Natural Language Processing

Logistic Regression

Yulia Tsvetkov

eyuliats@cs.washington.edu
Announcements

- HW1 deadline on Friday
- Extra OHs by TAs
- Yulis’a OHs are cancelled this week
- FAQ on HW1 on Ed
- Quiz next Wed - Zipfs law, LR
Components of a probabilistic machine learning classifier

Given \(m \) input/output pairs \((x^{(i)}, y^{(i)})\):

1. A feature representation for the input. For each input observation \(x^{(i)} \), a vector of features \([x_1, x_2, \ldots, x_n]\). Feature \(j \) for input \(x^{(i)} \) is \(x_j \), more completely \(x_1^{(i)} \), or sometimes \(f_j(x) \).

2. A classification function that computes \(\hat{y} \) the estimated class, via \(p(y|x) \), like the sigmoid functions.

3. An objective function for learning, like cross-entropy loss.

4. An algorithm for optimizing the objective function: stochastic gradient descent.
Sentiment example: does $y=1$ or $y=0$?

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.
It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.

<table>
<thead>
<tr>
<th>Var</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>count(positive lexicon) \in doc</td>
<td>3</td>
</tr>
<tr>
<td>x_2</td>
<td>count(negative lexicon) \in doc</td>
<td>2</td>
</tr>
<tr>
<td>x_3</td>
<td>$\begin{cases} 1 & \text{if "no" } \in \text{ doc} \ 0 & \text{otherwise} \end{cases}$</td>
<td>1</td>
</tr>
<tr>
<td>x_4</td>
<td>count(1st and 2nd pronouns \in doc)</td>
<td>3</td>
</tr>
<tr>
<td>x_5</td>
<td>$\begin{cases} 1 & \text{if "!" } \in \text{ doc} \ 0 & \text{otherwise} \end{cases}$</td>
<td>0</td>
</tr>
<tr>
<td>x_6</td>
<td>log(word count of doc)</td>
<td>$\ln(66) = 4.19$</td>
</tr>
</tbody>
</table>
Classifying sentiment for input x

<table>
<thead>
<tr>
<th>Var</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>count(positive lexicon) \in doc</td>
</tr>
<tr>
<td>x_2</td>
<td>count(negative lexicon) \in doc</td>
</tr>
<tr>
<td>x_3</td>
<td>$\begin{cases} 1 & \text{if } \text{“no”} \in \text{doc} \ 0 & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>x_4</td>
<td>count(1st and 2nd pronouns \in doc)</td>
</tr>
<tr>
<td>x_5</td>
<td>$\begin{cases} 1 & \text{if } \text{“!”} \in \text{doc} \ 0 & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>x_6</td>
<td>$\log($word count of doc$)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>$\ln(66) = 4.19$</td>
</tr>
</tbody>
</table>

Suppose $w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$

$b = 0.1$
Cross-entropy loss for a single observation x

Goal: maximize probability of the correct label $p(y|x)$

Maximize: $\log p(y|x) = \log \left[\hat{y}^y (1 - \hat{y})^{1-y} \right]$

$= y \log \hat{y} + (1 - y) \log (1 - \hat{y})$

Now flip sign to turn this into a **cross-entropy loss**: something to minimize

Minimize: $L_{CE}(\hat{y}, y) = - \log p(y|x) = - [y \log \hat{y} + (1 - y) \log (1 - \hat{y})]$

Or, plug in definition of $\hat{y} = \sigma(w \cdot x + b)$

$$L_{CE}(\hat{y}, y) = - [y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$
Let's see if this works for our sentiment example

We want loss to be:

- smaller if the model estimate \hat{y} is close to correct
- bigger if model is confused

Let's first suppose the true label of this is $y=1$ (positive)

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.
Let's see if this works for our sentiment example

True value is $y=1$ (positive). How well is our model doing?

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$

Pretty well! What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= -[\log \sigma(w \cdot x + b)]$$

$$= -\log(.70)$$

$$= .36$$
Let's see if this works for our sentiment example

Suppose the true value instead was $y=0$ (negative).

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b) = 0.30$$

What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= - \log (1 - \sigma(w \cdot x + b)) - \log (.30)$$

$$= 1.2$$
Let's see if this works for our sentiment example

The loss when the model was right (if true $y=1$)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma (w \cdot x + b) + (1 - y) \log (1 - \sigma (w \cdot x + b))]$$
$$= -[\log \sigma (w \cdot x + b)]$$
$$= -\log (.70)$$
$$= .36$$

The loss when the model was wrong (if true $y=0$)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma (w \cdot x + b) + (1 - y) \log (1 - \sigma (w \cdot x + b))]$$
$$= -[\log (1 - \sigma (w \cdot x + b))]$$
$$= -\log (.30)$$
$$= 1.2$$

Sure enough, loss was bigger when model was wrong!
Learning components

A loss function:

● cross-entropy loss

An optimization algorithm:

● stochastic gradient descent
Stochastic Gradient Descent

- Stochastic Gradient Descent algorithm
 - is used to optimize the weights
 - for logistic regression
 - also for neural networks
Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights \(\theta = (w, b) \)

- And we’ll represent \(\hat{y} \) as \(f(x; \theta) \) to make the dependence on \(\theta \) more obvious

We want the weights that minimize the loss, averaged over all examples:

\[
\hat{\theta} = \arg \min \limits_{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})
\]
Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360°
Find the direction of steepest slope down
Go that way
Our goal: minimize the loss

For logistic regression, loss function is **convex**

- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)
Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function.
Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

![Diagram showing the loss function with a point w^1 and w^{min} indicating the minimum. The slope of the loss at w^1 is negative, and thus we should move in a positive direction.](image-url)
Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function
The gradient of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move in the opposite direction.
How much do we move in that direction?

- The value of the gradient (slope in our example) weighted by a learning rate η
 \[\frac{d}{dw}L(f(x;w),y) \]

- Higher learning rate means move w faster

\[w^{t+1} = w^t - \eta \frac{d}{dw}L(f(x;w),y) \]
Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.

The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the N dimensions.
Imagine 2 dimensions, w and b

Visualizing the gradient vector at the red point

It has two dimensions shown in the x-y plane

Cost(w,b)
Real gradients

Are much longer; lots and lots of weights

For each dimension w_i, the gradient component i tells us the slope with respect to that variable.

- “How much would a small change in w_i influence the total loss function L?”
- We express the slope as a partial derivative ∂ of the loss $\frac{\partial}{\partial w_i}$

The gradient is then defined as a vector of these partials.
The gradient

We’ll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious:

$$\nabla_{\theta} L(f(x; \theta), y) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x; \theta), y) \\ \frac{\partial}{\partial w_2} L(f(x; \theta), y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x; \theta), y) \end{bmatrix}$$

The final equation for updating θ based on the gradient is thus:

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$
What are these partial derivatives for logistic regression?

The loss function

\[L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))] \]

The elegant derivative of this function (see Section 5.10 for the derivation)

\[\frac{\partial L_{CE}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j \]

\[= (\hat{y} - y)x_j \]
function \textsc{Stochastic Gradient Descent}(L(), f(), x, y) returns \(\theta \)

\[
\begin{align*}
\text{# where: } & L \text{ is the loss function} \\
\text{# } & f \text{ is a function parameterized by } \theta \\
\text{# } & x \text{ is the set of training inputs } x^{(1)}, x^{(2)}, \ldots, x^{(m)} \\
\text{# } & y \text{ is the set of training outputs (labels) } y^{(1)}, y^{(2)}, \ldots, y^{(m)}
\end{align*}
\]

\(\theta \leftarrow 0 \)

\textbf{repeat til done}

For each training tuple \((x^{(i)}, y^{(i)})\) (in random order)

1. Optional (for reporting): \# How are we doing on this tuple?
 \[
 \text{Compute } \hat{y}^{(i)} = f(x^{(i)}; \theta) \quad \# \text{What is our estimated output } \hat{y}^{(i)}? \\
 \text{Compute the loss } L(\hat{y}^{(i)}, y^{(i)}) \quad \# \text{How far off is } \hat{y}^{(i)} \text{ from the true output } y^{(i)}?
 \]

2. \(g \leftarrow \nabla_\theta L(f(x^{(i)}; \theta), y^{(i)}) \) \# How should we move \(\theta \) to maximize loss?

3. \(\theta \leftarrow \theta - \eta \, g \) \# Go the other way instead

\textbf{return } \theta
Hyperparameters

The learning rate η is a **hyperparameter**

- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

Hyperparameters:

- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.
Mini-batch training

Stochastic gradient descent chooses a single random example at a time.

That can result in choppy movements

More common to compute gradient over batches of training instances.

Batch training: entire dataset

Mini-batch training: m examples (512, or 1024)
Overfitting

A model that perfectly match the training data has a problem.

It will also **overfit** to the data, modeling noise

- A random word that perfectly predicts y (it happens to only occur in one class) will get a very high weight.
- Failing to generalize to a test set without this word.

A good model should be able to **generalize**
Regularization

A solution for overfitting

Add a **regularization** term $R(\theta)$ to the loss function (for now written as maximizing logprob rather than minimizing loss)

$$
\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{m} \log P(y^{(i)}|x^{(i)}) - \alpha R(\theta)
$$

Idea: choose an $R(\theta)$ that penalizes large weights

- fitting the data well with lots of big weights not as good as fitting the data a little less well, with small weights
L2 regularization (ridge regression)

The sum of the squares of the weights

\[R(\theta) = \|\theta\|_2^2 = \sum_{j=1}^{n} \theta_j^2 \]

L2 regularized objective function:

\[\hat{\theta} = \arg\max_{\theta} \left[\sum_{i=1}^{m} \log P(y^{(i)}|x^{(i)}) \right] - \alpha \sum_{j=1}^{n} \theta_j^2 \]
L1 regularization (=lasso regression)

The sum of the (absolute value of the) weights

$$R(\theta) = ||\theta||_1 = \sum_{i=1}^{n} |\theta_i|$$

L1 regularized objective function:

$$\hat{\theta} = \arg\max_{\theta} \left[\sum_{1=i}^{m} \log P(y^{(i)}|x^{(i)}) \right] - \alpha \sum_{j=1}^{n} |\theta_j|$$
Multinomial Logistic Regression

Often we need more than 2 classes

- Positive/negative/neutral
- Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
- Classify emergency SMSs into different actionable classes

If >2 classes we use **multinomial logistic regression**

= Softmax regression
= Multinomial logit
= (defunct names: Maximum entropy modeling or MaxEnt)

So "logistic regression" will just mean binary (2 output classes)
Multinomial Logistic Regression

The probability of everything must still sum to 1

\[P(\text{positive}|\text{doc}) + P(\text{negative}|\text{doc}) + P(\text{neutral}|\text{doc}) = 1 \]

Need a generalization of the sigmoid called the \textbf{softmax}

- Takes a vector \(z = [z_1, z_2, ..., z_k] \) of \(k \) arbitrary values
- Outputs a probability distribution
- each value in the range \([0,1]\)
- all the values summing to 1

We’ll discuss it more when we talk about neural networks
softmax: a generalization of sigmoid

- For a vector z of dimensionality k, the softmax is:

$$\text{softmax}(z) = \left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \ldots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \right]$$

$$\text{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)} \quad 1 \leq i \leq k$$

Example:

$$z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

$$\text{softmax}(z) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]$$
Components of a probabilistic machine learning classifier

Given m input/output pairs $(x^{(i)}, y^{(i)})$:

1. A **feature representation** for the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, \ldots, x_n]$. Feature j for input $x^{(i)}$ is x_j, more completely $x_1^{(i)}$, or sometimes $f_j(x)$.

2. A **classification function** that computes \hat{y} the estimated class, via $p(y|x)$, like the **sigmoid** or **softmax** functions

3. An **objective function** for learning, like **cross-entropy loss**

4. An algorithm for **optimizing** the objective function: **stochastic gradient descent**
Next class:

- Language models