Natural Language Processing

Syntactic parsing

Yulia Tsvetkov

yuliats@cs.washington.edu
Announcements
Ambiguity

- I saw a girl with a telescope
Syntactic Parsing

- **INPUT:**
 - The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

- **OUTPUT:**

```
  The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market
```
A Supervised ML Problem

- Data for parsing experiments:
 - Penn WSJ Treebank = 50,000 sentences with associated trees
 - Usual set-up: 40,000 training, 2,400 test

Canadian Utilities had 1988 revenue of $1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers. [from Michael Collins slides]
Syntax
Syntax

- The study of the patterns of formation of sentences and phrases from words

- my dog Pron N
- the dog Det N
- the cat Det N

- and Conj

- the large cat Det Adj N
- the black cat Det Adj N

- ate a sausage V Det N
Parsing

- The process of predicting **syntactic representations**
- Different types of syntactic representations are possible, for example:

```
( S )
   / \  
  ( NP ) ( VP )
  /     /    
(PN)   (V)   (NP)
 /   /     / \
My  dog  ate  a
     |      |   
     |      sausage
```

Constituent (a.k.a. phrase-structure) tree
Constituent trees

- Internal nodes correspond to phrases
 - **S** – a sentence
 - **NP** – Noun Phrase: My dog, a sandwich, lakes,..
 - **VP** – Verb Phrase: ate a sausage, barked, …
 - **PP** – Prepositional phrases: with a friend, in a car, …

- Nodes immediately above words are PoS tags (aka preterminals)
 - **PN** – pronoun
 - **D** – determiner
 - **V** – verb
 - **N** – noun
 - **P** – preposition
Bracketing notation

- It is often convenient to represent a tree as a bracketed sequence
Parsing

- The process of predicting syntactic representations
- Different types of syntactic representations are possible, for example:

Constituent (a.k.a. phrase-structure) tree

```
S
  /\  
NP  VP  
  / \  /  
PN N V NP  
  |   |   |  
My dog ate D N  
  |   |   |  a sausage
```

Dependency tree

```
  root
  / \   / \  
My Poss nsubj dog det 
PN N V D N
  |   |   |  a sausage
```

Yulia Tsvetkov

Undergrad NLP 2022
Dependency trees

- Nodes are **words** (along with part-of-speech tags)
- Directed arcs encode **syntactic dependencies** between them
- Labels are types of relations between the words
 - **poss** – possessive
 - **dobj** – direct object
 - **nsubj** - subject
 - **det** - determiner
Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")
Recovering shallow semantics

- Some semantic information can be (approximately) derived from syntactic information
 - Subjects (nsubj) are (often) agents ("initiator / doers for an action")
 - Direct objects (dobj) are (often) patients ("affected entities")
- But even for agents and patients consider:
 - Mary is baking a cake in the oven
 - A cake is baking in the oven
- In general it is not trivial even for the most shallow forms of semantics
 - E.g., consider prepositions: *in* can encode direction, position, temporal information, ...
Constituent and dependency representations

- Constituent trees can (potentially) be converted to dependency trees

- Dependency trees can (potentially) be converted to constituent trees
Constituent trees

- Internal nodes correspond to phrases
 - S – a sentence
 - NP (Noun Phrase): My dog, a sandwich, lakes,..
 - VP (Verb Phrase): ate a sausage, barked, ...
 - PP (Prepositional phrases): with a friend, in a car, ...

- Nodes immediately above words are PoS tags (aka preterminals)
 - PN – pronoun
 - D – determiner
 - V – verb
 - N – noun
 - P – preposition
Constituency Tests

- How do we know what nodes go in the tree?

- Classic constituency tests:
 - Replacement
 - Movement
 - Passive
 - Clefting
 - Preposing
 - Substitution by *proform*
 - Modification
 - Coordination/Conjunction
 - Ellipsis/Deletion
Morphology/Syntax/Semantics

- **Syntax**: The study of the patterns of formation of sentences and phrases from word.
 - Borders with *semantics* and *morphology* sometimes blurred.

Afyonkarahisarlılaştırabildiklerimizdenmişsinizcesinee

in Turkish means "as if you are one of the people that we thought to be originating from Afyonkarahisar" [wikipedia]
English grammar

Product Details (from Amazon)
Hardcover: 1779 pages
Publisher: Longman; 2nd Revised edition
Language: English
ISBN-10: 0582517346
Product Dimensions: 8.4 x 2.4 x 10 inches
Shipping Weight: 4.6 pounds
Context Free Grammar (CFG)
Context Free Grammar (CFG)

Grammar (CFG)

ROOT → S
S → NP VP
NP → DT NN
NP → NN NNS
NP → NP PP
VP → VBP NP
VP → VBP NP PP
PP → IN NP

Lexicon

NN → interest
NNS → raises
VBP → interest
VBZ → raises
...

Other grammar formalisms: LFG, HPSG, TAG, CCG…
CFGs

\[S \rightarrow NP \ VE \]

\[\begin{align*}
N & \rightarrow \text{girl} \\
N & \rightarrow \text{telescope} \\
VP & \rightarrow V \\
VP & \rightarrow V \ NF \\
VP & \rightarrow VP \ PF \\
NP & \rightarrow NP \ PF \\
NP & \rightarrow D \ N \\
NP & \rightarrow PN \\
PP & \rightarrow P \ NF \\
PN & \rightarrow I \\
V & \rightarrow saw \\
V & \rightarrow ate \\
P & \rightarrow with \\
P & \rightarrow in \\
D & \rightarrow a \\
D & \rightarrow the
\end{align*} \]
CFGs

\[S \rightarrow NP \ VF \]
\[NP \rightarrow VP \]
\[VP \rightarrow V \]
\[VP \rightarrow NP \ PF \]
\[PP \rightarrow P \ NF \]
\[PN \rightarrow I \]
\[V \rightarrow saw \]
\[V \rightarrow ate \]
\[P \rightarrow with \]
\[P \rightarrow in \]
\[D \rightarrow a \]
\[D \rightarrow the \]
CFGs

\[
S \rightarrow NP \ VF \\
VP \rightarrow V \\
VP \rightarrow VP \ PF \\
NP \rightarrow NP \ PF \\
NP \rightarrow D \ N \\
NP \rightarrow PN \\
PP \rightarrow P \ NF \\
GP \rightarrow V \ NP \\
NP \rightarrow PN \\
NP \rightarrow D \ N \\
P \rightarrow with \\
P \rightarrow in \\
D \rightarrow a \\
D \rightarrow the \\
N \rightarrow girl \\
N \rightarrow telescope \\
N \rightarrow sandwich \\
V \rightarrow saw \\
V \rightarrow ate \\
PN \rightarrow I \\
\]

Yulia Tsvetkov
CFGs

\[
S \rightarrow NP \ VP \\
VP \rightarrow V \\
VP \rightarrow V \ NP \\
VP \rightarrow VP \ PF \\
NP \rightarrow NP \ PF \\
NP \rightarrow D \ N \\
NP \rightarrow PN \\
PP \rightarrow P \ NF \\
\]

\[
N \rightarrow girl \\
N \rightarrow telescope \\
N \rightarrow sandwich \\
PN \rightarrow I \\
V \rightarrow saw \\
V \rightarrow ate \\
P \rightarrow with \\
P \rightarrow in \\
D \rightarrow a \\
D \rightarrow the
\]
CFGs

$S \rightarrow NP \ VF$

$VP \rightarrow V$

$VP \rightarrow V \ NF$

$VP \rightarrow VP \ PF$

$NP \rightarrow NP \ PF$

$NP \rightarrow D \ N$

$NP \rightarrow PN$

$PP \rightarrow P \ NF$

$N \rightarrow girl$

$N \rightarrow telescope$

$N \rightarrow sandwich$

$PN \rightarrow I$

$V \rightarrow saw$

$V \rightarrow ate$

$P \rightarrow with$

$P \rightarrow in$

$D \rightarrow a$

$D \rightarrow the$
CFGs

\[
S \rightarrow NP \ V F
\]

\[
NP \rightarrow P F
\]

\[
VP \rightarrow V
\]

\[
VP \rightarrow V \ NF
\]

\[
VP \rightarrow VP \ PF
\]

\[
N \rightarrow \text{girl}
\]

\[
N \rightarrow \text{telescope}
\]

\[
N \rightarrow \text{sandwich}
\]

\[
PN \rightarrow I
\]

\[
V \rightarrow \text{saw}
\]

\[
V \rightarrow \text{ate}
\]

\[
P \rightarrow \text{with}
\]

\[
P \rightarrow \text{in}
\]

\[
D \rightarrow \text{a}
\]

\[
D \rightarrow \text{the}
\]

Tree:

```
S
  /\NP
 /  \
V   VP
  /\    \
PN  NP
```

Rules:

- $S \rightarrow NP \ V F$
- $NP \rightarrow P F$
- $VP \rightarrow V$
- $VP \rightarrow V \ NF$
- $VP \rightarrow VP \ PF$
- $N \rightarrow \text{girl}$
- $N \rightarrow \text{telescope}$
- $N \rightarrow \text{sandwich}$
- $PN \rightarrow I$
- $V \rightarrow \text{saw}$
- $V \rightarrow \text{ate}$
- $P \rightarrow \text{with}$
- $P \rightarrow \text{in}$
- $D \rightarrow \text{a}$
- $D \rightarrow \text{the}$
CFGs

\[
S \rightarrow NP \ VF \\
VP \rightarrow V \\
VP \rightarrow V \ NF \\
VP \rightarrow VP \ PF \\
NP \rightarrow NP \ PF \\
NP \rightarrow D \ N \\
NP \rightarrow PN \\
PP \rightarrow P \ NF \\
N \rightarrow girl \\
N \rightarrow telescope \\
N \rightarrow sandwich \\
PN \rightarrow I \\
V \rightarrow saw \\
V \rightarrow ate \\
P \rightarrow with \\
P \rightarrow in \\
D \rightarrow a \\
D \rightarrow the
\]
CFGs

\[
S \rightarrow NP \ VP \\
NP \rightarrow PN \ NP \\
NP \rightarrow VP \ PP \\
VP \rightarrow V \\
VP \rightarrow VP \ PP \\
NP \rightarrow NP \ PP \\
NP \rightarrow D \ N \\
NP \rightarrow PN \\
PP \rightarrow P \ NF \\
D \rightarrow a \\
D \rightarrow the \\
PN \rightarrow I \\
V \rightarrow saw \\
V \rightarrow ate \\
P \rightarrow with \\
P \rightarrow in \\
N \rightarrow girl \\
N \rightarrow telescope \\
N \rightarrow sandwich \\
V \rightarrow saw \\
V \rightarrow ate \\
P \rightarrow with \\
P \rightarrow in \\
D \rightarrow a \\
D \rightarrow the
\]
Treebank Sentences

(S (NP-SBJ The move) (VP followed (NP (NP a round) (PP of (NP (NP similar increases) (PP by (NP other lenders)) (PP against (NP Arizona real estate loans))))))

(S-ADV (NP-SBJ *)) (VP reflecting (NP (NP a continuing decline) (PP-LOC in (NP that market))))

.)
Context-Free Grammars

- A context-free grammar is a 4-tuple \(<N, T, S, R>\)
 - \(N\) : the set of non-terminals
 - **Phrasal categories**: S, NP, VP, ADJP, etc.
 - **Parts-of-speech** (pre-terminals): NN, JJ, DT, VB
 - \(T\) : the set of terminals (the words)
 - \(S\) : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - \(R\) : the set of rules
 - Of the form \(X \rightarrow Y_1 Y_2 \ldots Y_k\), with \(X, Y_i \in N\)
 - Examples: \(S \rightarrow NP \ VP\), \(VP \rightarrow VP \ CC \ VP\)
 - Also called rewrites, productions, or local trees
An example grammar

\[N = \{ S, VP, NP, PP, N, V, PN, P \}\]
\[T = \{ girl, telescope, sandwich, I, saw, ate, with, in, a, the \}\]
\[S = \{ S \}\]

\[R\]
\[S \rightarrow NP \ VF \] \hspace{0.5cm} (NP A girl) \hspace{0.5cm} (VP ate a sandwich)
\[VP \rightarrow V \]
\[VP \rightarrow V \ NF \] \hspace{0.5cm} (V ate) \hspace{0.5cm} (NP a sandwich)
\[VP \rightarrow VP \ PF \] \hspace{0.5cm} (VP saw a girl) \hspace{0.5cm} (PP with a telescope)
\[NP \rightarrow NP \ PF \] \hspace{0.5cm} (NP a girl) \hspace{0.5cm} (PP with a sandwich)
\[NP \rightarrow D \ N \] \hspace{0.5cm} (D a) \hspace{0.5cm} (N sandwich)
\[NP \rightarrow PN \]
\[PP \rightarrow P \ NF \] \hspace{0.5cm} (P with) \hspace{0.5cm} (NP with a sandwich)

Preterminal rules

\[N \rightarrow girl\]
\[N \rightarrow telescope\]
\[N \rightarrow sandwich\]
\[PN \rightarrow I\]
\[V \rightarrow saw\]
\[V \rightarrow ate\]
\[P \rightarrow with\]
\[P \rightarrow in\]
\[D \rightarrow a\]
\[D \rightarrow the\]
Why context-free?

What can be a sub-tree is only affected by what the phrase type is (VP) but not the context.
Why context-free?

What can be a sub-tree is only affected by what the phrase type is (VP) but not the context.

Not grammatical.
Ambiguities
Coordination ambiguity

- Here, the coarse VP and NP categories cannot enforce subject-verb agreement in number resulting in the coordination ambiguity

"Bark" can refer both to a noun or a verb

This tree would be ruled out if the context would be somehow captured (subject-verb agreement)
Why parsing is hard? Ambiguity

- Prepositional phrase attachment ambiguity
Put the block in the box on the table in the kitchen

3 prepositional phrases, 5 interpretations:

○ Put the block ((in the box on the table) in the kitchen)
○ Put the block (in the box (on the table in the kitchen))
○ Put ((the block in the box) on the table) in the kitchen.
○ Put (the block (in the box on the table)) in the kitchen.
○ Put (the block in the box) (on the table in the kitchen)
Put the block in the box on the table in the kitchen

3 prepositional phrases, 5 interpretations:

○ Put the block ((in the box on the table) in the kitchen)
○ Put the block (in the box (on the table in the kitchen))
○ ...

A general case:

○ (((()))) (())() (())() (())() (())()

\[
Cat_n = \binom{2n}{n} - \binom{2n}{n-1} \sim \frac{4^n}{n^{3/2} \sqrt{\pi}}
\]

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, …
Canadian Utilities had 1988 revenue of $1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.
Syntactic Ambiguities I

● **Prepositional phrases:**
 ○ They cooked the beans in the pot on the stove with handles.

● **Particle vs. preposition:**
 ○ The puppy tore up the staircase.

● **Complement structures**
 ○ The tourists objected to the guide that they couldn’t hear.
 She knows you like the back of her hand.

● **Gerund vs. participial adjective**
 ○ Visiting relatives can be boring.
 Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 - impractical design requirements
 plastic cup holder

- Multiple gap constructions
 - The chicken is ready to eat.
 The contractors are rich enough to sue.

- Coordination scope:
 - Small rats and mice can squeeze into holes or cracks in the wall.
How to Deal with Ambiguity?

- We want to **score all the derivations** to encode how plausible they are.

Put the block in the box on the table in the kitchen
Probabilistic Context Free Grammar (PCFG)
Probabilistic Context-Free Grammars

- A context-free grammar is a 4-tuple $<N, T, S, R>$
 - N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - T: the set of terminals (the words)
 - S: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R: the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \ldots Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP \ VP$, $VP \rightarrow VP \ CC \ VP$
 - Also called rewrites, productions, or local trees

- A PCFG adds:
 - A top-down production probability per rule $P(Y_1 Y_2 \ldots Y_k | X)$
PCFGs

Associate probabilities with the rules:

\[p(X \rightarrow \alpha) \]

\[\forall X \rightarrow \alpha \in R : \quad 0 \leq p(X \rightarrow \alpha) \leq 1 \]

\[\forall X \in N : \quad \sum_{\alpha : X \rightarrow \alpha \in R} p(X \rightarrow \alpha) = 1 \]

\[
egin{align*}
S & \rightarrow NP \ VF & 1.0 & \text{(NP A girl) (VP ate a sandwich)} \\
VP & \rightarrow V & 0.2 & \\
VP & \rightarrow V \ NF & 0.4 & \text{(VP ate) (NP a sandwich)} \\
VP & \rightarrow VP \ PF & 0.4 & \text{(VP saw a girl) (PP with \ldots)} \\
NP & \rightarrow NP \ PF & 0.3 & \text{(NP a girl) (PP with \ldots)} \\
NP & \rightarrow D \ N & 0.5 & \text{(D a) (N sandwich)} \\
NP & \rightarrow PN & 0.2 & \\
PP & \rightarrow P \ NF & 1.0 & \text{(P with) (NP with a sandwich)} \\
N & \rightarrow girl & 0.2 & \\
N & \rightarrow telescope & 0.7 & \\
N & \rightarrow sandwich & 0.1 & \\
P & \rightarrow i \ N & 1.0 & \\
V & \rightarrow saw & 0.5 & \\
V & \rightarrow ate & 0.5 & \\
P & \rightarrow with & 0.6 & \\
P & \rightarrow in & 0.4 & \\
D & \rightarrow a & 0.3 & \\
D & \rightarrow the & 0.7 & \\
\end{align*}
\]

Now we can score a tree as a product of probabilities corresponding to the used rules.
PCFGs

\[p(T) = \]

- \[S \rightarrow NP \ VF \ 1.0 \]
- \[VP \rightarrow V \ 0.2 \]
- \[VP \rightarrow V \ NF \ 0.4 \]
- \[VP \rightarrow VP \ PF \ 0.4 \]
- \[NP \rightarrow NP \ PF \ 0.3 \]
- \[NP \rightarrow D \ N \ 0.5 \]
- \[NP \rightarrow PN \ 0.2 \]
- \[PP \rightarrow P \ NF \ 1.0 \]

- \[N \rightarrow girl \ 0.2 \]
- \[N \rightarrow telescope \ 0.7 \]
- \[N \rightarrow sandwich \ 0.1 \]
- \[PN \rightarrow I \ 1.0 \]
- \[V \rightarrow saw \ 0.5 \]
- \[V \rightarrow ate \ 0.5 \]
- \[P \rightarrow with \ 0.6 \]
- \[P \rightarrow in \ 0.4 \]
- \[D \rightarrow a \ 0.3 \]
- \[D \rightarrow the \ 0.7 \]
PCFGs

\[S \rightarrow NP \ VP \ 1.0 \]

\[VP \rightarrow V \ 0.2 \]
\[VP \rightarrow V \ NF \ 0.4 \]
\[VP \rightarrow VP \ PF \ 0.4 \]

\[NP \rightarrow NP \ PF \ 0.3 \]
\[NP \rightarrow D \ N \ 0.5 \]
\[NP \rightarrow PN \ 0.2 \]

\[PP \rightarrow P \ NF \ 1.0 \]

\[N \rightarrow girl \ 0.2 \]
\[N \rightarrow telescope \ 0.7 \]
\[N \rightarrow sandwich \ 0.1 \]
\[PN \rightarrow I \ 1.0 \]
\[V \rightarrow saw \ 0.5 \]
\[V \rightarrow ate \ 0.5 \]
\[P \rightarrow with \ 0.6 \]
\[P \rightarrow in \ 0.4 \]
\[D \rightarrow a \ 0.3 \]
\[D \rightarrow the \ 0.7 \]

\[p(T) = 1.0 \times \]
PCFGs

\[S \rightarrow NP \ VP \ 1.0 \]

\[NP \rightarrow NP \ PP \ 0.3 \]
\[NP \rightarrow D \ N \ 0.5 \]
\[NP \rightarrow PN \ 0.2 \]
\[VP \rightarrow V \ NF \ 0.4 \]
\[VP \rightarrow VP \ PF \ 0.4 \]
\[PP \rightarrow P \ NF \ 1.0 \]
\[N \rightarrow girl \ 0.2 \]
\[N \rightarrow telescope \ 0.7 \]
\[N \rightarrow sandwich \ 0.1 \]
\[PN \rightarrow I \ 1.0 \]
\[V \rightarrow saw \ 0.5 \]
\[V \rightarrow ate \ 0.5 \]
\[P \rightarrow with \ 0.6 \]
\[P \rightarrow in \ 0.4 \]
\[D \rightarrow a \ 0.3 \]
\[D \rightarrow the \ 0.7 \]

\[p(T) = 1.0 \times 0.2 \times \]
PCFGs

\[p(T) = 1.0 \times 0.2 \times 1.0 \times \]

\[S \rightarrow NP \ V \ F \ 1.0 \]
\[VP \rightarrow V \ 0.2 \]
\[VP \rightarrow V\ NP \ 0.4 \]
\[VP \rightarrow VP\ PP \ 0.4 \]
\[NP \rightarrow NP\ PP \ 0.3 \]
\[NP \rightarrow D\ N \ 0.5 \]
\[NP \rightarrow PN \ 0.2 \]
\[PP \rightarrow P\ NP \ 1.0 \]
\[N \rightarrow girl \ 0.2 \]
\[N \rightarrow telescope \ 0.7 \]
\[N \rightarrow sandwich \ 0.1 \]
\[PN \rightarrow I \ 1.0 \]
\[V \rightarrow saw \ 0.5 \]
\[V \rightarrow ate \ 0.5 \]
\[P \rightarrow with \ 0.6 \]
\[P \rightarrow in \ 0.4 \]
\[D \rightarrow a \ 0.3 \]
\[D \rightarrow the \ 0.7 \]
PCFGs

\[
S \rightarrow NP \ VP \ 1.0 \\
VP \rightarrow V \ 0.2 \\
VP \rightarrow VP \ NF \ 0.4 \\
NP \rightarrow NP \ PP \ 0.3 \\
NP \rightarrow D \ N \ 0.5 \\
NP \rightarrow PN \ 0.2 \\
PP \rightarrow P \ NF \ 1.0 \\
\]

\[
N \rightarrow girl \ 0.2 \\
N \rightarrow telescope \ 0.7 \\
N \rightarrow sandwich \ 0.1 \\
PN \rightarrow I \ 1.0 \\
V \rightarrow saw \ 0.5 \\
V \rightarrow ate \ 0.5 \\
P \rightarrow with \ 0.6 \\
P \rightarrow in \ 0.4 \\
D \rightarrow a \ 0.3 \\
D \rightarrow the \ 0.7 \\
\]

\[
p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times
\]
PCFGs

\[p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times \]

\[S \rightarrow NP \ VF \ 1.0 \]
\[VP \rightarrow V \ 0.2 \]
\[VP \rightarrow V \ NF \ 0.4 \]
\[VP \rightarrow VP \ PF \ 0.4 \]
\[NP \rightarrow NP \ PF \ 0.3 \]
\[NP \rightarrow D \ N \ 0.5 \]
\[NP \rightarrow PN \ 0.2 \]
\[PP \rightarrow P \ NF \ 1.0 \]
\[N \rightarrow girl \ 0.2 \]
\[N \rightarrow telescope \ 0.7 \]
\[N \rightarrow sandwich \ 0.1 \]
\[PN \rightarrow I \ 1.0 \]
\[V \rightarrow saw \ 0.5 \]
\[V \rightarrow ate \ 0.5 \]
\[P \rightarrow with \ 0.6 \]
\[P \rightarrow in \ 0.4 \]
\[D \rightarrow a \ 0.3 \]
\[D \rightarrow the \ 0.7 \]
PCFGs

\[
p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times \]

\[
S \rightarrow NP \ VP \ 1.0
\]

\[
N \rightarrow girl \ 0.2
\]

\[
N \rightarrow telescope \ 0.7
\]

\[
N \rightarrow sandwich \ 0.1
\]

\[
PN \rightarrow I \ 1.0
\]

\[
V \rightarrow saw \ 0.5
\]

\[
V \rightarrow ate \ 0.5
\]

\[
P \rightarrow with \ 0.6
\]

\[
P \rightarrow in \ 0.4
\]

\[
D \rightarrow a \ 0.3
\]

\[
D \rightarrow the \ 0.7
\]
PCFGs

\[S \rightarrow NP \ VF \ 1.0 \]
\[N \rightarrow \text{girl} \ 0.2 \]
\[N \rightarrow \text{telescope} \ 0.7 \]
\[N \rightarrow \text{sandwich} \ 0.1 \]
\[VN \rightarrow I \ 1.0 \]
\[V \rightarrow \text{saw} \ 0.5 \]
\[V \rightarrow \text{ate} \ 0.5 \]
\[PN \rightarrow P \ NF \ 1.0 \]
\[P \rightarrow \text{with} \ 0.6 \]
\[P \rightarrow \text{in} \ 0.4 \]
\[D \rightarrow \text{a} \ 0.3 \]
\[D \rightarrow \text{the} \ 0.7 \]

\[p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times \]
\[0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7 = 2.26 \times 10^{-5} \]
PCFG Estimation
ML estimation

- A treebank: a collection of sentences annotated with constituent trees

 ![Treebank Examples]

- An estimated probability of a rule (maximum likelihood estimates)

 \[p(X \rightarrow \alpha) = \frac{C(X \rightarrow \alpha)}{C(X)} \]

 - The number of times the rule used in the corpus
 - The number of times the nonterminal X appears in the treebank

- Smoothing is helpful
 - Especially important for preterminal rules

 ![Smoothing Diagram]
CKY Parsing
Parsing

- Parsing is search through the space of all possible parses
 - e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):

 $$\arg \max_{T \in G(x)} P(T)$$

- Bottom-up:
 - One starts from words and attempt to construct the full tree

- Top-down
 - Start from the start symbol and attempt to expand to get the sentence
CKY algorithm (aka CYK)

- **Cocke-Kasami-Younger** algorithm
 - Independently discovered in late 60s / early 70s

- An efficient bottom up parsing algorithm for (P)CFGs
 - can be used both for the recognition and parsing problems
 - Very important in NLP (and beyond)

- We will start with the non-probabilistic version
Constraints on the grammar

- The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

 - Unary preterminal rules (generation of words given PoS tags):

 \[
 C \rightarrow x \\
 \]

 \[
 N \rightarrow \text{telescope} \\
 D \rightarrow \text{the} \\
 \]

 - Binary inner rules:

 \[
 S \rightarrow NP \ V \ F \\
 NP \rightarrow D \ N \\
 \]
Constraints on the grammar

- The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

 \[
 C \rightarrow x \\
 C \rightarrow C_1 C_2
 \]

- Any CFG can be converted to an equivalent CNF
 - Equivalent means that they define the same language
 - However (syntactic) trees will look differently
 - It is possible to address it by defining such transformations that allows for easy reverse transformation
Transformation to CNF form

○ Get rid of rules that mix terminals and non-terminals
○ Get rid of unary rules: \(C \rightarrow C_1 \)
○ Get rid of N-ary rules: \(C \rightarrow C_1 C_2 \ldots C_n \ (n > 2) \)

Crucial to process them, as required for efficient parsing
Transformation to CNF form: binarization

- Consider

\[NP \rightarrow DT \ NNP \ VBG \ NN \]

- How do we get a set of binary rules which are equivalent?
Transformation to CNF form: binarization

- Consider

\[NP \rightarrow DT \ NNP \ VBG \ NN \]

- How do we get a set of binary rules which are equivalent?

\[
\begin{align*}
NP & \rightarrow DT \ X \\
X & \rightarrow NNP \ Y \\
Y & \rightarrow VBG \ NN
\end{align*}
\]
Transformation to CNF form: binarization

- Consider

\[NP \rightarrow DT \ NNP \ VBG \ NN \]

\[
\begin{array}{c}
NP \\
DT \ NNP \ VBG \ NN \\
\text{the} \ Dutch \ publishing \ group
\end{array}
\]

- How do we get a set of binary rules which are equivalent?

\[
NP \rightarrow DT \ X
\]
\[
X \rightarrow NNP \ Y
\]
\[
Y \rightarrow VBG \ NN
\]

- A more systematic way to refer to new non-terminals

\[
NP \rightarrow DT \ @NP|DT
\]
\[
@NP|DT \rightarrow NNP \ @NP|DT.NNP
\]
\[
@NP|DT.NNP \rightarrow VBG \ NN
\]
Transformation to CNF form: binarization

- Instead of binarizing tuples we can binarize trees on preprocessing:

- Also known as **lossless Markovization** in the context of PCFGs

- Can be easily reversed on postprocessing
CKY: Parsing task

- We are given
 - a grammar $<N, T, S, R>$
 - a sequence of words $w = (w_1, w_2, \ldots, w_n)$

- Our goal is to produce a parse tree for w
CKY: Parsing task

- We are given:
 - A grammar $<N, T, S, R>$
 - A sequence of words $w = (w_1, w_2, \ldots, w_n)$
- Our goal is to produce a parse tree for w
- We need an easy way to refer to substrings of w

span (i, j) refers to words between fenceposts i and j
Parsing one word

\[C \rightarrow w_i \]
Parsing one word

\[C \rightarrow w_i \]
Parsing one word

\[C \rightarrow w_i \]

covers all words between \(i - 1 \) and \(i \)
Parsing longer spans

$C \rightarrow C_1 \ C_2$

Check through all C_1, C_2, mid

covers all words btw min and mid

covers all words btw mid and max
Parsing longer spans

\[C \rightarrow C_1 \ C_2 \]

Check through all C1, C2, mid

Covers all words btw \textit{min} and \textit{mid}

Covers all words btw \textit{mid} and \textit{max}
Parsing longer spans

covers all words between min and max
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Preterminal rules

\[
S \rightarrow NP \ VP
\]

Inner rules

\[
VP \rightarrow M \ V \\
VP \rightarrow V \\
NP \rightarrow N \\
NP \rightarrow N \ NP
\]

\[
N \rightarrow can \\
N \rightarrow lead \\
N \rightarrow poison
\]

\[
M \rightarrow can \\
M \rightarrow must
\]

\[
V \rightarrow poison \\
V \rightarrow lead
\]

Chart (aka parsing triangle)

- max = 1
- max = 2
- max = 3
- min = 0
- min = 1
- min = 2

- \text{S}?
Preterminal rules

$S \rightarrow NP \ VP$

 Inner rules

$VP \rightarrow M \ V$

$VP \rightarrow V$

$NP \rightarrow N$

$NP \rightarrow N \ NP$

$N \rightarrow can$

$N \rightarrow lead$

$N \rightarrow poison$

$M \rightarrow can$

$M \rightarrow must$

$V \rightarrow poison$

$V \rightarrow lead$
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Preterminal rules

- $S \rightarrow NP \ VP$

- $VP \rightarrow M \ V$
- $VP \rightarrow V$

- $NP \rightarrow N$
- $NP \rightarrow N \ NP$

Inner rules

- $N \rightarrow can$
- $N \rightarrow lead$
- $N \rightarrow poison$

- $M \rightarrow can$
- $M \rightarrow must$

- $V \rightarrow poison$
- $V \rightarrow lead$
Undergrad NLP 2022

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Preterminal rules

\[
S \rightarrow NP \ VP
\]

Inner rules

\[
VP \rightarrow M \ V
\]

\[
VP \rightarrow V
\]

\[
NP \rightarrow N
\]

\[
NP \rightarrow N \ NP
\]

\[
N \rightarrow \text{can}
\]

\[
N \rightarrow \text{lead}
\]

\[
N \rightarrow \text{poison}
\]

\[
M \rightarrow \text{can}
\]

\[
M \rightarrow \text{must}
\]

\[
V \rightarrow \text{poison}
\]

\[
V \rightarrow \text{lead}
\]
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\text{max} = 1 \\
\text{max} = 2 \\
\text{max} = 3 \\
\text{min} = 0 \\
\text{min} = 1 \\
\text{min} = 2 \\
S'?
\end{array}
\]

Inner rules:
- \(VP \to M \ V \)
- \(VP \to V \)
- \(NP \to N \)
- \(NP \to N \ NP \)

Preterminal rules:
- \(N \to \text{can} \)
- \(N \to \text{lead} \)
- \(N \to \text{poison} \)
- \(M \to \text{can} \)
- \(M \to \text{must} \)
- \(V \to \text{poison} \)
- \(V \to \text{lead} \)
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{max = 1} & \\
\text{max = 2} & \\
\text{max = 3} & \\
\end{align*}
\]

\[
\begin{array}{ccc}
1 & 4 & 6 \\
2 & 5 & 3 \\
\end{array}
\]

\[
S'?
\]

Preterminal rules

\[
S \rightarrow NP \ VP
\]

\[
VP \rightarrow M V \\
VP \rightarrow V
\]

\[
NP \rightarrow N \\
NP \rightarrow N NP
\]

Inner rules

\[
N \rightarrow \text{can} \\
N \rightarrow \text{lead} \\
N \rightarrow \text{poison}
\]

\[
M \rightarrow \text{can} \\
M \rightarrow \text{must}
\]

\[
V \rightarrow \text{poison} \\
V \rightarrow \text{lead}
\]
Undergrad NLP 2022

Yulia Tsvetkov

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\begin{array}{lll}
\text{max} = 1 & \text{max} = 2 & \text{max} = 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 4 & 6 \\
2 & 5 & 3 \\
\end{array}
\]

\[
\begin{align*}
VP & \rightarrow M \ V \\
VP & \rightarrow V \\
NP & \rightarrow N \\
NP & \rightarrow N \ NP \\
N & \rightarrow can \\
N & \rightarrow lead \\
N & \rightarrow poison \\
M & \rightarrow can \\
M & \rightarrow must \\
V & \rightarrow poison \\
V & \rightarrow lead \\
\end{align*}
\]
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccc}
\text{max = 1} & \text{max = 2} & \text{max = 3} \\
\text{min = 0} & \square & \square \\
\text{min = 1} & \square & \square \\
\text{min = 2} & \square & \square \\
\end{array}
\]

- \(VP \rightarrow M \ V \)
- \(VP \rightarrow V \)
- \(NP \rightarrow N \)
- \(NP \rightarrow N \ N P \)
- \(N \rightarrow \text{can} \)
- \(N \rightarrow \text{lead} \)
- \(N \rightarrow \text{poison} \)
- \(M \rightarrow \text{can} \)
- \(M \rightarrow \text{must} \)
- \(V \rightarrow \text{poison} \)
- \(V \rightarrow \text{lead} \)
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1
min = 0

max = 2
min = 1

max = 3
min = 2

Preterminal rules:

- $V_P \rightarrow M \ V$
- $V_P \rightarrow V$
- $N_P \rightarrow N$
- $N_P \rightarrow N \ N_P$
- $N \rightarrow \text{can}$
- $N \rightarrow \text{lead}$
- $N \rightarrow \text{poison}$
- $M \rightarrow \text{can}$
- $M \rightarrow \text{must}$
- $V \rightarrow \text{poison}$
- $V \rightarrow \text{lead}$

Inner rules:

- $S \rightarrow NP \ VP$
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

min = 0	1	N, V
min = 1	2	N, M
min = 2	3	N, V

max = 1 max = 2 max = 3

Preterminal rules

- $N \rightarrow \text{can}$
- $N \rightarrow \text{lead}$
- $N \rightarrow \text{poison}$
- $M \rightarrow \text{can}$
- $M \rightarrow \text{must}$
- $V \rightarrow \text{poison}$
- $V \rightarrow \text{lead}$

Inner rules

- $VP \rightarrow M \ V$
- $VP \rightarrow V$
- $NP \rightarrow N$
- $NP \rightarrow N \ NP$

- $S \rightarrow NP \ VP$
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
\text{max} = 1 & \text{max} = 2 & \text{max} = 3 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
N, V & N, M & N, V & ? \\
NP, VP & NP & NP, VP & \text{?} \\
\end{array}
\]

Preterminal rules:
- \(S \to NP \ VP \)
- \(VP \to M \ V \)
- \(VP \to V \)
- \(NP \to N \)
- \(NP \to N \ NP \)

Inner rules:
- \(N \to \text{can} \)
- \(N \to \text{lead} \)
- \(N \to \text{poison} \)
- \(M \to \text{can} \)
- \(M \to \text{must} \)
- \(V \to \text{poison} \)
- \(V \to \text{lead} \)
\(S \rightarrow NP \ VP \)

Preterminal rules

- \(NP \rightarrow N \)
- \(NP \rightarrow N \ NP \)
- \(VP \rightarrow M \ V \)
- \(VP \rightarrow V \)

Inner rules

- \(N \rightarrow can \)
- \(N \rightarrow lead \)
- \(N \rightarrow poison \)
- \(M \rightarrow can \)
- \(M \rightarrow must \)
- \(V \rightarrow poison \)
- \(V \rightarrow lead \)
\[
S \rightarrow NP \ VP
\]

Preterminal rules:

\[
VP \rightarrow M \ V \\
VP \rightarrow V
\]

Inner rules:

\[
NP \rightarrow N \\
NP \rightarrow N \ NP
\]

Yulia Tsvetkov
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Preterminal rules

\[
S \rightarrow NP \ VP
\]

Inner rules

\[
VP \rightarrow M \ V
\]
\[
VP \rightarrow V
\]
\[
NP \rightarrow N
\]
\[
NP \rightarrow N \ NP
\]
\[
N \rightarrow can
\]
\[
N \rightarrow lead
\]
\[
N \rightarrow poison
\]
\[
M \rightarrow can
\]
\[
M \rightarrow must
\]
\[
V \rightarrow poison
\]
\[
V \rightarrow lead
\]
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[S \rightarrow NP \ VP \]

Preterminal rules

\[VP \rightarrow M \ V \]
\[VP \rightarrow V \]

Inner rules

\[NP \rightarrow N \]
\[NP \rightarrow N \ NP \]

\[N \rightarrow can \]
\[N \rightarrow lead \]
\[N \rightarrow poison \]

\[M \rightarrow can \]
\[M \rightarrow must \]

\[V \rightarrow poison \]
\[V \rightarrow lead \]
Undergrad NLP 2022
Yulia Tsvetkov

Preterminal rules

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max = 1 max = 2 max = 3

min = 0

1. N, V
 NP, VP

2. N, M
 NP

3. N, V
 NP, VP

4. NP

5. $S, VP,$
 NP

6. $?$

min = 1

min = 2

Inner rules

$S \rightarrow NP \ VP$

$VP \rightarrow M \ V$
$VP \rightarrow V$

$NP \rightarrow N$
$NP \rightarrow N \ NP$

$N \rightarrow can$
$N \rightarrow lead$
$N \rightarrow poison$

$M \rightarrow can$
$M \rightarrow must$

$V \rightarrow poison$
$V \rightarrow lead$
Preterminal rules:

- $S \rightarrow NP \ VP$

Inner rules:

- $VP \rightarrow M \ V$
- $VP \rightarrow V$
- $NP \rightarrow N$
- $NP \rightarrow N \ NP$

NP rules:

- $N \rightarrow can$
- $N \rightarrow lead$
- $N \rightarrow poison$
- $M \rightarrow can$
- $M \rightarrow must$

Transition diagram:

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

max $= 1$

min $= 0$

min $= 1$

min $= 2$

\[
\begin{array}{c}
1 \quad N, V \\
\quad NP, VP \\
2 \quad N, M \\
\quad NP \\
3 \quad N, V \\
\quad NP, VP \\
4 \quad NP \\
5 \quad S, VP, NP \\
6 \quad ?
\end{array}
\]
Preterminal rules:
- $S \rightarrow NP\ VP$

Inner rules:
- $VP \rightarrow M\ V$
- $VP \rightarrow V$
- $NP \rightarrow N$
- $NP \rightarrow N\ NP$
- $N \rightarrow can$
- $N \rightarrow lead$
- $N \rightarrow poison$
- $M \rightarrow can$
- $M \rightarrow must$
- $V \rightarrow poison$
- $V \rightarrow lead$

Midlist:
- $mid = 1$

<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- $max = 1$
- $max = 2$
- $max = 3$

- $min = 0$
- $min = 1$
- $min = 2$
<table>
<thead>
<tr>
<th>lead</th>
<th>can</th>
<th>poison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>max = 1</th>
<th>max = 2</th>
<th>max = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>N, V</td>
<td>NP</td>
<td>S, NP</td>
</tr>
<tr>
<td>NP, VP</td>
<td></td>
<td>S(?!)?</td>
</tr>
</tbody>
</table>

Preterminal rules

- $S \rightarrow NP \ VP$
- $VP \rightarrow M \ V$
- $VP \rightarrow V$
- $NP \rightarrow N$
- $NP \rightarrow N \ NP$

Inner rules

- $N \rightarrow can$
- $N \rightarrow lead$
- $N \rightarrow poison$
- $M \rightarrow can$
- $M \rightarrow must$
- $V \rightarrow poison$
- $V \rightarrow lead$

mid=2
Apparently the sentence is ambiguous for the grammar: (as the grammar overgenerates)
Ambiguity

No subject-verb agreement, and *poison* used as an intransitive verb