Natural Language Processing Lexical semantics

Sofia Serrano sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

- Quiz 3 will be released on Canvas today at 2:20pm
 - Available through Thursday 2:20pm
 - 5 questions, 10 minutes
 - Will cover material from Wednesday, Friday, and Monday (so, language modeling and the first part of lexical semantics)
- Midterm course eval form (online) is out please let us know how we're doing!

Two common solutions for word weighting

tf-idf: tf-idf value for word **t** in document **d**:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Words like "the" or "it" have very low idf

PMI: Pointwise mutual information

$$\mathsf{PMI}(w_1, w_2) = log \frac{p(w_1, w_2)}{p(w_1)p(w_2)}$$

See if words like "good" appear more often with "great" than we would expect by chance

TF-IDF

• What to do with words that are evenly distributed across many documents?

$$\mathrm{tf}_{t,d} = \log_{10}(\mathrm{count}(t,d)+1)$$

Words like "the" or "good" have very low idf

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Positive Pointwise Mutual Information (PPMI)

- In word--context matrix
- Do words w and c co-occur more than if they were independent?

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

- PMI is biased toward infrequent events
 - Very rare words have very high PMI values
 - Give rare words slightly higher probabilities α =0.75

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0) \qquad \qquad P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_c count(c)^{\alpha}}$$

# name	formula	referen
1. Joint probability	p(xy)	(Giuliano, 19
2. Conditional probability	p(y x)	(Gregory et al., 199
3. Reverse cond. probability	p(x y)	(Gregory et al., 199
4. Pointwise mutual inf. (MI)	$\log \frac{p(xy)}{p(x+)p(xy)}$	(Church and Hanks, 199
5. Mutual dependency (MD)	$\log \frac{p(xy)^2}{p(x+)p(+y)}$	(Thanopoulos et al., 200
6. Log frequency biased MD	$\log \frac{p(xy)^2}{p(x+)p(xy)} + \log p(xy)$	(Thanopoulos et al., 200
7. Normalized expectation	$\frac{2f(xy)}{f(x+)+f(+y)}$	(Smadja and McKeown, 199
8. Mutual expectation	$\frac{2f(xy)}{f(x+)+f(xy)} \cdot p(xy)$	(Dias et al., 200
9. Salience	$\log \frac{p(xy)^2}{p(x+)p(xy)} \cdot \log f(xy)$	(Kilgarriff and Tugwell, 200
10. Pearson's χ^2 test	$\sum_{i,j} \frac{(f_{ij} - \hat{f}_{ij})^2}{f_{ij}}$	(Manning and Schütze, 199
11. Fisher's exact test	$\frac{f(x*)!f(\bar{x}*)!f(*y)!f(*\bar{y})!}{N!f(xy)!f(x\bar{y})!f(\bar{x}y)!f(\bar{x}\bar{y})!}$	(Pedersen, 199
12. t test	$\frac{f(xy) - \hat{f}(xy)}{\sqrt{f(xy)(1 - (f(xy)/N))}}$	(Church and Hanks, 199
13. z score	$\frac{f(xy) - \hat{f}(xy)}{\sqrt{\hat{f}(xy) + \hat{f}(xy)}}$	(Berry-Rogghe, 192
14. Poisson significance	$\frac{f(xy)(1-(f(xy)/N))}{f(xy)-f(xy)\log f(xy)+\log f(xy)!}$	(Quasthoff and Wolff, 200
15. Log likelihood ratio	$-2\sum_{i,j} f_{ij} \log \frac{f_{ij}}{f_{ij}}$	(Dunning, 199
16. Squared log likelihood rat	io $-2\sum_{i,j} \frac{\log r_{ij}^2}{r_{ij}}$	(Inkpen and Hirst, 200
17. Russel-Rao	a a+b+c+d	(Russel and Rao, 194
18. Sokal-Michiner	a+d a+b+c+d	(Sokal and Michener, 193
19. Rogers-Tanimoto	$\frac{a+d}{a+2b+2c+d}$	(Rogers and Tanimoto, 190
20. Hamann	$\frac{(a+d)-(b+c)}{a+b+c+d}$	(Hamann, 190
21. Third Sokal-Sneath	b+c a+d	(Sokal and Sneath, 196
22. Jaccard	a a+b+c	(Jaccard, 19)
23. First Kulczynsky	a b+c	(Kulczynski, 192
24. Second Sokal-Sneath	a a+2(b+c)	(Sokal and Sneath, 190
25. Second Kulczynski	$\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)$	(Kulczynski, 192
26. Fourth Sokal-Sneath	$\frac{1}{4}\left(\frac{a}{a+b} + \frac{a}{a+c} + \frac{d}{d+b} + \frac{d}{d+c}\right)$	(Kulczynski, 192
27. Odds ratio	ad bc	(Tan et al., 200
28. Yulle's ω	Vad-Vbc	(Tan et al., 200
29. Yulle's Q	ad-bc ad+bc	(Tan et al., 200
30. Driver-Kroeber	a /(a+b)(a+c)	(Driver and Kroeber, 193

reference	# name
no, 1964)	31. Fifth Sokal-Sneath
al., 1999)	32. Pearson
al., 1999)	33. Baroni-Urbani
uks, 1990)	34 Braun-Blanquet
al., 2002)	25 Simpson
al., 2002)	35. Michael
wn, 1990)	36. Michael
al., 2000)	37. Mountford
ell, 2001)	38. Fager
tze, 1999)	39. Unigram subtuples
en, 1996)	40. U cost
uks, 1990)	41. S cost
;he, 1973)	42. R cost
olff, 2002)	43. T combined cost
ng, 1993)	44. Phi
rst, 2002)	45. Kappa
lao, 1940)	46. J measure
ner, 1958)	
oto, 1960)	47. Gini index
nn, 1961)	
ath, 1963)	
rd, 1912)	
ski, 1927)	48. Confidence
ath, 1963)	49. Laplace
ski, 1927)	50. Conviction
ski, 1927)	51. Piatersky-Shapiro
al., 2002)	52. Certainity factor
al., 2002)	53. Added value (AV)
al., 2002)	54 Collective strength
ber, 1932)	55 Klosgen
	b. Riosgen

formula	reference
$\frac{ad}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$ (Sokal a	and Sneath, 1963)
$\frac{ad-bc}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$	(Pearson,1950)
<u>a+vad</u> (Baroni-Urbani	and Buser, 1976)
a+b+c+vad (Brau	n-Blanquet 1932)
a (Druce	(Simpson 1943)
$\frac{\min\{a+b,a+c\}}{4(ad-bc)}$	(Michael 1020)
$(a+d)^2 + (b+c)^2$	(Michael, 1920)
2bc+ab+ac (Kaufman and	Kousseeuw, 1990)
$\frac{a}{\sqrt{(a+b)(a+c)}} - \frac{1}{2} \max(b,c)$ (Kaufman and)	Rousseeuw, 1990)
$\log \frac{ad}{bc} - 3.29\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$ (Blaheta and	nd Johnson, 2001)
$log(1 + \frac{min(b,c)+a}{max(b,c)+a})$	(Tulloss, 1997)
$\log(1 + \frac{\min(b,c)}{a+1})^{-\frac{1}{2}}$	(Tulloss, 1997)
$\log(1 + \frac{a}{a+b}) \cdot \log(1 + \frac{a}{a+b})$	(Tulloss, 1997)
$\sqrt{U \times S \times R}$	(Tulloss, 1997)
p(xy)-p(x+)p(+y)	(Tan et al., 2002)
$\sqrt{p(x*)p(*y)(1-p(x*))(1-p(*y))}$ $p(xy)+p(\tilde{x}\tilde{y})-p(x*)p(xy)-p(\tilde{x}*)p(*\tilde{y})$	(,
$\frac{1 - p(x *)p(*y) - p(\hat{x} *)p(*\hat{y})}{p(x)}$	(Ian et al., 2002)
$\max[p(xy)\log\frac{p(y x)}{p(*y)} + p(x\bar{y})\log\frac{p(y x)}{p(*\bar{y})},$	(Tan et al., 2002)
$p(xy)\log\frac{p(x y)}{p(x+)} + p(\bar{x}y)\log\frac{p(x y)}{p(\bar{x}+)}]$	
$\max[p(x*)(p(y x)^2 + p(\bar{y} x)^2) - p(*y)^2]$	(Tan et al., 2002)
$+p(\bar{x*})(p(y \bar{x})^2 + p(\bar{y} \bar{x})^2) - p(*\bar{y})^2,$	
$p(*y)(p(x y)^2 + p(\bar{x} y)^2) - p(x*)^2$	
$+p(*\bar{y})(p(x \bar{y})^2+p(\bar{x} \bar{y})^2)-p(\bar{x}*)^2]$	
$\max[p(y x), p(x y)]$	(Tan et al., 2002)
$\max[\frac{Np(xy)+1}{Np(xy)+2}, \frac{Np(xy)+1}{Np(xy)+2}]$	(Tan et al., 2002)
$\max[\frac{p(x*)p(*y)}{p(xy)}, \frac{p(x*)p(*y)}{p(xy)}]$	(Tan et al., 2002)
p(xy) - p(x*)p(xy)	(Tan et al., 2002)
$\max[\frac{p(y x)-p(xy)}{1-p(xy)}, \frac{p(x y)-p(x+)}{1-p(x+)}]$	(Tan et al., 2002)
$\max[p(y x) - p(xy), p(x y) - p(x*)]$	(Tan et al., 2002)
$\frac{p(xy) + p(xy)}{1 - p(x*)p(*y) - p(x*)p(*y)}$	(Tan et al., 2002)
$p(x+)p(y)+p(x+)p(*y) = 1-p(xy)-p(xg)$ $\sqrt{p(xy)} = AV$	(Tan et al. 2002)
V P(Ag) . AV	(lan et al., 2002)

Dense vectors (part 1)

Term-document matrix from Monday

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	17
soldier	2	80	62	89
fool	36	58	1	4
clown	20	15	2	3

These word vectors are still the length of our number of documents! Hmmm...

Dimensionality Reduction

- Wikipedia: ~29 million English documents. Vocab: ~1M words.
 - High dimensionality of word--document matrix
 - Sparsity
 - The order of rows and columns doesn't matter
- Goal:
 - good similarity measure for words or documents
 - dense representation
- Sparse vs Dense vectors
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy
 - In practice, they work better

Solution idea

- Find a projection into a low-dimensional space (~300 dim)...
- ... that, up to a certain vector-length budget, preserves the most important information

We turn to Singular Value Decomposition (SVD)

Any matrix can be decomposed into

Orthonormal, unitary (Rectangular) diagonal

Orthonormal, unitary

Any matrix can be decomposed into

Let's trim away the zero scaling factors

Truncated SVD

We can approximate the full matrix by only considering the leftmost k terms in the diagonal matrix (the k largest singular values) dense document vectors

 $A_{m \times n} \approx U_{m \times k} \Sigma_{k \times k} V_{k \times n}^{\top}$ $k \ll m, n$

Latent Semantic Analysis

#0	#1	#2	#3	#4	#5
we	music	company	how	program	10
said	film	mr	what	project	30
have	theater	its	about	russian	11
they	mr	inc	their	space	12
not	this	stock	or	russia	15
but	who	companies	this	center	13
be	movie	sales	are	programs	14
do	which	shares	history	clark	20
he	show	said	be	aircraft	sept
this	about	business	social	ballet	16
there	dance	share	these	its	25
you	its	chief	other	projects	17
are	disney	executive	research	orchestra	18
what	play	president	writes	development	19
if	production	group	language	work	21

How do we tell whether a set of word embeddings is any good?

Evaluation

- Intrinsic
- Extrinsic
- Qualitative

_

WORD	d1	d2	d3	d4	d5		d50
summer	0.12	0.21	0.07	0.25	0.33		0.51
spring	0.19	0.57	0.99	0.30	0.02		0.73
fall	0.53	0.77	0.43	0.20	0.29	••••	0.85
light	0.00	0.68	0.84	0.45	0.11		0.03
clear	0.27	0.50	0.21	0.56	0.25		0.32
blizzard	0.15	0.05	0.64	0.17	0.99		0.23

Extrinsic Evaluation

- Chunking
- POS tagging
- Parsing
- MT
- SRL
- Topic categorization
- Sentiment analysis
- Metaphor detection

19

• etc.

Intrinsic Evaluation

20

• MEN-3k (<u>Bruni et al. '12</u>)

SimLex-999 dataset (<u>Hill et al., 2015</u>)

Computing word similarity

The dot product between two vectors is a scalar:

dot product(
$$\mathbf{v}, \mathbf{w}$$
) = $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$

- The dot product tends to be high when the two vectors have large values in the same dimensions
- Dot product can thus be a useful similarity metric between vectors

Problem with raw dot-product

- Dot product favors long vectors
 - Dot product is higher if a vector is longer (has higher values in many dimension) Vector length:

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

- Frequent words (of, the, you) have long vectors (since they occur many times with other words).
 - So dot product overly favors frequent words

Alternative: cosine for computing word similarity

$$\operatorname{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Based on the definition of the dot product between two vectors a and b

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \cos \theta$$

Cosine as a similarity metric

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- **0**: vectors are orthogonal

• But since raw frequency values are non-negative, the cosine for term-term matrix vectors ranges from 0–1

Cosine examples

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

	pie	data	computer
cherry	442	8	2
digital	114	80	62
information	36	58	1

 $\cos(\text{cherry}, \text{information}) =$

$$\frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

 $\cos(\text{digital}, \text{information}) =$

$$\frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Visualizing angles

Visualisation

Figure 6.5: Monolingual (top) and multilingual (bottom; marked with apostrophe) word projections of the antonyms (shown in red) and synonyms of "beautiful".

Visualizing Data using t-SNE (van der Maaten & Hinton '08)

Dense vectors (part 2)

Distributed representations

Word Vectors

WORD	d1	d2	d3	d4	d5		d50
summer	0.12	0.21	0.07	0.25	0.33		0.51
spring	0.19	0.57	0.99	0.30	0.02	•••	0.73
fall	0.53	0.77	0.43	0.20	0.29	• • •	0.85
light	0.00	0.68	0.84	0.45	0.11		0.03
clear	0.27	0.50	0.21	0.56	0.25		0.32
blizzard	0.15	0.05	0.64	0.17	0.99		0.23

"One hot" vectors and dense word vectors (embeddings)

Low-dimensional word representations

- Learning representations by back-propagating errors
 - Rumelhart, Hinton & Williams, 1986
- A neural probabilistic language model
 - Bengio et al., 2003
- Natural Language Processing (almost) from scratch
 - Collobert & Weston, 2008
- Word representations: A simple and general method for semi-supervised learning
 - Turian et al., 2010
- Distributed Representations of Words and Phrases and their Compositionality
 - Word2Vec; Mikolov et al., 2013

Word2Vec

- Popular embedding method
- Very fast to train
- Code available on the web
- Idea: predict rather than count

Word2Vec

PROJECTION INPUT OUTPUT INPUT PROJECTION OUTPUT w(t-2) w(t-2) w(t-1) w(t-1) SUM w(t) w(t) w(t+1) w(t+1) w(t+2) w(t+2) Skip-gram **CBOW**

• Predict vs Count

the cat sat on the mat

• Predict vs Count

• Predict vs Count

Predict vs Count

• Predict vs Count

• Predict vs Count

• Predict vs Count

• Predict vs Count

Skip-gram

How to compute p(+|t,c)?

FastText

Typical traits of these embeddings

Automatically learn some analogies pretty well

Figure from Sutor et al. MIPR 2019

What we've learned

- The contexts in which a word typically appears (i.e., the tokens that typically appear around it) tell us a lot about that word
- We can use those contexts to automatically learn more powerful representations of words than just a one-hot encoding
- These "word embeddings" can plug in as parameters in models of your choice

Next class

Neural Networks I (Feedforward networks and LSTMs)