Using a useful learning objective

Philosophy (mindset) of neural networks for NLP

… but in practice, those word vectors from Wednesday
are still really useful.
Keep in mind: we’re not in the realm of nice convex functions anymore! Learning is

chancier/more difficult!

Initializing the word embedding parameters at the beginning of the model to

pretrained word vectors, in practice, is often a much better starting point of the

parameter space, and makes it much easier for the model to learn a good set of

parameters.

33

Example: Feedforward trigram language model
●

A feedforward neural network language model

• Note a big difference with the sentiment classifier is that the output class number is now |V|,
making the model slow. Proposed remedies: class-based LM or noise contrastive estimation.

Linear & softmax

Linear & tanh

Recurrent neural networks

36

Revisiting our bag-of-words assumption

What if we had a way of computing a (learned) function of input text that didn’t require

that whole input to be compressed into a fixed-length vector?

● Would free us from our bag-of-words assumption

How could we structure such a function such that we still only have to learn a fixed

number of parameters?

37

Recurrent neural network language model

 ……

Recurrent neural network language model

 ……

Backpropagation through time (BPTT)

BP through time…. (reversed!)

Accumulate!

Generation with an RNN language model

 ……

A Beginning-of-sentence
(BOS) token

RNN for text classification

 ……

This restaurant is ….. wonderful

Gradient exploding and gradient vanishing

• In BPTT, we could meet two serious problems. They are called gradient exploding (error vector
become too large) and gradient vanishing (error vector become too small).

• Gradient exploding is more serious because it makes training impossible.

BP through time…. (reversed!)

Intuition: Gradient exploding and gradient vanishing

44

And only considering Lt

Gradient clipping for the exploding problem

45

LSTMs and GRUs
(Long Short-Term Memory and
Gated Recurrent Units)

46

LSTM or GRU for gradient vanishing
● Historical note: The LSTM (long-short term memory) network was first used in

(Sundermeyer et.al. 2012), dealing with the g-vanishing problem.

● Then, GRU (gated recurrent unit) is proposed as a simplification of LSTM.

● We will discuss GRU because it’s simpler and has the same core idea.

Christopher Olah’s blog post on Understanding LSTM Networks is great btw

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated recurrent unit for gradient vanishing

← Let’s just focus on this line

Weight
matrices…

Weight matrices…

gate 1-z

gate z

 +

48

●

Gated recurrent unit for gradient vanishing

Weight
matrices…

Weight matrices…

gate 1-z

gate z

 +

The RNN case for reference.

49

Residual connection in deep feedforward NN

50

Philosophy: Combining NN modules
● We have now learnt several neural modules (rnn, lstm/gru, etc.), which are by

themselves, a small neural network. We can combine different modules together to
form a large neural model.

● For example, we build a AR-LM by stacking several GRU layers, and linking them with
a residual link:

GRU

GRU

Residual

GRU

GRU
Residual

51

Bi-directional RNN

52

Bi-directional RNN for language modeling?

● Exercise: When we switch from a uni-rnn to a bi-rnn, and we don’t change anything
else, can we still do language modelling?

● Answer: No! In a language model, we can not utilize information from the future!

53

Bi-directional RNN for encoding a sequence as a
fixed-length vector?
There are several ways to get a fixed-length sequence encoding from a bi-rnn:
Way1: add a special token to the input.
Way2: do a max-pooling or mean-pooling of the hidden states.

[CLS]

Bi-GRU

predict

predict

Next class

Sequence labeling

55

