Natural Language Processing
Neural Networks I

Sofia Serrano
sofias6@cs.washington.edu

Credit to Tianxing He, Yulia Tsvetkov, and Noah Smith for slides

Announcements

e Midterm course eval form (online) is out- please let us know how we're doing!
o Anonymous, takes at most a few minutes
o Available through the end of the day today

e A2isout- startearly!! (Please!)

https://urldefense.com/v3/__https://uw.iasystem.org/survey/267405__;!!K-Hz7m0Vt54!jbXX8s6WKZ3Gjr3ENgD024Rb_-PXDRIdrLyI038h6wMHycYNt7YFqD7aSyPSmY7R1QAjdwJsxrV7cipMn2Q$

Word2Vec

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t) L—»

7

w(t+1)

w(t+2)

Skip-gram

e [Mikolovetal. 13]

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT PROJECTION OUTPUT

N
I

CBOW

https://arxiv.org/pdf/1301.3781.pdf

Skip-gram Prediction

e Predictvs Count

the cat sat on the mat

INPUT PROJECTION OUTPUT

w(t)

|-

AN

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Skip-gram Prediction

e Predictvs Count

th

D

cat sat jon the mat

w,, = <start >
w, , = <start >

w,=the — ROFASIIW — - w,, =cat

w,,= sat

context size = 2

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

%

w(t+2)

w(t)

Skip-gram

Skip-gram Prediction

e Predictvs Count

INPUT PROJECTION OUTPUT
the cat sat on the mat
w(t-2)
w,,= <start_1> w(t-1)
w,_, =the
w,=cat —— NEERHI —— W, =sat wt)
Wt+2 =0n \\
w(t+1)
w(t+2)

context size = 2

Skip-gram

Skip-gram Prediction

Predict vs Count

the cat sat on the

mat

Wt=sat e CLASSIFIER —

context size = 2

=the
w,_, = cat
W, . =o0n
t+1
w,,= the

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

%

w(t+2)

w(t)

Skip-gram

Skip-gram Prediction

Predict vs Count

context size = 2

EE——

the|cat sat on the mat

CLASSIFIER

EE——

W

W

t+2

= cat
, =sat
=the
= mat

INPUT

w(t)

PROJECTION OUTPUT
w(t-2)

w(t-1)

%

Skip-gram

Skip-gram Prediction

Predict vs Count

w, = the

context size = 2

EE——

INPUT

the cat{sat on the mat

W = sat
t1 =on
oV — - w,, =mat il

w. _=<end >
+1

t+2

PROJECTION

L/
X

Skip-gram

OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Skip-gram Prediction

e Predictvs Count

INPUT PROJECTION OUTPUT
the cat sat|on the mat
w(t-2)
w,,=0n w(t-1)
w,_, =the
w,=mat —— NEEXSIIW —— w,,=<end > w(t)
w,,, = <end+2> \
w(t+1)
w(t+2)

context size = 2

Skip-gram

Skip-gram Prediction

e Predictvs Count

w, = the

EE——

w, = the

EE——

CLASSIFIER

CLASSIFIER

EE——

EE——

INPUT PROJECTION OUTPUT

w,,= sat w(t-2)
w,, =on
W= mat w(t-1)

Wt+2 - <end+1>

wit)) ——»

w,, = <start >
w,, = <sta rt_1>
W, = cat

w,,= sat

Skip-gram

Skip-gram Prediction

g w,_ W,
: —_—
{
: of
o O [
O |
Wt= the g Wth 2 @) X !
@) |
: Q|
[
’ —
Q)
(@)
one-hot vector
look-up table of output word
word embeddings representations

softmax

softmax

softmax

[COOOOOOOOTOCOT" [0OCOOOCOOOO00G [COCOOOG000O0OT [BOOCOOQOOCO00T

softmax

GO0 TCTO0CT (000000 d [COOCOCe00e0Od [COSTOOeO000d

plwy_g|wy)

plwy_y|wy)

plwpsy|wy)

plwisa|w)

=3
<

[COOOOOOOCTCO00OE [DOOCOOeO0T000d BOOOO00000e00d [COecO00000000d

w,,sat

.2 ON

w,, mat

w,,<end, >

INPUT PROJECTION OUTPUT

w(t-2)

/ w(t-1)
w(t) D—>
\ w(t+1)

Skip-gram

w(t+2)

How to compute p(+|t,c)?

<
34
I}
N
-~
.

BOCCOCC®OOCOOCCOOOO00]

t
5

>
2

FastText

é Win
Nskiing$ IO | “
ing$ % M 8
0
O M
Kii ' ‘ 2
7 | | O 1
I
% — o(x)= =
1+e*
8 .
dOt(Wskiing’Wenjoy)—’ -123.34 :: y=1/1+e®)
’(j i’/“
§ W ot
Aenjoy$ |
| | ()
ioy$ § — 8
Of |—
=
O
oy R — O
§ =
& See also Amit Chaudhary’s blog post explaining FastText

https://amitness.com/2020/06/fasttext-embeddings/

Typical traits of these embeddings

Automatically learn some analogies pretty well

A
Queen = [0.3, 0.9]
King =[0.5,0.7]
an=1[0.3, 0.4]
Jan =[0.5, 0.2]

>

A

Queen = [0.3, 0.9]

King = [0.5, 0.7]

Woman =[0.3, 0.4]

\Man =[05,02]

>

Figure from Sutor et al. MIPR 2019

Takeaways from word
representations

16

What we've learned

e The contexts in which a word typically appears (i.e., the tokens that typically
appear around it) tell us a lot about that word

e We canuse those contexts to automatically learn more powerful representations
of words than just a one-hot encoding

e These “word embeddings” can plug in as parameters in models of your choice

Let's talk about more powerful kinds of functions of our
input text!

[Output]

1

1

Word 1
Embeddings 1
1

the cat sat on the mat <eos>

specifically..

® Feedforward neural networks

® Recurrent neural networks
(Vanilla RNNs, then and LSTMs and GRUs)

Feedforward neural networks

Bag of words as input

e First we need to encode the input x as a vector...

e Bag of words is a simple way to encode a sentence:

e a |V|-dim vector, the i-th dimension indicates whether the i-th word in V(vocabulary)
exists in Xx.

e This restaurant is great! Will be mapped to:
e O(a) O(the) ... O(that) 1(this) O....O(amazing) 1(great)O......

e Note: We can easily extend bag-of-words to bag-of-bigrams, which is [V|*2-dim.

Brief Review: logistic regression (LR)

7 = <Zwix,-> +b 1
i=1

Piy=11%) = 0(2) = ——

Z = w-x+b

A neural unit for feature extraction

e Inorder to do the final prediction, we perhaps want to extract some easy binary feature
first.

e Examplel: does x contain positive words (good, amazing, etc.) ?
e Example2: does x contain negation words (not, never, etc.) ?

e This kind of low-level features can be extracted by a neural unit (aka., neuron), which is just

a LR model !
Output value y <« The outputy of this single neuron is a scalar value.

Non-linear transform

y=ocWw'x + b)
Weighted sum

Weights w,
Input layer x;

One hidden layer of neural network

e A layer of D neurons consists a hidden layer.

hl = o(W°h° + b9)

We aggregate the weights into W°.
The i-th row in W© corresponds to the
weight w in the i-th neuron whose
output is h;.

Stacking multiple hidden layers

Intuition:
High-level feature
(semantic, etc.)

Notation: The “2” here does not
mean squared. It means the second
layer.

h2 = g(WLh! + b1

Low-level feature
(syntactic, etc.)

Raw feature
(n-gram, etc.)

This is called a multi-layer perceptron (MLP) or a feedforward neural network.
It’s the simplest type of neural network. (we will learn about more complicated ones in these two
lectures)

Choice of activation function

e The sigmoid function o is one type of activation function.

1.0

Sigmoid

y=0() =1~

. ¥y =max(z,0)
RelLU s

Rectified Linear Unit v, i

-5

=10y -5 0 5 10

tanh(z)

y:

Tanh and RelLU have been empirically
shown to outperform sigmoid.

10

The importance of non-linearity

A linear transform (e.g., y = Wx) can only give a linear decision boundary.
And the stacking of linear transforms (e.g., y = W;W,W53x) is still a linear transform.
The existence of non-linearity in NN is the key reason to make it powerful.

Decision

A A 1
‘ \
0.0 \ y
’ 0 @) /
O y \ ’
O
O 4 \ O 4 Figure from
4 A} O 4 https://towardsdatascience.com/|
O AN ’ . ! o
-~ ogistic-regression-and-decision-bo
,' undary-eab6e00c1e8
/’
> >

What it's like In pytorch

* Below is not real code but it’s very close:

model = sequential (Linear, Sigmoid, Linear, Sigmoid, Linear) #defines the computation graph
z = model (x)

loss = log_softmax(z, y) #forward and compute loss

loss.backward() #backward and gradient computation

#print (model[0] .weight.gradient)
optimizer.step() #do a SGD step

How do we learn our neural network’'s parameters?

(Stochastic)
Gradient Descent!

(even though our function’s probably no
longer convex)

Brief summary

We now know how to compute the forward pass and backward pass
of a feedforward NN.

Later we will see more complicated recurrent NN, transformers, etc.

But as long as we know the structure of the computational graph,
it’s the same!

Philosophy (mindset) of neural networks for NLP

® [n previous lectures, we talked about smart ways for extracting features for

word/sentence.

® They need some level of algorithm design or hand crafting.

Singular Value Decomposition (SVD)

e Solution idea:
o Find a projection into a low-dimensional space (~300 dim)
o That gives us a best separation between features

Documents
\\ T
Terms A = U X\ V
\\
mxn mxr rxr xn
C UVD<V T
orthonormal diagonal, sorted

1‘~~

It's(@key There are v1rtually.’surprlses and the writing isQecond-rat®.

So why was it so@njoyabl® ? For one thing , the cast is

. Anothe ouch is the music a)was overcome with the urge to get oft
the cduch and start,dancmg It sucked @m ~zmd it'll do the same to o0

S
~ ,/

‘\\ >

X1=3 x5:0 xg=4.19 g

Var Definition Value
X1 count(positive lexicon) € doc) 3
X2 count(negative lexicon) € doc) 2
. { 1 if “no” € doc !

3 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “I” € doc 0

& 0 otherwise
X6 log(word count of doc) In(66) =4.19

Yulia Tsvetkov

52

Undergrad NLP 202!

Philosophy (mindset) of neural networks for NLP

® \When using neural networks, we'd like to leave these smart feature extraction
techniques behind, and just feed (almost) raw data into the NN.

® And we let neural networks and SGD “learn” a good feature extraction from data.

® What we care about now is:
® 1: Using a powerful NN architecture
® 2: Using large amounts of data

® 3: Using a useful learning objective

.. but in practice, those word vectors from Wednesday
are still really useful.

Keep in mind: we're not in the realm of nice convex functions anymore! Learning is
chancier/more difficult!

Initializing the word embedding parameters at the beginning of the model to
pretrained word vectors, in practice, is often a much better starting point of the
parameter space, and makes it much easier for the model to learn a good set of
parameters.

Example: Feedforward trigram language model

* Review of the trigram model:
count(w;_,,w;_1,w;)

w: lw: W:_ =
Q(ll 1—2, V1 1) count(Wi_zywi—l)

* Using what we have learnt, how would you build a NN version of the
n-gram LM?

A feedforward neural network language model

P(Wilwi_,w;_41)

Linear & softmax

L= > —logP (ilwi_zwi_1)

Linear & tanh (Wi—zwi-1,wi)€data

embed(w;_,) embed(w;_,)

* Note a big difference with the sentiment classifier is that the output class number is now | V|,
making the model slow. Proposed remedies: class-based LM or noise contrastive estimation.

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA

Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Recurrent neural networks

36

Revisiting our bag-of-words assumption

What if we had a way of computing a (learned) function of input text that didn’t require
that whole input to be compressed into a fixed-length vector?

e Would free us from our bag-of-words assumption

How could we structure such a function such that we still only have to learn a fixed
number of parameters?

Recurrent neural network language model

The (F)NNLM only encodes a very limited context (n-gram).

RNN defines an efficient flow of computation to encode the whole history wy w;_4.

The RNN maintains a hidden state h; which is updated at each time step.

++

ht = o(Winxe + Wyphe_q1 + b)

Important: The parameters {W;;, Wy} are shared across timesteps (hence the name recurrent).

Recurrent neural network language model

* Complete formulation:
hy = c(Winxe + Wpphe—1 + bp)

y: = softmax(Wy,h; + b,)
L(w)=X; -logP (w;|wpo_i-1)

* |t’s efficient: During training, we just feed the sequence (sentence) once into the RNN, and we get
the output (loss) on every timestep.

P(W1|wo) P(W;|wow,) P(W3|wowiwy)

|

EEE A

A

o = embed(wo)

Backpropagation through time (BPTT)

* To do BP, again follow the reverse topological order.

* The error vector of h; is an accumulation of errors from time t and future time steps!

-logP (w1 |wp) —log P(w|wow,) logP (w3 |wowiwy) logP (ws|wowyw,)

H i [} rcamanes [t

B — D -

++

BP through time.... (reversed!)

Generation with an RNN language model

* We can do text generation with a trained RNNLM:
* At each time step t, we sample w; from P(W¢| ...), and feed it to the next timestep!

* LM with this kind of generation process is called autoregressive LM.

Sample w; Sample w,

P(W3|lwow;wy)

xo = embed(wo)

A Beginning-of-sentence
(BOS) token

RNN for text classification

* The last hidden state hican be regarded as an encoding of the whole sentence, on which you can
add a linear classifier head.

s W

| ho
++

This restaurant is wonderful

Gradient exploding and gradient vanishing

* In BPTT, we could meet two serious problems. They are called gradient exploding (error vector
become too large) and gradient vanishing (error vector become too small).

* Gradient exploding is more serious because it makes training impossible.

-logP (w1|wp) —log P(w|wow;) logP (w3 |wowyw,) logP (w3 |wowyw,)

v ' ¥ '

B — T -

T

BP through time.... (reversed!)

Intuition: Gradient exploding and gradient vanishing

We make two crude simplifications: Simpilify: hy = Wyphe—q + Winx:

And only considering L,

h ht_z ht—l h
! Whh Whh Whh ‘

Simpilify: hy = Wpphe—1 + Winxe, we get the following during backprop:

dLy 0L, wi, t—2
W 6ht Q@ hy, +- +—®ht

Tt 1
®hy+ dh,

aht

Further approximation, think everything as a scalar...
W, < 1: Gradient Vanishing -> LSTM ...
Wy, > 1: Gradient Exploding -> Gradient Clipping

Gradient clipping for the exploding problem

It's simple!
Assume we want to set the maximum norm of gradient to be y

|4
clip(VL) = min}1, VL.
{ ||VL||2}

In practice, y is a hyper-parameter, and is usually set to be 1 or 0.5.

45

LSTMs and GRUs
(Long Short-Term Memory and
Gated Recurrent Units)

46

LSTM or GRU for gradient vanishing

e Historical note: The LSTM (long-short term memory) network was first used in
(Sundermeyer et.al. 2012), dealing with the g-vanishing problem.

e Then, GRU (gated recurrent unit) is proposed as a simplification of LSTM.
e We will discuss GRU because it’s simpler and has the same core idea.

Tt
(0]
4

Christopher Olah’s blog post on Understanding LSTM Networks is great btw

htI» 2z =0 (W, - [he—1, 24])

é % e =0 (Wr ' [ht—laxt])
r tanh ilt — tanh (W ‘ [Tt * ht_l, .Tt])

)
; hy
)

_J

ht:(l—zt)*ht_l-l-zt*fzt

A |

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated recurrent unit for gradient vanishing

GRU is by itself, a small neural network, input: x;,h;_1 , output: h;

=

A

Zt = O'g(Wz$t 4= Uzht_l s bz)

ry = Ug(Wrwt + Urht—l -+ br) Weight gate z

hi = ¢n(Whay + Up(re © he—1) + bp) matrices. ..
t

ht =zt © hy + (1 - 2t) ©hi_1 Let’s just focus on this line Y _
Weight matrices...
Xt
Variables
« Iy input vector
« h;: output vector Empirical Evaluation of
A . L Gated Recurrent Neural Networks
« h;: candidate activation vector on Sequence Modeling
« 2;: update gate vector
+T¢: reset gate vector e, Bigtliy, Tmituts | Bhelod

CIFAR Senior Fellow

« W, U and b: parameter matrices and vector

Gated recurrent unit for gradient vanishing

e Think about back-propagation from h; to h;_;.

* There will be multiple paths, and the errors will be summed up. But in the red
path, it does not involve any weight matrix! It’s just (1 — z)®Oh;_;.

* This path alleviates gradient vanishing.

The RNN case for reference.

Weight
matrices...

< gate 1-z
©

gate z

Weight matrices...

Residual connection in deep feedforward NN

 (Diverge topic a bit) Similar idea can be
used to help us build deeper networks.

X

* Adding a direct link between hidden layers: Y

weight layer
* hjy1 =h +F(h) F(x) relu
* F may include linear transform,RelLU, weight layer o *

_ identity
gating, etc.
F(x) +x
« We will revisit this residual connection in Deep Besidual Learning for Image Kecognition
transformers!

Kaiming He Xiangyu Zhang Shaoqging Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Philosophy: Combining NN modules

e We have now learnt several neural modules (rnn, Istm/gru, etc.), which are by
themselves, a small neural network. We can combine different modules together to
form a large neural model.

e For example, we build a AR-LM by stacking several GRU layers, and linking them with
aresidual link:

Predict wy Predict wg,
— -
Residual Residual

— R

Wi Wit

Bi-directional RNN

* In uni-directional RNN, h; has context from the “left”.

* For some applications (e.g., part-of-speech tagging), it would be useful if
h; has bi-directional context.

* We can achieve this by adding a layer of RNN with reversed direction.
* Exercise: what’s the topological order of this graph (it’s still a DAG!)?

A N
-

Xt Xt+1 Xt+2

Bi-directional RNN for language modeling?

e Exercise: When we switch from a uni-rnn to a bi-rnn, and we don’t change anything
else, can we still do language modelling?

e Answer: No!

Predict w,,,? Predictw;,,? Predict w;,3?

| | |

h; heta hi+z

- ———— Y 0T N ———————————

-

Wi Wii1 Wiy2

Bi-directional RNN for encoding a sequence as a
fixed-length vector?

There are several ways to get a fixed-length sequence encoding from a bi-rnn:
Way1: add a special token to the input.
do a max-pooling or mean-pooling of the hidden states.

predict

predict pooling

e - i

Bi-GRU

—_— _—
aes
——— -—

Next class

Sequence labeling

