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Announcements

● Midterm course eval form (online) is out– please let us know how we’re doing!
○ Anonymous, takes at most a few minutes

○ Available through the end of the day today

● A2 is out– start early!! (Please!)
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https://urldefense.com/v3/__https://uw.iasystem.org/survey/267405__;!!K-Hz7m0Vt54!jbXX8s6WKZ3Gjr3ENgD024Rb_-PXDRIdrLyI038h6wMHycYNt7YFqD7aSyPSmY7R1QAjdwJsxrV7cipMn2Q$


Word2Vec

● [Mikolov et al.’ 13]
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https://arxiv.org/pdf/1301.3781.pdf


Skip-gram Prediction

● Predict vs Count

the cat sat on the mat
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Skip-gram Prediction
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How to compute p(+|t,c)?
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FastText
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See also Amit Chaudhary’s blog post explaining FastText

https://amitness.com/2020/06/fasttext-embeddings/


Typical traits of these embeddings

Automatically learn some analogies pretty well
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Figure from Sutor et al. MIPR 2019



Takeaways from word 
representations
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What we’ve learned

● The contexts in which a word typically appears (i.e., the tokens that typically 

appear around it) tell us a lot about that word

● We can use those contexts to automatically learn more powerful representations 

of words than just a one-hot encoding

● These “word embeddings” can plug in as parameters in models of your choice
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Let’s talk about more powerful kinds of functions of our 
input text!
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specifically…

● Feedforward neural networks

● Recurrent neural networks

(Vanilla RNNs, then and LSTMs and GRUs)
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Feedforward neural networks
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Bag of words as input
● First we need to encode the input x as a vector…

● Bag of words is a simple way to encode a sentence: 

● a |V|-dim vector, the i-th dimension indicates whether the i-th word in V(vocabulary) 
exists in x.

● This restaurant is great! Will be mapped to:

● 0(a) 0(the) … 0(that) 1(this) 0 …. 0(amazing) 1(great) 0 ……

● Note: We can easily extend bag-of-words to bag-of-bigrams, which is |V|^2-dim.

 



Brief Review: logistic regression (LR)

 



A neural unit for feature extraction
● In order to do the final prediction, we perhaps want to extract some easy binary feature 

first.

● Example1: does x contain positive words (good, amazing, etc.) ? 

● Example2: does x contain negation words (not, never, etc.) ?

● This kind of low-level features can be extracted by a neural unit (aka., neuron), which is just 
a LR model ! 

←  The output y of this single neuron is a scalar value.

 



One hidden layer of neural network
●A layer of D neurons consists a hidden layer.

    …….

    …….

…….

 

 



Stacking multiple hidden layers

    …….

    …….

…….

    …….

…….

 

 

Intuition:
High-level feature
(semantic, etc.)

Low-level feature
(syntactic, etc.)

Raw feature
(n-gram, etc.)

This is called a multi-layer perceptron (MLP) or a feedforward neural network.
It’s the simplest type of neural network. (we will learn about more complicated ones in these  two 
lectures)

Notation: The “2” here does not 
mean squared. It means the second 
layer.



Choice of activation function
●  

Tanh and ReLU have been empirically 
shown to outperform sigmoid.



The importance of non-linearity

Figure from 
https://towardsdatascience.com/l
ogistic-regression-and-decision-bo
undary-eab6e00c1e8

 



What it’s like in pytorch

• Below is not real code but it’s very close:

model = sequential(Linear, Sigmoid, Linear, Sigmoid, Linear) #defines the computation graph

z = model(x)

loss = log_softmax(z, y) #forward and compute loss

loss.backward() #backward and gradient computation

#print(model[0].weight.gradient)

optimizer.step() #do a SGD step



How do we learn our neural network’s parameters?
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(Stochastic) 
Gradient Descent!

(even though our function’s probably no 
longer convex)



Brief summary

We now know how to compute the forward pass and backward pass 
of a feedforward NN.

Later we will see more complicated recurrent NN, transformers, etc. 
But as long as we know the structure of the computational graph, 
it’s the same!



● In previous lectures, we talked about smart ways for extracting features for 
word/sentence.

● They need some level of algorithm design or hand crafting.

Philosophy (mindset) of neural networks for NLP



● When using neural networks, we’d like to leave these smart feature extraction 
techniques behind, and just feed (almost) raw data into the NN.

● And we let neural networks and SGD “learn” a good feature extraction from data.

● What we care about now is:

● 1: Using a powerful NN architecture

● 2: Using large amounts of data

● 3: Using a useful learning objective 

Philosophy (mindset) of neural networks for NLP



… but in practice, those word vectors from Wednesday 
are still really useful.
Keep in mind: we’re not in the realm of nice convex functions anymore! Learning is 

chancier/more difficult!

Initializing the word embedding parameters at the beginning of the model to 

pretrained word vectors, in practice, is often a much better starting point of the 

parameter space, and makes it much easier for the model to learn a good set of 

parameters.
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Example: Feedforward trigram language model
●  



A feedforward neural network language model

• Note a big difference with the sentiment classifier is that the output class number is now |V|, 
making the model slow. Proposed remedies: class-based LM or noise contrastive estimation.

  

Linear & softmax

 

Linear & tanh

 

 



Recurrent neural networks
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Revisiting our bag-of-words assumption

What if we had a way of computing a (learned) function of input text that didn’t require 

that whole input to be compressed into a fixed-length vector?

● Would free us from our bag-of-words assumption

How could we structure such a function such that we still only have to learn a fixed 

number of parameters?
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Recurrent neural network language model 
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Recurrent neural network language model 
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Backpropagation through time (BPTT)
 

 

 

 

 

 

 

   

 

 

 

BP through time…. (reversed!)

Accumulate!



Generation with an RNN language model
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A Beginning-of-sentence 
(BOS) token



RNN for text classification
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This                                 restaurant                             is                 …..                             wonderful



Gradient exploding and gradient vanishing

• In BPTT, we could meet two serious problems. They are called gradient exploding (error vector 
become too large) and gradient vanishing (error vector become too small).

• Gradient exploding is more serious because it makes training impossible.

 

 

 

 

 

 

   

 

 

 

BP through time…. (reversed!)



Intuition: Gradient exploding and gradient vanishing
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And only considering Lt



Gradient clipping for the exploding problem
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LSTMs and GRUs
(Long Short-Term Memory and   
Gated Recurrent Units)
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LSTM or GRU for gradient vanishing
● Historical note: The LSTM (long-short term memory) network was first used in 

(Sundermeyer et.al. 2012), dealing with the g-vanishing problem.

● Then, GRU (gated recurrent unit) is proposed as a simplification of LSTM.

● We will discuss GRU because it’s simpler and has the same core idea.

Christopher Olah’s blog post on Understanding LSTM Networks is great btw

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Gated recurrent unit for gradient vanishing

← Let’s just focus on this line

 

 

 

 

Weight 
matrices…

Weight matrices…

gate 1-z

gate z

 +
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●  

Gated recurrent unit for gradient vanishing

 

 

 

Weight 
matrices…

Weight matrices…

gate 1-z

gate z

 +

The RNN case for reference.
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Residual connection in deep feedforward NN
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Philosophy: Combining NN modules
● We have now learnt several neural modules (rnn, lstm/gru, etc.), which are by 

themselves, a small neural network. We can combine different modules together to 
form a large neural model.

● For example, we build a AR-LM by stacking several GRU layers, and linking them with 
a residual link:

 

 
GRU

GRU

Residual

 

 
GRU

GRU
Residual
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Bi-directional RNN
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Bi-directional RNN for language modeling?

● Exercise: When we switch from a uni-rnn to a bi-rnn, and we don’t change anything 
else, can we still do language modelling?

● Answer: No! In a language model, we can not utilize information from the future!
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Bi-directional RNN for encoding a sequence as a 
fixed-length vector?
There are several ways to get a fixed-length sequence encoding from a bi-rnn:
Way1: add a special token to the input.
Way2: do a max-pooling or mean-pooling of the hidden states.

[CLS]   

 

   

Bi-GRU

 

predict

predict



Next class

Sequence labeling
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