Natural Language Processing Lexical semantics

Sofia Serrano sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

- A2 goes out on gitlab sometime today
- Reminder: the last day/time to submit A1 for credit (by tagging on GitLab) is **today at 11:59pm**, if you use the max number of late days allowed for this assignment
- Quiz 3 will be released on Canvas on Wednesday (2/1)
 - Available Wednesday 2:20pm through Thursday 2:20pm
 - 5 questions, 10 minutes
 - Will cover material from Wednesday, Friday, and today (so, language modeling and the first part of lexical semantics)
- We have a google calendar for the course now (embedded on course website)
- Midterm course eval form (online) going out sometime in the next couple of daysplease let us know how we're doing!

Language models: Conclusion (for now)

Which of the material from Wednesday and Friday only applied to *simple* language models?

Just the n-gram material! (Since the Markovian assumption is, well, false in a language context)

For current state-of-the-art neural language models, all of the following still apply:

- Task definition of language modeling
- Evaluation via perplexity
- Vocabulary creation considerations (e.g., <UNK>ing, switching to character-level modeling, or using byte-pair encoding)

Language modeling will make reappearances later in the course...

Problems with discrete representations

- Too coarse
 - \circ expert \leftrightarrow skillful
- Sparse
 - wicked, badass, ninja
- Hard to compute word relationships

S: (adj) full, good
S: (adj) estimable, good, honorable, respectable
S: (adj) beneficial, good
S: (adj) good, just, upright
S: (adj) adept, expert, good, practiced,
proficient, skillful
S: (adj) dear, good, near
S: (adj) good, right, ripe
S: (adv) well, good
S: (adv) thoroughly, soundly, good
S: (n) good, goodness
S: (n) commodity, trade good, good

expert [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

• dimensionality: PTB: 50K, Google1T 13M

Lexical semantics: what do words mean?

- N-gram or text classification methods we've seen so far
 - Words are just strings (or indices w_i in a vocabulary list)
 - That's not very satisfactory!

How have people thought about breaking down the meaning of a word?

Desiderata

What should a theory of word meaning do for us?

Let's look at some desiderata from lexical semantics, the linguistic study of word meaning

- How should we represent the meaning of the word?
 - Words, lemmas, senses, definitions

Lemmas and senses

A sense or "concept" is the meaning component of a word Lemmas can be polysemous (have multiple senses)

Relation: synonymity

- Synonyms have the same meaning in some or all contexts.
 - filbert / hazelnut
 - \circ couch / sofa
 - \circ big / large
 - \circ automobile / car
 - vomit / throw up
 - \circ Water / H₂0

The Linguistic Principle of Contrast

Difference in form \rightarrow difference in meaning

- Note that there are probably no examples of perfect synonymy
 - Even if many aspects of meaning are identical
 - Still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.
 - Water / H20 in a surfing guide?
 - my big sister != my large sister

Relation: antonymy

Senses that are opposites with respect to one feature of meaning

- Otherwise, they are very similar!
 - dark/light short/long fast/slow rise/fall
 - hot/cold up/down in/out

More formally: antonyms can

- define a binary opposition or be at opposite ends of a scale
 - long/short, fast/slow
- be reversives:
 - rise/fall, up/down

Relation: similarity

Words with similar meanings.

- Not synonyms, but sharing some element of meaning
 - car, bicycle
 - \circ cow, horse

Ask humans how similar two words are

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

SimLex-999 dataset (Hill et al., 2015)

Relation: word relatedness

Also called "word association"

- Words be related in any way, perhaps via a semantic frame or field
 - car, bicycle: similar
 - car, gasoline: related, not similar

Semantic field

Words that

- cover a particular semantic domain
- bear structured relations with each other

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital

restaurants

waiter, menu, plate, food, menu, chef),

houses

door, roof, kitchen, family, bed

Relation: superordinate/ subordinate

- One sense is a subordinate (hyponym) of another if the first sense is more specific, denoting a subclass of the other
 - car is a subordinate of vehicle
 - mango is a subordinate of fruit
- Conversely superordinate (hypernym)
 - vehicle is a superordinate of car
 - fruit is a subordinate of mango

Taxonomy

Superordinate Basic Subordinate

20

- How should we represent the meaning of the word?
 - Dictionary definition
 - Lemma and wordforms
 - Senses
 - Relationships between words or senses
 - Taxonomic relationships
 - Word similarity, word relatedness
 - Connotation and sentiment
 - Semantic frames and roles

- How should we represent the meaning of the word?
 - Dictionary definition
 - Lemma and wordforms
 - Senses
 - Relationships between words or senses
 - Taxonomic relationships
 - Word similarity, word relatedness
 - Connotation and sentiment
 - Semantic frames and roles
 - John hit Bill
 - Bill was hit by John

- How should we represent the meaning of the word?
 - Dictionary definition
 - Lemma and wordforms
 - Senses
 - Relationships between words or senses
 - Taxonomic relationships
 - Word similarity, word relatedness
 - Semantic frames and roles
 - Connotation and sentiment
 - valence: the pleasantness of the stimulus
 - arousal: the intensity of emotion
 - dominance: the degree of control exerted by the stimulus

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24
life	6.68	5.59	5.89

Electronic Dictionaries

WordNet

https://wordnet.princeton.edu/

WordNet Search - 3.1 - WordNet home page - Glossary - Help Word to search for: bank Search WordNet Display Options: (Select option to change) Change Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled the canoe up on the bank"; "he sat on the bank of the river and watched the currents"
- S: (n) depository financial institution, bank, banking concern, banking company (a financial institution that accepts deposits and channels the money into lending activities) "he cashed a check at the bank"; "that bank holds the mortgage on my home"
- S: (n) bank (a long ridge or pile) "a huge bank of earth"
- S: (n) bank (an arrangement of similar objects in a row or in tiers) "he operated a bank of switches"
- <u>S</u>: (n) bank (a supply or stock held in reserve for future use (especially in emergencies))
- S: (n) bank (the funds held by a gambling house or the dealer in some gambling games) "he tried to break the bank at Monte Carlo"
- <u>S:</u> (n) bank, cant, camber (a slope in the turn of a road or track; the outside is higher than the inside in order to reduce the effects of centrifugal force)

Electronic Dictionaries

WordNet

from nltk.corpus import wordnet as wn
panda = wn.synset('panda.n.01')
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))

25

[Synset('procyonid.n.01'), Synset('carnivore.n.01'), Synset('placental.n.01'), Synset('mammal.n.01'), Synset('vertebrate.n.01'), Synset('chordate.n.01'), Synset('animal.n.01'), Synset('animal.n.01'), Synset('organism.n.01'), Synset('living_thing.n.01'), Synset('living_thing.n.01'), Synset('object.n.01'), Synset('physical_entity.n.01'), Synset('entity.n.01')]

NLTK www.nltk.org

So what do we do?

Let's take a look at this list again

- How should we represent the meaning of the word?
 - Dictionary definition
 - Lemma and wordforms
 - Senses
 - Relationships between words or senses
 - Taxonomic relationships
 - Word similarity, word relatedness
 - Connotation and sentiment
 - Semantic frames and roles

Note: a lot of these are related to the contexts in which a word appears!

Distributional hypothesis

"The meaning of a word is its use in the language"

[Wittgenstein PI 43]

"You shall know a word by the company it keeps" [Firth 1957]

If A and B have almost identical environments we say that they are synonyms. [Harris 1954]

Example

What does ongchoi mean?

Example

- Suppose you see these sentences:
 - Ongchoi is delicious sautéed with garlic.
 - Ongchoi is superb over rice
 - Ongchoi leaves with salty sauces
- And you've also seen these:
 - ...spinach sautéed with garlic over rice
 - Chard stems and leaves are delicious
 - Collard greens and other salty leafy greens

Ongchoi: Ipomoea aquatica "Water Spinach"

Ongchoi is a leafy green like spinach, chard, or collard greens

Yamaguchi, Wikimedia Commons, public domain

空心薬 kangkong rau muống

•••

Model of meaning focusing on similarity

- Each word = a vector
 - not just "word" or word45.
 - similar words are "nearby in space"
 - We build this space automatically by seeing which words are nearby in text

We define meaning of a word as a vector

- Called an "embedding" because it's embedded into a space
- The standard way to represent meaning in NLP

Every modern NLP algorithm uses embeddings as the representation of word meaning

Intuition: why vectors?

Consider sentiment analysis:

- With words, a feature is a word identity
 - Feature 5: 'The previous word was "terrible"'
 - requires exact same word to be in training and test

- With embeddings:
 - Feature is a word vector
 - 'The previous word was vector [35,22,17...]
 - Now in the test set we might see a similar vector [34,21,14]
 - Whether we can pull this new vector together depends on the method we use
 - Gives us a chance to generalize to similar but unseen-in-training words!

There are many kinds of embeddings

- Count-based
 - Words are represented by a simple function of the counts of nearby words
- Class-based
 - Representation is created through hierarchical clustering, Brown clusters
- Distributed prediction-based (type) embeddings
 - Representation is created by training a classifier to distinguish nearby and far-away words: word2vec, fasttext
- Distributed contextual (token) embeddings from language models
 - ELMo, BERT

We'll discuss different kinds of embeddings

• Sparse vectors

- Like TF-IDF: Information Retrieval workhorse!
- Common baseline models
- Words are represented by (a simple function of) the counts of nearby words

Dense vectors

- Dimensionality reduction
 - Latent Semantic Analysis (LSA)
- Word2vec
 - Representation is created by training a classifier to predict whether a word is likely to appear nearby
 - <u>https://fasttext.cc/docs/en/crawl-vectors.html</u>
 - Later we'll discuss extensions called contextual embeddings

Sparse vectors

Term-document matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	17
soldier	2	80	62	89
fool	36	58	1	4
clown	20	15	2	3

Context = appearing in the same document.

Term-document matrix

	As Y Like		Fwelft Nigh		Julius Jaesa	Н	enry	V
battle	1		0		7		17	
soldier	2		80		62		89	
fool	36		58		1		4	
clown	20		15		2		3	

Each document is represented by a vector of words

Vectors are the basis of information retrieval

	As Yo Like I		Twelf Nigh		Julius Jaesa	Н	enry	V
battle	1		0		7		13	
soldier	2		80		62		89	
fool	36		58		1		4	
clown	20	J	15		2		3	

- Vectors are similar for the two comedies
- Different than the history
- Comedies have more fools and wit and fewer battles.

Visualizing Document Vectors

Words can be vectors too

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
clown	20	15	2	3

- battle is "the kind of word that occurs in Julius Caesar and Henry V"
- fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix ("term-context matrix")

	knife	dog	sword	love	like
knife	0	1	6	5	5
dog	1	0	5	5	5
sword	6	5	0	5	5
love	5	5	5	0	5
like	5	5	5	5	2

43

• Two words are "similar" in meaning if their context vectors are similar

• Similarity == relatedness

Term-context matrix

Two words are similar in meaning if their context vectors are similar

is traditionally followed by cherry often mixed, such as strawberry computer peripherals and personal digital a computer. This includes information
 pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually available on the internet

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Count-based representations

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

45

• Counts: term-frequency

- \circ remove stop words
- use log10(tf)
- normalize by document length

But raw frequency is a bad representation

- The co-occurrence matrices we have seen represent each cell by word frequencies
- Frequency is clearly useful; if sugar appears in a lot of the same context as cake, that's useful information
- But overly frequent words like the, it, or they are not very informative about the context
- How can we balance these two conflicting constraints?

Two common solutions for word weighting

tf-idf: tf-idf value for word **t** in document **d**:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Words like "the" or "it" have very low idf

PMI: Pointwise mutual information

$$\mathsf{PMI}(w_1, w_2) = \log \frac{p(w_1, w_2)}{p(w_1)p(w_2)}$$

See if words like "good" appear more often with "great" than we would expect by chance

TF-IDF

• What to do with words that are evenly distributed across many documents?

$$\mathrm{tf}_{t,d} = \log_{10}(\mathrm{count}(t,d)+1)$$

Words like "the" or "good" have very low idf

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

Positive Pointwise Mutual Information (PPMI)

- In word--context matrix
- Do words w and c co-occur more than if they were independent?

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

- PMI is biased toward infrequent events
 - Very rare words have very high PMI values
 - Give rare words slightly higher probabilities α =0.75

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0) \qquad \qquad P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_c count(c)^{\alpha}}$$

# name	formula	referen
1. Joint probability	p(xy)	(Giuliano, 196
2. Conditional probability	p(y x)	(Gregory et al., 199
3. Reverse cond. probability	$p(\mathbf{x} \mathbf{y})$	(Gregory et al., 199
4. Pointwise mutual inf. (MI)	$\log \frac{p(xy)}{p(x+)p(+y)}$	(Church and Hanks, 199
5. Mutual dependency (MD)	$\log \frac{p(xy)^2}{p(x*)p(*y)}$	(Thanopoulos et al., 200)
6. Log frequency biased MD	$\log \frac{p(xy)^2}{p(x*)p(*y)} + \log p(xy)$	(Thanopoulos et al., 200)
7. Normalized expectation	$\frac{2f(xy)}{f(x+)+f(*y)}$	(Smadja and McKeown, 199
8. Mutual expectation	$\frac{2f(xy)}{f(x+)+f(xy)} \cdot p(xy)$	(Dias et al., 200
9. Salience	$\log \frac{p(xy)^2}{p(x+)p(+y)} \cdot \log f(xy)$	(Kilgarriff and Tugwell, 200
10. Pearson's χ^2 test	$\sum_{i,j} \frac{(f_{ij} - \hat{f}_{ij})^2}{\hat{f}_{ij}}$	(Manning and Schütze, 199
11. Fisher's exact test	$\frac{f(x*)!f(x*)!f(*y)!f(*y)!}{N!f(xy)!f(xy)!f(xy)!f(xy)!}$	(Pedersen, 199
12. t test	$\frac{f(xy) - \hat{f}(xy)}{\sqrt{f(xy)(1 - (f(xy)/N))}}$	(Church and Hanks, 199
13. z score	$f(xy) - \hat{f}(xy)$	(Berry-Rogghe, 197
14. Poisson significance	$\frac{\sqrt{f(xy)(1-(f(xy)/N))}}{\frac{f(xy)-f(xy)\log f(xy)+\log f(xy)!}{\log N}}$	(Quasthoff and Wolff, 200
15. Log likelihood ratio	$-2\sum_{i,j} f_{ij} \log \frac{f_{ij}}{f_{ij}}$	(Dunning, 199
16. Squared log likelihood ratio	$p - 2\sum_{i,j} \frac{\log r_{ij}^2}{r_{ij}}$	(Inkpen and Hirst, 200
17. Russel-Rao	a a+b+c+d	(Russel and Rao, 194
18. Sokal-Michiner	$\frac{a+d}{a+b+c+d}$	(Sokal and Michener, 195
19. Rogers-Tanimoto	$\frac{a+d}{a+2b+2c+d}$	(Rogers and Tanimoto, 196
20. Hamann	$\frac{(a+d)-(b+c)}{a+b+c+d}$	(Hamann, 196
21. Third Sokal-Sneath	b+c a+d	(Sokal and Sneath, 196
22. Jaccard	a a+b+c	(Jaccard, 191)
23. First Kulczynsky	a b+c	(Kulczynski, 192
24. Second Sokal-Sneath	$\frac{a}{a+2(b+c)}$	(Sokal and Sneath, 196
25. Second Kulczynski	$\frac{1}{2}(\frac{a}{a+b} + \frac{a}{a+c})$	(Kulczynski, 192
26. Fourth Sokal-Sneath	$\frac{1}{4}\left(\frac{a}{a+b} + \frac{a}{a+c} + \frac{d}{d+b} + \frac{d}{d+c}\right)$	(Kulczynski, 192
27. Odds ratio	ad bc	(Tan et al., 200
28. Yulle's ω	$\frac{\sqrt{ad}-\sqrt{bc}}{\sqrt{ad}+\sqrt{bc}}$	(Tan et al., 200)
29. Yulle's Q	ad-bc ad+bc	(Tan et al., 200)
30. Driver-Kroeber	$\frac{a}{\sqrt{(a+b)(a+c)}}$	(Driver and Kroeber, 193

reference	# name
ano, 1964)	31. Fifth Sokal-Sneath
al., 1999)	32. Pearson
al., 1999)	
nks, 1990)	33. Baroni-Urbani
al., 2002)	34. Braun-Blanquet
al., 2002)	35. Simpson
wn, 1990)	36. Michael
al., 2000)	37. Mountford
vell, 2001)	38. Fager
tze, 1999)	39. Unigram subtuples
sen, 1996)	40. U cost
nks, 1990)	41. S cost
ghe, 1973)	42. R cost
olff, 2002)	43. T combined cost
ing, 1993)	44. Phi
irst, 2002)	45. Kappa
Rao, 1940)	46. J measure
ner, 1958)	
oto, 1960)	47. Gini index
ann, 1961)	
ath, 1963)	
ard, 1912)	
ski, 1927)	48. Confidence
ath, 1963)	49. Laplace
ski, 1927)	50. Conviction
ski, 1927)	51. Piatersky-Shapiro
al., 2002)	52. Certainity factor
al., 2002)	53. Added value (AV)
al., 2002)	54. Collective strength
ber, 1932)	55. Klosgen

reference		formula
al and Sneath, 1963)	(Soka	ad \[(a+b)(a+c)(d+b)(d+c)]
(Pearson, 1950)		ad-bc
ani and Buser, 1976)		$\sqrt{(a+b)(a+c)(d+b)(d+c)}$ $\frac{a+\sqrt{ad}}{a+\sqrt{ad}}$
aun-Blanquet, 1932)	**************************************	a+b+c+√ad a
(Simpson, 1943)	(bia	max(a+b,a+c) a
		min(a+b,a+c) 4(ad-bc)
(Michael, 1920)	(Verfores en	$\frac{(a+d)^2+(b+c)^2}{2a}$
d Rousseeuw, 1990)	constraint and the second second	2bc+ab+ac
d Rousseeuw, 1990)	hax(b, c) (Kaufman and	$\sqrt{(a+b)(a+c)} = \frac{1}{2} \max$
and Johnson, 2001)	$+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}$ (Blaheta a	$\log \frac{ad}{bc} - 3.29\sqrt{\frac{1}{a} + \frac{1}{b}}$
(Tulloss, 1997)	Here III (BAC) Second	$og(1 + \frac{min(b,c)+a}{max(b,c)+a})$
(Tulloss, 1997)		$\log(1 + \frac{\min(b,c)}{a+1})^{-\frac{1}{2}}$
(Tulloss, 1997)	$1 + \frac{a}{a+c}$	$\log(1 + \frac{a}{a+b}) \cdot \log(1 + \frac{a}{a+b}))$
(Tulloss, 1997)		$\sqrt{\mathbf{U} \times \mathbf{S} \times \mathbf{R}}$
(Tan et al., 2002)		p(xy)-p(x+)p(+y
(Tan et al., 2002)	$+y)-p(\bar{x}+)p(+\bar{y})$	$\sqrt{p(x*)p(*y)(1-p(x*))(1)}$ $\frac{p(xy)+p(\tilde{x}\tilde{y})-p(x*)p(*y)}{1-p(x*)p(*y)-p(\tilde{x}*)}$
(Tan et al., 2002)		$\max[p(xy)\log\frac{p(y x)}{p(xy)}]$
	$\frac{ \mathbf{y} }{ \mathbf{x} } + \mathbf{p}(\mathbf{\bar{x}y})\log\frac{\mathbf{p}(\mathbf{\bar{x} y})}{\mathbf{p}(\mathbf{\bar{x}+1})}]$	
(Tan et al., 2002)		$\max[p(x*)(p(y x)^2 +$
	$(p^2 + p(\bar{y} \bar{x})^2) - p(*\bar{y})^2$	$+p(\bar{x*})(p(y \bar{x})^{2} +$
	$(x^2 + p(\bar{x} y)^2) - p(x^*)^2$	$p(*y)(p(x y)^{2} +$
	$(\bar{x} \bar{y})^2) - p(\bar{x}*)^2$	$+p(*\bar{y})(p(x \bar{y})^{2} +$
(Tan et al., 2002)		$\max[p(y x), p(x y)]$
(Tan et al., 2002)	$\frac{xy)+1}{y}$	$\max[\frac{Np(xy)+1}{Np(x*)+2}, \frac{Np(xy)}{Np(*y)}]$
(Tan et al., 2002)	$\frac{(\mathbf{x})\mathbf{p}(\mathbf{x}\mathbf{y})}{\mathbf{p}(\mathbf{x}\mathbf{y})}$]	$\max[\frac{p(x+)p(+y)}{p(x\bar{y})}, \frac{p(\bar{x}+)p}{p(\bar{x})}]$
(Tan et al., 2002)		p(xy) - p(x*)p(*y)
(Tan et al., 2002)	$\frac{p(x y)-p(x+)}{1-p(x+)}$]	$\max[\frac{p(y x)-p(*y)}{1-p(*y)}, \frac{p(x)}{1}]$
(Tan et al., 2002)		$\max[p(y x) - p(*y), t]$
	1-nixeln(au)-n(xe)n(at	p(xu)+p(S0)
(Tan et al., 2002)	1-p(xy)-p(xg)	$\frac{p(x*)p(y)+p(x*)p(*y)}{\sqrt{p(xy)} \cdot AV}$

Dense vectors (part 1)

Dimensionality Reduction

- Wikipedia: ~29 million English documents. Vocab: ~1M words.
 - High dimensionality of word--document matrix
 - Sparsity
 - The order of rows and columns doesn't matter
- Goal:
 - good similarity measure for words or documents
 - dense representation
- Sparse vs Dense vectors
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy
 - In practice, they work better

Singular Value Decomposition (SVD)

- Solution idea:
 - Find a projection into a low-dimensional space (~300 dim)
 - That gives us a best separation between features

Truncated SVD

We can approximate the full matrix by only considering the leftmost k terms in the

diagonal matrix (the k largest singular values) dense document vectors 4 dense X X word 0 vectors 0. 0 .0 .0 0

 $A_{m \times n} \approx U_{m \times k} \Sigma_{k \times k} V_{k \times n}^{\top}$

 $k \ll m, n$

Latent Semantic Analysis

#0	#1	#2	#3	#4	#5
we	music	company	how	program	10
said	film	mr	what	project	30
have	theater	its	about	russian	11
they	mr	inc	their	space	12
not	this	stock	or	russia	15
but	who	companies	this	center	13
be	movie	sales	are	programs	14
do	which	shares	history	clark	20
he	show	said	be	aircraft	sept
this	about	business	social	ballet	16
there	dance	share	these	its	25
you	its	chief	other	projects	17
are	disney	executive	research	orchestra	18
what	play	president	writes	development	19
if	production	group	language	work	21

55

(Deerwester et al., 1990)

How do we tell whether a set of word embeddings is any good?

Computing word similarity

The dot product between two vectors is a scalar:

dot product(
$$\mathbf{v}, \mathbf{w}$$
) = $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$

- The dot product tends to be high when the two vectors have large values in the same dimensions
- Dot product can thus be a useful similarity metric between vectors

Problem with raw dot-product

- Dot product favors long vectors
 - Dot product is higher if a vector is longer (has higher values in many dimension) Vector length:

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

• Frequent words (of, the, you) have long vectors (since they occur many times with other words).

58

• So dot product overly favors frequent words

Alternative: cosine for computing word similarity

$$\operatorname{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Based on the definition of the dot product between two vectors a and b

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \cos \theta$$

Cosine as a similarity metric

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- **0**: vectors are orthogonal

 But since raw frequency values are non-negative, the cosine for term-term matrix vectors ranges from 0–1

Cosine examples

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

	pie	data	computer
cherry	442	8	2
digital	114	80	62
information	36	58	1

 $\cos(\text{cherry}, \text{information}) =$

$$\frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

 $\cos(\text{digital}, \text{information}) =$

$$\frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Visualizing angles

Evaluation

- Intrinsic
- Extrinsic
- Qualitative

-

WORD	d1	d2	d3	d4	d5		d50
summer	0.12	0.21	0.07	0.25	0.33		0.51
spring	0.19	0.57	0.99	0.30	0.02		0.73
fall	0.53	0.77	0.43	0.20	0.29	э н эн:	0.85
light	0.00	0.68	0.84	0.45	0.11	a 1916	0.03
clear	0.27	0.50	0.21	0.56	0.25		0.32
blizzard	0.15	0.05	0.64	0.17	0.99		0.23

Extrinsic Evaluation

- Chunking
- POS tagging
- Parsing
- MT
- SRL
- Topic categorization
- Sentiment analysis
- Metaphor detection
- etc.

Intrinsic Evaluation

65

• MEN-3k (Bruni et al. '12)

SimLex-999 dataset (<u>Hill et al., 2015</u>)

Visualisation

Figure 6.5: Monolingual (top) and multilingual (bottom; marked with apostrophe) word projections of the antonyms (shown in red) and synonyms of "beautiful".

Visualizing Data using t-SNE (van der Maaten & Hinton '08)