
Natural Language Processing
Lexical semantics

1

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

● Quiz 3 will be released on Canvas today at 2:20pm
○ Available through Thursday 2:20pm

○ 5 questions, 10 minutes

○ Will cover material from Wednesday, Friday, and Monday (so, language modeling and

the first part of lexical semantics)

● Midterm course eval form (online) is out– please let us know how we’re doing!

2

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d:

Words like “the” or “it” have very low idf

PMI: Pointwise mutual information

See if words like “good” appear more often with “great” than
we would expect by chance

3

● What to do with words that are evenly distributed across many documents?

TF-IDF

Total # of docs in collection

of docs that have word i

Words like "the" or "good" have very low idf

4

● In word--context matrix
● Do words w and c co-occur more than if they were independent?

● PMI is biased toward infrequent events
○ Very rare words have very high PMI values
○ Give rare words slightly higher probabilities α=0.75

Positive Pointwise Mutual Information (PPMI)

5

(Pecina ’09)

https://link-springer-com.offcampus.lib.washington.edu/article/10.1007/s10579-009-9101-4

Dense vectors (part 1)

7

Term-document matrix from Monday

8

These word vectors are still the length of our number of documents! Hmmm…

As You
Like It

Twelfth
Night

Julius
Caesar Henry V

battle 1 0 7 17

soldier 2 80 62 89

fool 36 58 1 4

clown 20 15 2 3

Dimensionality Reduction

● Wikipedia: ~29 million English documents. Vocab: ~1M words.
○ High dimensionality of word--document matrix

■ Sparsity
■ The order of rows and columns doesn’t matter

● Goal:
○ good similarity measure for words or documents
○ dense representation

● Sparse vs Dense vectors
○ Short vectors may be easier to use as features in

machine learning (less weights to tune)
○ Dense vectors may generalize better than storing explicit counts

■ They may do better at capturing synonymy
■ In practice, they work better

A 0

a 0

aa 0

aal 0

aalii 0

aam 0

Aani 0

aardvark 1

aardwolf 0

... 0

zymotoxic 0

zymurgy 0

Zyrenian 0

Zyrian 0

Zyryan 0

zythem 0

Zythia 0

zythum 0

Zyzomys 0

Zyzzogeton 0

9

Solution idea

● Find a projection into a low-dimensional space (~300 dim)...

● … that, up to a certain vector-length budget, preserves the most important

information

We turn to Singular Value Decomposition (SVD)

Singular Value Decomposition in a nutshell

11

��U VT

Orthonormal,
unitary

Orthonormal,
unitary

(Rectangular) diagonal

Any matrix can be decomposed into

In order of decreasing

m
agnitude

Singular Value Decomposition in a nutshell

12

��U VT

Orthonormal,
unitary Orthonormal,

unitary

(Rectangular) diagonal

Any matrix can be decomposed into

In order of decreasing

m
agnitude

Rotation

Rotation
Scaling

Singular Value Decomposition in a nutshell

13

��U VT

Orthonormal,
unitary Orthonormal,

unitary

(Rectangular) diagonal

Let’s trim away the zero scaling factors

In order of decreasing

m
agnitude

Rotation

Rotation
Scaling

Singular Value Decomposition in a nutshell

14

orthonormal diagonal, sorted

14

dense
word
vectors

Truncated SVD

We can approximate the full matrix by only considering the leftmost k terms in the

diagonal matrix (the k largest singular values)

⨉ ⨉

dense document vectors

15

Latent Semantic Analysis

(Deerwester et al., 1990)

#0 #1 #2 #3 #4 #5
we music company how program 10
said film mr what project 30
have theater its about russian 11
they mr inc their space 12
not this stock or russia 15
but who companies this center 13
be movie sales are programs 14
do which shares history clark 20
he show said be aircraft sept
this about business social ballet 16
there dance share these its 25
you its chief other projects 17
are disney executive research orchestra 18
what play president writes development 19
if production group language work 21

16

https://www.cs.bham.ac.uk/~pxt/IDA/lsa_ind.pdf

How do we tell whether a set
of word embeddings is any
good?

17

Evaluation

● Intrinsic

● Extrinsic

● Qualitative

18

Extrinsic Evaluation

● Chunking

● POS tagging

● Parsing

● MT

● SRL

● Topic categorization

● Sentiment analysis

● Metaphor detection

● etc.

●

19

Intrinsic Evaluation

● WS-353 (Finkelstein et al. ‘02)
● MEN-3k (Bruni et al. ‘12)
● SimLex-999 dataset (Hill et al., 2015)

word1 word2
similarity
(humans)

vanish disappear 9.8

behave obey 7.3

belief impression 5.95

muscle bone 3.65

modest flexible 0.98

hole agreement 0.3

similarity
(embeddings)

1.1

0.5

0.3

1.7

0.98

0.3

Spearman's rho (human ranks, model ranks)

20

https://www.semanticscholar.org/paper/Placing-search-in-context%3A-the-concept-revisited-Finkelstein-Gabrilovich/e0c01df98a6b633b25c96c1a99b713ac96f1c5be
https://www.semanticscholar.org/paper/Distributional-Semantics-in-Technicolor-Bruni-Boleda/917fbd64a435cb33e0e5b4cd73fe830db7b166db
https://www.semanticscholar.org/paper/SimLex-999%3A-Evaluating-Semantic-Models-With-Hill-Reichart/7a96765c147c9c814803c8c9de28a1dd069271da

Computing word similarity

The dot product between two vectors is a scalar:

● The dot product tends to be high when the two vectors have large values in the

same dimensions

● Dot product can thus be a useful similarity metric between vectors

21

Problem with raw dot-product

● Dot product favors long vectors
○ Dot product is higher if a vector is longer (has higher values in many dimension) Vector

length:

● Frequent words (of, the, you) have long vectors (since they occur many times with
other words).
○ So dot product overly favors frequent words

22

Alternative: cosine for computing word similarity

Based on the definition of the dot product between two vectors a and b

23

Cosine as a similarity metric

-1: vectors point in opposite directions

+1: vectors point in same directions

0: vectors are orthogonal

● But since raw frequency values are non-negative, the cosine for term-term matrix
vectors ranges from 0–1

24

Cosine examples

25

pie data computer
cherry 442 8 2
digital 114 80 62

information 36 58 1

Visualizing angles

26

Visualisation

● Visualizing Data using t-SNE (van der Maaten & Hinton ’08)

(Faruqui et al., 2014)

27

https://www.semanticscholar.org/paper/Visualizing-Data-using-t-SNE-Maaten-Hinton/1c46943103bd7b7a2c7be86859995a4144d1938b
https://www.semanticscholar.org/paper/Improving-Vector-Space-Word-Representations-Using-Faruqui-Dyer/9d3aaa919c78c06f24588d97ed1028d51860b321

Dense vectors (part 2)

28

Word Vectors

Distributed representations

29

“One hot” vectors and dense word vectors (embeddings)

30

Low-dimensional word representations

● Learning representations by back-propagating errors
○ Rumelhart, Hinton & Williams, 1986

● A neural probabilistic language model
○ Bengio et al., 2003

● Natural Language Processing (almost) from scratch
○ Collobert & Weston, 2008

● Word representations: A simple and general method for semi-supervised learning
○ Turian et al., 2010

● Distributed Representations of Words and Phrases and their Compositionality

○ Word2Vec; Mikolov et al., 2013

31

Word2Vec

● Popular embedding method

● Very fast to train

● Code available on the web

● Idea: predict rather than count

32

Word2Vec

● [Mikolov et al.’ 13]

33

Skip-gram Prediction

● Predict vs Count

the cat sat on the mat

34

● Predict vs Count

Skip-gram Prediction

the cat sat on the mat

context size = 2

w
t
 = the CLASSIFIER

w
t-2

 = <start
-2

>
w

t-1
 = <start

-1
>

w
t+1

 = cat
w

t+2
 = sat

35

Skip-gram Prediction

● Predict vs Count

the cat sat on the mat

context size = 2

w
t
 = cat CLASSIFIER

w
t-2

 = <start
-1

>
w

t-1
 = the

w
t+1

 = sat
w

t+2
 = on

36

the cat sat on the mat

● Predict vs Count

Skip-gram Prediction

context size = 2

w
t
 = sat CLASSIFIER

w
t-2

 = the
w

t-1
 = cat

w
t+1

 = on
w

t+2
 = the

37

● Predict vs Count

the cat sat on the mat

Skip-gram Prediction

context size = 2

w
t
 = on CLASSIFIER

w
t-2

 = cat
w

t-1
 = sat

w
t+1

 = the
w

t+2
 = mat

38

● Predict vs Count

the cat sat on the mat

Skip-gram Prediction

context size = 2

w
t
 = the CLASSIFIER

w
t-2

 = sat
w

t-1
 = on

w
t+1

 = mat
w

t+2
 = <end

+1
>

39

● Predict vs Count

the cat sat on the mat

Skip-gram Prediction

context size = 2

w
t
 = mat CLASSIFIER

w
t-2

 = on
w

t-1
 = the

w
t+1

 = <end
+1

>
w

t+2
 = <end

+2
>

40

● Predict vs Count

Skip-gram Prediction

w
t
 = the CLASSIFIER

w
t-2

 = <start
-2

>
w

t-1
 = <start

-1
>

w
t+1

 = cat
w

t+2
 = sat

w
t
 = the CLASSIFIER

w
t-2

 = sat
w

t-1
 = on

w
t+1

 = mat
w

t+2
 = <end

+1
>

41

Skip-gram Prediction

42

How to compute p(+|t,c)?

43

FastText

44

Typical traits of these embeddings

Automatically learn some analogies pretty well

45

Figure from Sutor et al. MIPR 2019

Takeaways

46

What we’ve learned

● The contexts in which a word typically appears (i.e., the tokens that typically

appear around it) tell us a lot about that word

● We can use those contexts to automatically learn more powerful representations

of words than just a one-hot encoding

● These “word embeddings” can plug in as parameters in models of your choice

47

Next class

Neural Networks I (Feedforward networks and LSTMs)

48

