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Dependency representation



Dependency representation

▪ A dependency structure can be defined as a directed graph G, 
consisting of 
▪ a set V of nodes – vertices,  words, punctuation, morphemes
▪ a set A of arcs  – directed edges, 
▪ a linear precedence order < on V (word order). 

▪ Labeled graphs
▪ nodes in V are labeled with word forms (and annotation).
▪ arcs in A are labeled with dependency types
▪                             is the set of permissible arc labels;
▪ Every arc in A is a triple (i,j,k),  representing a dependency  from       to      with 

label     .



Dependency vs Constituency

▪ Dependency structures explicitly represent
▪ head-dependent relations (directed arcs),
▪ functional categories (arc labels)
▪ possibly some structural categories (parts of speech)

▪ Phrase (aka constituent) structures explicitly represent
▪ phrases (nonterminal nodes),
▪ structural categories (nonterminal labels)



Dependency vs Constituency trees



Parsing Languages with Flexible Word Order

I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер



I prefer the morning flight through Denver

Я предпочитаю утренний перелет через Денвер
Я предпочитаю через Денвер утренний перелет
Утренний перелет я предпочитаю через Денвер
Перелет утренний я предпочитаю через Денвер
Через Денвер я предпочитаю  утренний перелет
Я через Денвер предпочитаю  утренний перелет
...

Languages with free word order



Dependency relations



Types of relationships

▪ The clausal relations NSUBJ and DOBJ identify the arguments: 
the subject and direct object of the predicate cancel

▪ The NMOD, DET, and CASE relations denote modifiers of the 
nouns flights and Houston.



Grammatical functions



Dependency Constraints

▪ Syntactic structure is complete (connectedness)
▪ connectedness can be enforced by adding a special root node

▪ Syntactic structure is hierarchical (acyclicity)
▪ there is a unique pass from the  root to each vertex

▪ Every word has at most one syntactic head (single-head 
constraint)
▪ except root that does not have incoming arcs

This makes the dependencies a tree



Projectivity

▪ Projective parse
▪ arcs don’t cross each other
▪ mostly true for English

▪ Non-projective structures are needed to account for
▪ long-distance dependencies
▪ flexible word order



Projectivity

▪ Dependency grammars do not normally assume that all 
dependency-trees are projective, because some linguistic 
phenomena can only be achieved using non-projective trees.

▪ But a lot of parsers assume that the output trees are 
projective

▪ Reasons
▪ conversion from constituency to dependency
▪ the most widely used families of parsing algorithms impose 

projectivity



Non-Projective Statistics



Parsing problem

The parsing problem for a dependency parser is to find the 
optimal dependency tree y given an input sentence x

This amounts to assigning a syntactic head i

and a label l to every node j corresponding to a

word x
j 
 in such a way that the resulting graph 

is a tree rooted at the node 0



Parsing problem

▪ This is equivalent to finding a spanning tree in the complete 
graph containing all possible arcs



Parsing algorithms

▪ Transition based
▪ greedy choice of local transitions guided by a good classifier
▪ deterministic
▪ MaltParser (Nivre et al. 2008)

▪ Graph based
▪ Minimum Spanning Tree for a sentence
▪ McDonald et al.’s (2005) MSTParser
▪ Martins et al.’s (2009) Turbo Parser



Transition Based Parsing

▪ greedy discriminative dependency parser
▪ motivated by a stack-based approach called shift-reduce 

parsing originally developed for analyzing programming 
languages (Aho & Ullman, 1972).

▪ Nivre 2003



Configuration



Configuration

Buffer: unprocessed words

Stack: partially 
processed words

Oracle: a classifier
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Operations

Buffer: unprocessed words

Stack: partially 
processed words

Oracle: a classifier

At each step choose:

▪ Shift
▪ LeftArc or Reduce left
▪ RightArc or Reduce right 



Shift-Reduce Parsing

Configuration: 

▪ Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

▪ Shift
▪ remove w1 from the buffer, add it to the top of the stack as s1

▪ LeftArc or Reduce left
▪ assert a head-dependent relation between s1 and s2 (s1 → s2)
▪ remove s2 from the stack

▪ RightArc or Reduce right 
▪ assert a head-dependent relation between s2 and s1 (s2 → s1)
▪ remove s1 from the stack



Shift-Reduce Parsing (Arc-standard)
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Shift-Reduce Parsing

Configuration: 

▪ Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

▪ Shift
▪ remove w1 from the buffer, add it to the top of the stack as s1

▪ LeftArc or Reduce left
▪ assert a head-dependent relation between s1 and s2
▪ remove s2 from the stack

▪ RightArc or Reduce right 
▪ assert a head-dependent relation between s2 and s1
▪ remove s1 from the stack

Complexity?

Oracle decisions can 
correspond to unlabeled 
or labeled arcs



Training an Oracle

▪ Oracle is a supervised classifier that learns a function from the 
configuration to the next operation

▪ How to extract the training set?
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Training an Oracle

▪ Oracle is a supervised classifier that learns a function from the 
configuration to the next operation

▪ How to extract the training set?
▪ if LeftArc → LeftArc
▪ if RightArc
▪ if s1 dependents have been processed → RightArc

▪ else → Shift

▪ What features to use? 



Features

▪ POS, word-forms, lemmas on the stack/buffer
▪ morphological features for some languages
▪ previous relations
▪ conjunction features (e.g. Zhang&Clark’08; 

Huang&Sagae’10; Zhang&Nivre’11)



Learning

▪ Before 2014: SVMs,
▪ After 2014: Neural Nets 



Chen & Manning 2014

Slides by Danqi Chen 
& Chris Manning



Chen & Manning 2014



Chen & Manning 2014

▪ Features
▪ s1, s2, s3, b1, b2, b3
▪ leftmost/rightmost 

children of s1 and s2
▪ leftmost/rightmost 

grandchildren of
 s1 and s2

▪ POS tags for the above
▪ arc labels for 

children/grandchildren



Evaluation of Dependency Parsers

▪ LAS - labeled attachment score
▪ UAS - unlabeled attachment score



Chen & Manning 2014



Follow-up



Stack LSTMs (Dyer et al. 2015)



Arc-Eager version

▪ LEFTARC: Assert a head-dependent relation between s1 and 
b1; pop the stack.

▪ RIGHTARC: Assert a head-dependent relation between s1 and 
b1; shift b1 to be s1.

▪ SHIFT: Remove b1 and push it to be s1.
▪ REDUCE: Pop the stack.



Arc-Eager



Parsing algorithms

▪ Transition based
▪ greedy choice of local transitions guided by a good classifier
▪ deterministic
▪ MaltParser (Nivre et al. 2008), Stack LSTM (Dyer et al. 2015)

▪ Graph based
▪ Minimum Spanning Tree for a sentence
▪ non-projective
▪ globally optimized
▪ McDonald et al.’s (2005) MSTParser
▪ Martins et al.’s (2009) Turbo Parser



Summary

▪ Transition-based
▪ + Fast
▪ + Rich features of context 
▪ - Greedy decoding 

▪ Graph-based
▪ + Exact or close to exact decoding
▪ - Weaker features

Well-engineered versions of the approaches achieve comparable 
accuracy (on English), but make different errors

→ combining the strategies results in a substantial boost in performance


