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Back to the introduction topics…
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1. Ambiguity
2. Scale
3. Variation
4. Sparsity
5. Expressivity
6. Unmodeled variables

7. Unknown representation R 

Why is language interpretation hard?
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Ambiguity: word sense disambiguation
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● Ambiguity at multiple levels:
○ Word senses: bank (finance or river?)
○ Part of speech: chair (noun or verb?)
○ Syntactic structure: I can see a man with a telescope
○ Multiple: I saw her duck 

Ambiguity
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● Every language sees the world in a different way
○ For example, it could depend on cultural or historical conditions

○ Russian has very few words for colors, Japanese has hundreds

○ Multiword expressions, e.g. happy as a clam, it’s raining cats and dogs or wake up and metaphors, e.g. 

love is a journey are very different across languages

Semantic analysis
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Scale
● ~7K languages
● Thousands of 

language varieties
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Englishes
Africa is a continent with a very high linguistic diversity: 
there are an estimated 1.5-2K African languages from 6 language 
families. 1.33 billion people
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NLP beyond English
● ~7,000 languages 
● thousands of language varieties
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Most of the world today is multilingual 

Source: EthnologueSource: US Census Bureau
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Tokenization
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Tokenization + disambiguation
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● Quechua

Tokenization + morphological analysis
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● German

Tokenization + morphological analysis
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Infektionsschutzmaßnahmenverordnung

“Infection Protection Measures Ordinance”
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● Non-standard language, emojis, hashtags, names

Linguistic variation
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● Suppose we train a part of speech tagger or a parser on the Wall Street Journal

● What will happen if we try to use this tagger/parser for social media??

Variation
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Sparse data due to Zipf’s Law

● To illustrate, let’s look at the frequencies of different words in a large text corpus
● Assume “word” is a string of letters separated by spaces

Sparsity
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Most frequent words in the English Europarl corpus (out of 24m word tokens)

Word Counts
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But also, out of 93,638 distinct words (word types), 36,231 occur only once.

Examples:

● cornflakes, mathematicians, fuzziness, jumbling
● pseudo-rapporteur, lobby-ridden, perfunctorily,
● Lycketoft, UNCITRAL, H-0695
● policyfor, Commissioneris, 145.95, 27a

Word Counts
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Order words by frequency. What is the frequency of nth ranked word?

Plotting word frequencies
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Implications

● Regardless of how large our corpus is, there will be a lot of infrequent (and 
zero-frequency!) words

● This means we need to find clever ways to estimate probabilities for things we 
have rarely or never seen

Zipf’s Law
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Not only can one form have different meanings (ambiguity) but the same meaning 
can be expressed with different forms:

She gave the book to Tom         vs.        She gave Tom the book

Some kids popped by                vs.        A few children visited

Is that window still open?          vs.        Please close the window

Expressivity
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Unmodeled variables

“Drink this milk”
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World knowledge
● I dropped the glass on the floor and it broke
● I dropped the hammer on the glass and it broke
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● Very difficult to capture what is R , since we don’t even know how to represent 
the knowledge a human has/needs: 
○ What is the “meaning” of a word or sentence? 
○ How to model context? 
○ Other general knowledge?

Unknown representation
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● How can we model ambiguity and choose the correct analysis in context?
○ non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible 

analyses.
○ probabilistic models (HMMs for part-of-speech tagging, PCFGs for syntax) and algorithms 

(Viterbi, probabilistic CKY) return the best possible analysis, i.e., the most probable one 
according to the model

○ Neural networks, pretrained language models now provide end-to-end solutions 

● But the “best” analysis is only good if our probabilities are accurate. Where do 
they come from?

Dealing with ambiguity
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● Probabilistic

Next class: Logistic regression

33

● Rule-based 

● Generative models ● Discriminative models

● Linear models
○ Multinomial logistic regression 

(aka MaxEnt)

● Non-linear models
○ Multilayer perceptron

● Supervised text classification

● Naïve Bayes
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Readings
● J&M Chapter 5 https://web.stanford.edu/~jurafsky/slp3/5.pdf
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Logistic regression classifier
● Important analytic tool in natural and social sciences
● Baseline supervised machine learning tool for classification
● Is also the foundation of neural networks
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Text classification
Input: 

● a document d (e.g., a movie review)

● a fixed set of classes C = {c1, c2, … cj} (e.g., positive, negative, neutral)

Output

● a predicted class ŷ ∈ C
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Binary classification in logistic regression
● Given a series of input/output pairs:

○ (x(i), y(i)) 

● For each observation x(i)

○ We represent x(i) by a feature vector {x1, x2, …, xn}
○ We compute an output: a predicted class ŷ(i) ∈ {0,1}
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Features in logistic regression

● For feature xi∈{x1, x2, …, xn}, weight wi ∈{w1, w2, …, wn}
tells us how important is xi
○ xi = "review contains ‘awesome’": wi = +10
○ xj = "review contains horrible": wj = -10
○ xk = “review contains ‘mediocre’": wk = -2
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Logistic Regression for one observation x
● Input observation: vector x(i) = {x1, x2, …, xn}

● Weights: one per feature: W = [w1, w2,…, wn]
○ Sometimes we call the weights θ = [θ1, θ2,…, θn] 

● Output: a predicted class ŷ(i) ∈ {0,1}

multinomial logistic regression: ŷ(i) ∈ {0,1, 2, 3, 4}
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How to do classification
● For each feature xi, weight wi tells us importance of xi

○ (Plus we'll have a bias b)
○ We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0
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But we want a probabilistic classifier
We need to formalize “sum is high”

● We’d like a principled classifier that gives us a probability, just like Naive Bayes 
did

● We want a model that can tell us:
○ p(y=1|x; θ)
○ p(y=0|x; θ)
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The problem: z isn't a probability, it's just a number!

● z ranges from -∞ to ∞

● Solution: use a function of z that goes from 0 to 1

42

“sigmoid” or 
“logistic” function
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The very useful sigmoid or logistic function
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Idea of logistic regression
● We’ll compute w∙x+b
● And then we’ll pass it through the sigmoid function: 

● And we'll just treat it as a probability

44



Undergrad NLP 2022Yulia Tsvetkov

Making probabilities with sigmoids
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Making probabilities with sigmoids
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By the way:
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Turning a probability into a classifier

● 0.5 here is called the decision boundary
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The probabilistic classifier 
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Turning a probability into a classifier

if w∙x+b > 0

if w∙x+b ≤ 0
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Sentiment example: does y=1 or y=0?
It's hokey . There are virtually no surprises , and the writing is second-rate .  So why was it so 
enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was 
overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do 
the same to you .
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Classifying sentiment for input x

Suppose w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] 
b = 0.1
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Classifying sentiment for input x
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Scaling input features
● z-score

● normalize
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Wait, where did the W’s come from?
● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ
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Wait, where did the W’s come from?
● Supervised classification:

○ A training time we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ

● We want to set w and b to minimize the distance between our estimate ŷ(i) and 
the true y(i)

○ We need a distance estimator: a loss function or a cost function
○ We need an optimization algorithm to update w and b to minimize the loss
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Learning components in LR
A loss function: 

● cross-entropy loss 

An optimization algorithm: 

● stochastic gradient descent
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Loss function: the distance between ŷ and y
We want to know how far is the classifier output ŷ 

from the true output: y [= either 0 or 1]

We'll call this difference: L(ŷ,y) = how much ŷ differs from the true y
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Intuition of negative log likelihood loss = 
cross-entropy loss
A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

● the log probability
● of the true y labels in the training data
● given the observations x
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Next class: 
● Deriving cross-entropy loss (please review Bernoulli distribution before class) 
● Stochastic gradient descent
● Softmax
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