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Back to the introduction topics...
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Why is language interpretation hard?

Ambiguity

Scale

Variation

Sparsity

Expressivity
Unmodeled variables

N ook wd =

Unknown representation ®
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Ambiguity: word sense disambiguation

® =
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Ambiguity

e Ambiguity at multiple levels: 1 E\s
o Word senses: bank (finance or river?)
Part of speech: chair (noun or verb?)

O
o Syntactic structure: | can see a man with a telescope
o Multiple: | saw her duck
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Semantic analysis

e Everylanguage sees the world in a different way

O

For example, it could depend on cultural or historical conditions

Maraschino I | Red
Cayenne INEEEEG_——
Macoon I | ©urple

Russian has very few words for colors, Japanese has hundreds
Multiword expressions, e.g. happy as a clam, it’s raining cats and dogs or wake up and metaphors, e.g.
love is a journey are very different across languages
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e ~7Klanguages
e Thousands of
language varieties

60M Speakers 125M Speakers

P |
251M Speakers — : @ Nilo Saharan
. X Y — 90M Speakers o

ngo A

B
: 7

7OM N~ .. ger Congo B (Bantu)
Speakers ‘ 5 i
L

_ Africa is a continent with a very high linguistic diversity:
Englishes there are an estimated 1.5-2K African languages from 6 language
families. 1.33 billion people
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NLP beyond English

will ATET = 6:56 PM

Wl ATET = 6:56 PM

“Necesito una reserva para
cenar para el dia de San

{ ~7,000 Ianguages valentin”

Veré si algin restaurante

e thousands of language varieties Rt

“No. Necesito una reserva

“Nahitaji uhifadhi wa
chakula cha jioni kwa
siku ya wapendanao”

# 2y o Rl YEeRT Nitaona ikiwa mikahawa
H Hh & fav s arfesr gl yoyote inayo meza moja.

“oTgT, HH ar IRET AT “Hapana. Ninahitaji

para dos.” uhifadhi wa mbili.”
iPor qué? ;Esta tu madre FT> FAT JEER AT AT H Kwa nini? Je! Mama yako
en la ciudad? 82 yuko mjini?
Spanish Hindi Swahili
534 million speakers 615 million speakers 100 million speakers

will ATET = 6:56 PM Wil ATET 7 6:56 PM Wil ATET = 6:56 PM

“I need a dinner “Ah need a tatties an' “Mujhe Valentine's day
reservation for Valentine's neebs reservation fur par reservation
day” Valentine's day . chahiye.”

I’11 see if onie
restaurants hae a table
fur a body.

I’11 see if any restaurants
have a table for one.

I'11l see agar ek aadmi
ke liye table hai.

“No. I need a reservation “Nae. Ah need a “Nhi. Mujhe do logo ke
for two.” reservation fur tois.” liye table chahiye.”

Why? Is your mother in Wa? is yer maw in toon? Kyu? Aapki mother town
town? me hain?

American English Scottish English Hinglish
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Most of the world today is multilingual

Percentage of Bilingual Speakers in the World

European Union p— = —
99% The Netherlands Germany

The Countries With The Most Spoken Languages

Number of living languages spoken per country in 2015

Luxembourg

Monolingual

44% Indonesia

Bilingual,
s I N
I h Nigeria
Sweden .-
Denmark Poland .
India
Source: C issi and their L " 2006
United States
25
B 1973 China
" 20 | — 17.89
Percentage of US Population :
who spoke a language other ™ - T Mexico Pl E E < j
than English at home by year " Cameroon I | 281 s
s L
o L | Australia g8 245
1980 1990 2000 2007 -
Source: U.S. Census Bureau, 2007 American Community Survey Brazil 229
Source: US Census Bureau Source: Ethnologue
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Tokenization

X2 ERMOETF
WORDS This is a simple sentence

VIS UVOSYNn N1
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Tokenization + disambiguation

in tea nna
in the tea nnna
that in tea nnav
in tea nna that in the tea nNNavY
her daughter and that in the tea nNNAYI
e most of the vowels unspecified NNAYI
and her saturday N+nav+i
and that in tea N+a+w+i

and that her daughter n+na+w+i

® most of the vowels unspecified

® particles, prepositions, the definite article,
conjunctions attach to the words which follow them

® tokenization is highly ambiguous
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Tokenization + morphological analysis

e Quechua

Much’ananayakapushasgakupunifatagsunama
Much’a -na -naya -ka -pu -sha -sga -ku -puni -fa -taq -suna -ma

"So they really always have been kissing each other then”

Much’a to kiss

-na expresses obligation, lost in translation
-naya expresses desire

-ka diminutive

-pu reflexive (kiss *eachother*)

-sha progressive (kiss*ing*)

-sqa declaring something the speaker has not personally witnessed
-ku 3rd person plural (they kiss)

-puni definitive (really¥*)

-fla always

-taq statement of contrast (...then)

-suna expressing uncertainty (So...)

-ma expressing that the speaker is surprised

13 Undergrad NLP 2022
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Tokenization + morphological analysis

e German

Infektionsschutzmalinahmenverordnung

“Infection Protection Measures Ordinance”
14 Undergrad NLP 2022



NLP Technologies/Applications
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ASR A
MT
Dialogue
QA
Summarization
SRL
Coref
Parsing
NER
POS tagging
Lemmatization
< A -
G, 25, - 4% Q%2 6K World’s Languages
82 %, % 9@ 4 ’9@ 3.9, ve, ¢¢,6A
Uy % S Uy % o R BTE
o,
(<)
\ ]\ | | |
! f I I
Medium-Resourced ~ Resource-Poor
Some European UN
Languages Languages Languages Languages
(dozens) (thousands)
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Linguistic variation

Non-standard | is, hasht 5 v
‘ -
on-standard language, emojis, hashtags, names o Instagram. ) V7

chowdownwithchan #crab and #pork #xiaolongbao at
@dintaifungusa... where else? &3 & Note the cute little
crab indicator in the 2nd pic S ¢"
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Variation

e Suppose we train a part of speech tagger or a parser on the Wall Street Journal

ad\ mod 1

¢
punct J | root

S
pun( (I O —————

-
p au ] { ob 1
{ f4umod| \ —-| nsubj | f*m\\ l
v v
HO\\;cver 5 the black cm chased thc dogs
however = the blnck cut chase the dog -
ADV PUNCT DET ADJ NOUN VERB DET NOUN PUNCT

Definite=Def Degree=Pos Number=Sing Tense=Past Definite=Def Number=Plur
Mood=Ind

e \What will happen if we try to use this tagger/parser for social media??

@_rkpntrnte hindi ko alam babe eh, absent ako
kanina I'm sick rn hahaha =
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NLP Models/Tasks

ASR \
MT
Dialogue
QA
Summarization
SRL
Coref
Parsing
NER
POS tagging
Lemmatization ~6,000 Languages
. 2L  CuR . o 2%,
Bible gO/ e, %«o¢9 4(9 %69‘{"5:" &, (6. < .- O’%Q{ e
Parliamentary proceedings Uy 2 S Uy U < 2 z e, 4%,
Newswire 63"9 g
Wikipedia \ ) ( ) | | | J
Novels | | | |
TED talks Medium-Resourced ~ Resource-Poor
Twitter Some European UN L L
Telephone Languages Languages anguages Anguages
conversations (dozens) (thousands)

Text Data Domains
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Sparsity

Sparse data due to Zipf's Law

e Toillustrate, let’s look at the frequencies of different words in a large text corpus
e Assume “word” is a string of letters separated by spaces

Yulia Tsvetkov 21 Undergrad NLP 2022
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Most frequent words in the English Europarl corpus (out of 24m word tokens)

any word

Frequency

Token

Yulia Tsvetkov

1,698,599

849,256
793,731
640,257
508,560
407,638
400,467
394,778
263,040

the
of
to
and
in
that
is

a

I

22

Frequency

nouns
Token

124,598
104,325
92,195
66,781
62,867
57,804
53,683
53,547
45,842

European
Mr
Commission
President
Parliament
Union
report
Council
States
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Word Counts

But also, out of 93,638 distinct words (word types), 36,231 occur only once.
Examples:

cornflakes, mathematicians, fuzziness, jumbling

pseudo-rapporteur, lobby-ridden, perfunctorily,
Lycketoft, UNCITRAL, H-0695

policyfor, Commissioneris, 145.95, 27a
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Plotting word frequencies

Order words by frequency. What is the frequency of nth ranked word?

1800000 Word frequency vs. rank 107 Word frequency vs. rank, log axes
1600000} 1 109 ...
1400000 . 5
10
5. 1200000 -
3 e 10*
< 1000000 5
o §
S 800000} g 10°
i i
600000 102
400000 .
200000 b Y
0 107 0 1 2 =3 a - 5
0 20000 40000 60000 80000 100000 10 10 10 10 10 10
Rank Rank
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Zipf's Law

Implications

e Regardless of how large our corpus is, there will be a lot of infrequent (and
zero-frequency!) words

e This means we need to find clever ways to estimate probabilities for things we
have rarely or never seen

107; English 107 Spanish
o ..
10 .. 10°) ..,
10°) 10°
= | >
5 10°} 5 10*
2101 2100
§ 10°) g 10
| &
107} 107
|
10%) 10°

10° 10°%5 -
10° 100 100 10° 10° 100 10°
Rank

10° 100 108 100 10° 10° 10°
Rank

Finnish German

107
10%)

fee
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2ol g
£ 10°) g
g | $ 10%
g 10} g
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100\ —r - - il 1
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Rank
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Expressivity

Not only can one form have different meanings (ambiguity) but the same meaning
can be expressed with different forms:

She gave the book to Tom VS. She gave Tom the book
Some kids popped by VS. A few children visited
Is that window still open? VS. Please close the window
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Unmodeled variables

“Drink this milk”

World knowledge

e | dropped the glass on the floor and it broke
e | dropped the hammer on the glass and it broke

Yulia Tsvetkov 29 Undergrad NLP 2022
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Unknown representation

e Very difficult to capture what is &, since we don’t even know how to represent

the knowledge a human has/needs:
o What is the “meaning” of a word or sentence?
o How to model context?
o Other general knowledge?
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Dealing with ambiguity

e How can we model ambiguity and choose the correct analysis in context?

o non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible
analyses.

o probabilistic models (HMMs for part-of-speech tagging, PCFGs for syntax) and algorithms
(Viterbi, probabilistic CKY) return the best possible analysis, i.e., the most probable one
according to the model

o Neural networks, pretrained language models now provide end-to-end solutions

e But the “best” analysis is only good if our probabilities are accurate. Where do
they come from?

Yulia Tsvetkov 32 Undergrad NLP 2022
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Next class: Logistic regression

e Supervised text classification

T

e Rule-based e Probabilistic
e Generative models e Discriminative models
e Naive Bayes e Linear models e Non-linear models
o  Multinomial logistic regression o  Multilayer perceptron
(aka MaxEnt)
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Readings

e J&M Chapter 5 https://web.stanford.edu/~jurafsky/slp3/5.pdf

Yulia Tsvetkov 34 Undergrad NLP 2022
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E———— W DR RARENN00"
Logistic regression classifier

e Important analytic tool in natural and social sciences
e Baseline supervised machine learning tool for classification
e Is also the foundation of neural networks

Yulia Tsvetkov 35 Undergrad NLP 2022



R VA7 PAUL G ALLEN SCHOOL
Text classification

Input:

e adocumentd (e.g., a movie review)

e afixed setof classes C= {c,c,, ... cj} (e.g., positive, negative, neutral)

Output

e apredictedclassy € C

Yulia Tsvetkov 36 Undergrad NLP 2022
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Binary classification in logistic regression

e Given a series of input/output pairs:
o (x0,yY)

e For each observation x
o We represent x by a feature vector {x, X, ..., X }
o We compute an output: a predicted class ' & {0,1}

Yulia Tsvetkov 37 Undergrad NLP 2022
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Features in logistic regression

e For feature X.E{X,, X,, ..., X _}, weight w. €{w ,w
tells us how important is x.
o X, ="review contains ‘awesome’™: w, = +10

s

o xj = "review contains horrible": j =-10

o X, = “review contains ‘mediocre’™: W, = -2

Yulia Tsvetkov 38 Undergrad NLP 2022
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Logistic Regression for one observation x

e Input observation: vector x = {x , x,, ..., x }

e \Weights: one per feature: W = (W, Wayory W
o Sometimes we call the weights 6 = [Ol, 62,..., 0 ]

e Output: a predicted class y® & {0,1}

multinomial logistic regression: 0 & {0,1, 2, 3, 4}
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How to do classification

e For each feature x,, weight w. tells us importance of x.
o (Plus we'll have a bias b)
o We'll sum up all the weighted features and the bias

n
Z = Zwixi +b
i=1

Z = w-x+b

If this sum is high, we say y=1; if low, then y=0
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But we want a probabilistic classifier

We need to formalize “sum is high”

e \We'd like a principled classifier that gives us a probability, just like Naive Bayes
did

e \We want a model that can tell us:

o p(y=1x; 0)
o  p(y=0[x; 0)
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The problem: z isn't a probability, it's just a number!

e zranges from - to
Z = w-X+b
e Solution: use a function of z that goes from 0 to 1

o 1

“sigmoid” or — 0O
“logistic” function Y (Z)

T 1te 1 +exp(—z)
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The very useful sigmoid or logistic function
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E——— W7 Znaianecont
ldea of logistic regression

e We'll compute w-x+b
e And then we’ll pass it through the sigmoid function:

o(w-x+b)

e And we'll just treat it as a probability
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Making probabilities with sigmoids

Plr=1) = o(w-x+b)
1
[+ exp(—(w-x+b))
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Making probabilities with sigmoids

Plr=1) = o(w-x+b)
1
[+ exp(—(w-x+b))

P(y=0) = 1l—oc(w-x+b)

1
~ 14exp(—(w-x+b))
exp (—(w-x+b))
l+exp(—(w-x+b))

= 1
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By the way:

Py=0) = 1—oc(w-x+b) = o(—(w-x+D))
|
= " Tfexp((w-x+b) Because
exp(—(w-x+b)) 1—0o(x) =0(—x)

~ T+exp(—(w-x+b))
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Turning a probability into a classifier

. [ 1if Ply=1]x) > 0.5
Y=Y 0 otherwise

e 0.5 here is called the decision boundary
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The probabilistic classifier Py=1) = o(w-x+b)

1

I+exp(—(w-x+b))
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Turning a probability into a classifier

_{ 1 if P(y=1Jx) >0.5 if w-x+b >0

Y 0 otherwise if wx+b<0
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Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do
the same to you .
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So why was s it so@njoyable ? For one thlng the cast is
) . Anothe ouch 1s the music @Nas overcome with the urge to get off
the couch and start,dancmg It sucked @m ,qnd it'll do the same to to_oD) .

\\

x;=3  xe=0  xg=a19 47
Var Definition Value
X1 count(positive lexicon) € doc) 3
b)) count(negative lexicon) € doc) 2
5 1 if “no” € doc 1
0 otherwise

x4  count(1st and 2nd pronouns € doc) 3
. 1 if “!” €doc 0

: 0 otherwise
x¢  log(word count of doc) In(66) =4.19
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Classitying sentiment for input x

Var Definition Value
Wi count(positive lexicon) € doc) 3
b)) count(negative lexicon) € doc) 2
5 1 if “no” € doc |
0 otherwise

x4  count(1st and 2nd pronouns € doc) 3
. 1 if “!” edoc 0

: 0 otherwise
x¢  log(word count of doc) In(66) =4.19

Suppose w =[2.5,-5.0,-1.2, 0.5, 2.0, 0.7]

b=0.1

Yulia Tsvetkov 53
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Classitying sentiment for input x

p(+|x) = P(Y = 1]x)

oc(w-x+b)

5([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] +0.1)
(.833)

.70

|
=

p(=|x) = P(Y =0lx)

l—o(w-x+b)
= 0.30
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Scaling input features

Yulia Tsvetkov 55 Undergrad NLP 2022

Z-Score

normalize
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Wait, where did the W's come from?

e Supervised classification:
o Atraining time we know the correct label y (either O or 1) for each x.
o But what the system produces at inference time is an estimate y
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Wait, where did the W's come from?

e Supervised classification:
o Atraining time we know the correct label y (either O or 1) for each x.
o But what the system produces at inference time is an estimate y

e We want to set w and b to minimize the distance between our estimate ¢ and
the true y®
o We need a distance estimator: a loss function or a cost function
o We need an optimization algorithm to update w and b to minimize the loss
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Learning components in LR

A loss function:

e cross-entropy loss

An optimization algorithm:

e stochastic gradient descent
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Loss function: the distance between y and y
We want to know how far is the classifier output §y = o(w-x+b)

from the true output: y [= either O or 1]

We'll call this difference: L(y,y) = how much ¥ differs from the true y
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Intuition of negative log likelihood loss =
cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

e the log probability
e of the true y labels in the training data
e given the observations x
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Next class:

e Deriving cross-entropy loss (please review Bernoulli distribution before class)
e Stochastic gradient descent
e Softmax
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