
Natural Language Processing
Language modeling

1

Sofia Serrano
sofias6@cs.washington.edu

Credit to Yulia Tsvetkov and Noah Smith for slides

Announcements

● A1 is due at 11:59pm today
○ For details on how to tag and submit your assignment, see Leo’s tutorial video linked in

Sunday’s Ed announcement

○ Late days
■ Remember: you can use up to three late days on A1 out of your pool of five total for the

quarter with no penalty (absolute latest to tag your A1 submission using all three possible late

days would be 11:59pm on Monday 1/30)

● We’re holding extra office hours this week
○ See the office hour schedule google doc from the Sunday Ed announcement, also linked

on the course website under “Announcements”

● Daksh’s regular Monday office hour time and place has shifted to 4:30-5:30pm

in-person in Gates 152 (website is updated)

2

https://docs.google.com/document/d/1ze_-ysWevgOXQJ1h4Vosjv1UrgavKu2vpkS55hDSEMU/edit?usp=sharing

Last class we covered…

● What language modeling is

● How language models produce a probability
distribution over language
○ And how to calculate the probability a

particular language model allocates to any
utterance

● How n-gram language models work, and
how to estimate them

3

Our agenda for today

● Wrapping up n-gram language models
○ What’s not great about them?

○ What are some techniques we can use to address those weaknesses?

● How do we evaluate language models?

● A more careful consideration of language model vocabulary

4

Sampling from a language model

5

Addressing n-gram models’
weaknesses

6

● Maximum likelihood for estimating q
○ Let c(w

1
, …, w

n
) be the number of times that n-gram appears in a corpus

○ If vocabulary has 20,000 words ⇒ Number of parameters is 8 x 1012!

Sparsity

7

● For most N‐grams, we have few observations

● General approach: modify observed counts to improve estimates
○ Back‐off:

■ use trigram if you have good evidence;

■ otherwise bigram, otherwise unigram

○ Interpolation: approximate counts of N‐gram using combination of estimates from

related denser histories

○ Discounting: allocate probability mass for unobserved events by discounting counts

for observed events

Dealing with sparsity

8

● Given a corpus of length M

Linear interpolation

9

● Combine the three models to get all benefits

Linear interpolation

10

● We often want to make estimates from sparse
statistics:

● Smoothing flattens spiky distributions so they
generalize better:

▪ Very important all over NLP, but easy to do badly

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 (7 total)

al
le

ga
tio

ns

ch
ar

ge
s

m
ot

io
n

be
ne

fit
s

…
al

le
ga

tio
ns

re
po

rts

cl
ai

m
s

ch
ar

ge
s

re
qu es
t

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m s

re
qu

e
st

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 (7 total)

Discounting/smoothing methods

11

Evaluating language models

12

Intuition

We want a model that assigns probability to words in a way that mirrors actual

language.

We want a model that assigns high probability to actual language (that it wasn’t trained

on) that it’s meant to model.

We want a model that isn’t “surprised” by the actual test data it sees.

→ We want a model with low “perplexity”

13

Building up a definition of perplexity

What do we have to work with?

● Test data:

{“w
1

1 w
2

1 w
3

1 w
4

1 <eos>”,

 “w
1

2 w
2

2 <eos>”,

 “w
1

3 w
2

3 w
3

3 <eos>”}

● The model’s probability of that data

14

Aside: how do we calculate probability over the full
data?
Up until now we’ve only seen probabilities over single instances like

We’ll call “the dog barks <eos>” instance 1, with a length of 4 (counting the <eos>

token). The probability of the full test data will then be

15

● Test data: S = {s1, s2, …, ssent}

○ sent is the number of sentences (instances) in the test data

Building up a definition of perplexity

16

Practical issue

● Multiplying very small numbers results in numerical underflow
○ Solution: we do every operation in log space

○ (also adding is faster than multiplying)

17

● Test data: S = {s1, s2, …, ssent}

○ sent is the number of sentences in the test data

Building up a definition of perplexity

18

Problem: this is sensitive to amount of test data.

Let’s say our model produced the following probabilities for these two single-instance

test sets:

p(hello how are you) = p(hello) * p(how | hello) * p(are | hello how) * p(you | hello how are)

* p(<eos> | hello how are you)

p(waltz pudding) = p(waltz) * p(pudding | waltz) * p(<eos> | waltz pudding)

19

 2^-5 2^-4 2^-3 2^-3

2^-4

 2^-7 2^-7 2^-5

Problem: this is sensitive to amount of test data.

Let’s say our model produced the following probabilities for these two single-instance

test sets:

p(hello how are you) = p(hello) * p(how | hello) * p(are | hello how) * p(you | hello how are)

* p(<eos> | hello how are you)

p(waltz pudding) = p(waltz) * p(pudding | waltz) * p(<eos> | waltz pudding)

Solution: normalize the log probabilities by the total length (in tokens) of the test data!

20

● Test data: S = {s1, s2, …, ssent}

○ sent is the number of sentences in the test data
○ M is the number of words in the test corpus

Building up a definition of perplexity

21

Our new quantity
still goes from -
to 0…

● Test data: S = {s1, s2, …, ssent}

○ sent is the number of sentences in the test data
○ M is the number of words in the test corpus

Evaluation: perplexity

22

● Test data: S = {s1, s2, …, ssent}

○ sent is the number of sentences in the test data
○ M is the number of words in the test corpus
○ A good language model has high p(S) and low perplexity

Evaluation: perplexity

23

Gut check for perplexity values we expect

● If the model were the “perfect” language model and allocated probability 1 to
every word that came next, its perplexity would be 1

● If the model assigned uniform probability over all its vocabulary words each time
it estimated the probability distribution over the next output word, its perplexity
would be |V|.

24

(Towards) rare-word-proofing
our vocabulary

25

Is a finite vocabulary realistic?

26

Why are we talking about this now?

Didn’t we already talk about vocabularies when we talked about text classification?

Yes, BUT in that scenario, if we missed some words from the input text, we were fine.

Language modeling isn’t, because it needs to assign a probability to the entire string of

text.

27

p(The Bundestag passed legislation this week …)

Idea #1: have an out-of-vocabulary token

We call this token <UNK>.

Pros:

● We’re guaranteed to allocate probability to every possible text this way

Cons:

● Need to screen for it when using your language model to generate text

● It’s… really, really easy to use <UNK> to make it look like your language model’s

better than it actually is.
○ Map every word to <UNK>, and your perplexity will be 1!

● You can’t compare two different language models that have different mappings to

<UNK>.
28

Idea #2: make your language model character-level

Instead of estimating probabilities over words, estimate over characters.

Pros:

● (Provided you’re careful) this should account for just about any text!

● Your LM will only ever try to generate actual, non-<UNK> characters

● Compact vocabulary!

Cons:

● … depending on the language, the compact vocabulary.
○ Model has a much harder time separating out information about how different larger

units (words) behave

29

Idea #3: augment a character vocabulary with some
longer character sequences
Maybe we’re okay with expanding the size of our vocabulary up to a certain budget!

If we add some common longer sequences to our vocabulary, we could benefit from

both

● parameters specifically trained for those longer-sequence vocabulary items

● the coverage of possible inputs that character-level LMs provide

30

How do we choose which longer character sequences to add?

Byte Pair Encoding gives us an answer!

Data compression algorithm from the 1990s

Adapted for NLP vocabulary creation in 2016 by Sennrich et al.

● Originally developed for machine translation models

● But ideas like it have since taken off for language modeling too

Idea: iteratively merge common token pairs to create new tokens, without removing
the smaller component tokens from the vocabulary

31

https://aclanthology.org/P16-1162.pdf

Working through an example

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

32

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

Working through an example

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

33

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

1. Count the number of times each current
token pair occurs in the training corpus

RA, AT, TI, IO, ON, N_ OR, RA, AT, TI, IO, ON, N_ AT, T_ SA, AM, MP, PL, LE, E_ PO, OT, TI, IO, ON, N_

AT: 3 ON: 3 SA: 1 …
TI: 3 N_: 3 AM: 1
IO: 3 RA: 2 MP: 1

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

IO

Working through an example

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

34

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

2. Pick any one of the highest-count token
pairs and add it to the vocabulary as its own
new token

AT: 3 ON: 3 SA: 1 …
TI: 3 N_: 3 AM: 1
IO: 3 RA: 2 MP: 1

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

IO

Working through an example

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

35

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

3. Replace all instances of that pair in the
training corpus with the newly added token

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

AT: 3 ON: 3 SA: 1 …
TI: 3 N_: 3 AM: 1
IO: 3 RA: 2 MP: 1

Now just repeat!

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

36

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

IO

RA, AT, TIO, ION, N_ OR, RA, AT, TIO, ION, N_ AT, T_ SA, AM, MP, PL, LE, E_ PO, OT, TIO, ION, N_

AT: 3 N_: 3 AM: 1 …
TIO: 3 RA: 2 MP: 1
ION: 3 SA: 1 PL: 1

1. Count the number of times each current
token pair occurs in the training corpus

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

IO

TIO

Now just repeat!

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

37

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

IO

AT: 3 N_: 3 AM: 1 …
TIO: 3 RA: 2 MP: 1
ION: 3 SA: 1 PL: 1

2. Pick any one of the highest-count token
pairs and add it to the vocabulary as its own
new token

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

IO

TIO

Now just repeat!

38

Vocabulary:

A, R, T, I, O, N, _, S, M, P, L, E

IO

3. Replace all instances of that pair in the
training corpus with the newly added token

AT: 3 N_: 3 AM: 1 …
TIO: 3 RA: 2 MP: 1
ION: 3 SA: 1 PL: 1

Repeat until when?

For original compression purposes:

● Until there are no more token pairs that appear more than once across your

training corpus

For NLP purposes, though:

● Until you’ve reached some predetermined cap on the number of vocabulary words

you’re willing to have (perhaps 104 or something)

39

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

Training corpus consisting of five separate pieces of text (pretend _ is a space):

RATION_ ORATION_ AT_ SAMPLE_ POTION_

What kind of vocabulary do we end up with?

40

Vocabulary resulting from continuing rounds of BPE algorithm until no token pair is

repeated:

A, R, T, I, O, N, _, S, M, P, L, E
IO
TIO
N_
TION_
ATION_
RATION_

Getting text into its BPE-encoded form (after vocabulary
has been fixed)
Important to keep track of not only which new tokens we added while performing BPE,

but also in which order we added them.

To apply our BPE vocabulary to some new text, split that new text into its component

characters and then apply all merge operations in the order they were added to the
vocabulary.

41

A, R, T, I, O, N, _, S, M, P, L, E
IO
TIO
N_
TION_
ATION_
RATION_

Different variants of creating BPE vocabularies

Do we allow merges that could create tokens with whitespace in their middle?

Suppose our training corpus was

The White House reported… The House decided that…

Pros of allowing merging over whitespace:

● Potentially allows single token for multiword expression (e.g., “White House”)

Pros of not allowing merging over whitespace:

● Guarantees a nice mapping of word-level annotations to your potentially

subword-tokenized text

42

Language models: Conclusion
(for now)

43

Which of this material only applied to simple language
models?
Just the n-gram material! (Since the Markovian assumption is, well, false in a language
context)

For current state-of-the-art neural language models, all of the following still apply:

● Task definition of language modeling

● Evaluation via perplexity

● Vocabulary creation considerations

Language modeling will make reappearances later in the course…

44

Next class

Lexical semantics!

45

