
Undergrad NLP 2022Yulia Tsvetkov

Natural Language Processing
Logistic Regression

Yulia Tsvetkov

yuliats@cs.washington.edu

1



Undergrad NLP 2022Yulia Tsvetkov

Readings
● J&M Chapter 5 https://web.stanford.edu/~jurafsky/slp3/5.pdf
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Logistic Regression for one observation x
● Input observation: vector x(i) = {x1, x2, …, xn}

● Weights: one per feature: W = [w1, w2,…, wn]
○ Sometimes we call the weights θ = [θ1, θ2,…, θn] 

● Output: a predicted class ŷ(i) ∈ {0,1}

multinomial logistic regression: ŷ(i) ∈ {0,1, 2, 3, 4}
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How to do classification
● For each feature xi, weight wi tells us importance of xi

○ (Plus we'll have a bias b)
○ We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0
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But we want a probabilistic classifier
We need to formalize “sum is high”

● We’d like a principled classifier that gives us a probability, just like Naive Bayes 
did

● We want a model that can tell us:
○ p(y=1|x; θ)
○ p(y=0|x; θ)
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The problem: z isn't a probability, it's just a number!

● z ranges from -∞ to ∞

● Solution: use a function of z that goes from 0 to 1
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The very useful sigmoid or logistic function
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Idea of logistic regression
● We’ll compute w∙x+b
● And then we’ll pass it through the sigmoid function: 

● And we'll just treat it as a probability
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Making probabilities with sigmoids
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Making probabilities with sigmoids
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By the way:
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Turning a probability into a classifier

● 0.5 here is called the decision boundary
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The probabilistic classifier 
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Turning a probability into a classifier

if w∙x+b > 0

if w∙x+b ≤ 0
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Sentiment example: does y=1 or y=0?
It's hokey . There are virtually no surprises , and the writing is second-rate .  So why was it so 
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was 
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do 
the same to you .
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Classifying sentiment for input x

Suppose w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] 
b = 0.1
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Classifying sentiment for input x
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Scaling input features
● z-score

● normalize

19



Undergrad NLP 2022Yulia Tsvetkov

Wait, where did the W’s come from?
● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ
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Wait, where did the W’s come from?
● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ

● We want to set w and b to minimize the distance between our estimate ŷ(i) and 
the true y(i)

○ We need a distance estimator: a loss function or a cost function
○ We need an optimization algorithm to update w and b to minimize the loss
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Components of a probabilistic machine learning classifier

Given m input/output pairs (x(i), y(i)):

1. A feature representation for the input. For each input observation x(i), a vector 
of features [x1, x2, …, xn]. Feature j for input  x(i) is xj, more completely x1

(i), or 
sometimes fj(x).

2. A classification function that computes ŷ the estimated class, via p(y|x), like 
the sigmoid functions

3. An objective function for learning, like cross-entropy loss

4. An algorithm for optimizing the objective function: stochastic gradient 
descent
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Learning components in LR
A loss function: 

● cross-entropy loss 

An optimization algorithm: 

● stochastic gradient descent
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Loss function: the distance between ŷ and y
We want to know how far is the classifier output ŷ 

from the true output: y [= either 0 or 1]

We'll call this difference: L(ŷ,y) = how much ŷ differs from the true y
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Intuition of negative log likelihood loss = cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

● the log probability
● of the true y labels in the training data
● given the observations x

25



Undergrad NLP 2022Yulia Tsvetkov

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Since there are only 2 discrete outcomes (0 or 1) we can express the probability 
p(y|x) from our classifier (the thing we want to maximize) as
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Since there are only 2 discrete outcomes (0 or 1) we can express the probability 
p(y|x) from our classifier (the thing we want to maximize) as

Noting:

if y=1, this simplifies to ŷ

if y=0, this simplifies to 1 - ŷ
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Maximize: 

Now take the log of both sides (mathematically handy)

Maximize:

Whatever values maximize log p(y|x) will also maximize p(y|x)
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Maximize: 

Now flip sign to turn this into a loss: something to minimize
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Maximize: 

Now flip sign to turn this into a loss: something to minimize
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Maximize: 

Now flip sign to turn this into a cross-entropy loss: something to minimize

Minimize:
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 

Maximize: 

Now flip sign to turn this into a cross-entropy loss: something to minimize

Minimize:

Or, plug in definition of ŷ = σ(w∙x+b) 
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Let's see if this works for our sentiment example

We want loss to be:

● smaller if the model estimate ŷ is close to correct
● bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate .  So why was it so 
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was 
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do 
the same to you .
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Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

Pretty well!  What's the loss?
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Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).

What's the loss?
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The loss when the model was right (if true y=1)

The loss when the model was wrong (if true y=0)

Sure enough, loss was bigger when model was wrong!

 

Let's see if this works for our sentiment example
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Learning components
A loss function: 

● cross-entropy loss 

An optimization algorithm: 

● stochastic gradient descent
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Stochastic Gradient Descent
● Stochastic Gradient Descent algorithm

○ is used to optimize the weights
○ for logistic regression
○ also for neural networks
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Our goal: minimize the loss
Let's make explicit that the loss function is parameterized by weights 𝛳=(w,b)

● And we’ll represent ŷ as f(x; θ) to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:
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Intuition of gradient descent
How do I get to the bottom of this river canyon?

Look around me 360∘

Find the direction of steepest slope down

Go that way

40
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Our goal: minimize the loss
For logistic regression, loss function is convex 

● A convex function has just one minimum
● Gradient descent starting from any point is guaranteed to find the minimum

○ (Loss for neural networks is non-convex)
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Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Gradients

The gradient of a function of many variables is a vector pointing in the direction of 
the greatest increase in a function. 

Gradient Descent: Find the gradient of the loss function at the current point and 
move in the opposite direction. 
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How much do we move in that direction?
● The value of the gradient (slope in our example)

○ weighted by a learning rate η 

● Higher learning rate means move w faster
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Now let's consider N dimensions
We want to know where in the N-dimensional space (of the N parameters that make 
up θ ) we should move.

The gradient is just such a vector; it expresses the directional components of the 
sharpest slope along each of the N dimensions.
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Imagine 2 dimensions, w and b
Visualizing the gradient vector
at the red point 

It has two dimensions shown 
in the x-y plane
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Real gradients
Are much longer; lots and lots of weights

For each dimension wi the gradient component i tells us the slope with respect to 
that variable. 

● “How much would a small change in wi influence the total loss function L?” 
● We express the slope as a partial derivative ∂ of the loss ∂wi 

The gradient is then defined as a vector of these partials. 
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The gradient
We’ll represent ŷ as f(x; θ) to make the dependence on θ more obvious:

The final equation for updating θ based on the gradient is thus:
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What are these partial derivatives for logistic regression?

The loss function

The elegant derivative of this function (see Section 5.10 for the derivation)
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Hyperparameters
The learning rate η is a hyperparameter 
● too high: the learner will take big steps and overshoot
● too low: the learner will take too long 

Hyperparameters:

● Briefly, a special kind of parameter for an ML model
● Instead of being learned by algorithm from supervision (like regular parameters), 

they are chosen by algorithm designer.
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Mini-batch training
Stochastic gradient descent chooses a single random example at a time. 

That can result in choppy movements 

More common to compute gradient over batches of training instances. 

Batch training: entire dataset 

Mini-batch training: m examples (512, or 1024)
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Overfitting
A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise

● A random word that perfectly predicts y (it happens to only occur in one class) 
will get a very high weight.

● Failing to generalize to a test set without this word. 

A good model should be able to generalize
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Regularization
A solution for overfitting

Add a regularization term R(θ) to the loss function (for now written as maximizing 
logprob rather than minimizing loss)

Idea: choose an R(θ) that penalizes large weights

● fitting the data well with lots of big weights not as good as fitting the data a little 
less well, with small weights
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L2 regularization (ridge regression)
The sum of the squares of the weights

L2 regularized objective function:
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L1 regularization (=lasso regression)
The sum of the (absolute value of the) weights

L1 regularized objective function:
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Multinomial Logistic Regression
Often we need more than 2 classes

● Positive/negative/neutral
● Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
● Classify emergency SMSs into different actionable classes

If >2 classes we use multinomial logistic regression
= Softmax regression 
= Multinomial logit 
= (defunct names : Maximum entropy modeling or MaxEnt

So "logistic regression" will just mean binary (2 output classes)
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Multinomial Logistic Regression
The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) + P(neutral|doc) = 1

Need a generalization of the sigmoid called the softmax
● Takes a vector z = [z1, z2, ..., zk] of k arbitrary values
● Outputs a probability distribution
● each value in the range [0,1]
● all the values summing to 1

We’ll discuss it more when we talk about neural networks
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Components of a probabilistic machine learning classifier

Given m input/output pairs (x(i), y(i)):

1. A feature representation for the input. For each input observation x(i), a vector 
of features [x1, x2, …, xn]. Feature j for input  x(i) is xj, more completely x1

(i), or 
sometimes fj(x).

2. A classification function that computes ŷ the estimated class, via p(y|x), like 
the sigmoid or softmax functions

3. An objective function for learning, like cross-entropy loss

4. An algorithm for optimizing the objective function: stochastic gradient 
descent
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Next class: 
● Language models
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