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Overview

● What is Natural Language Understanding

● How do we measure progress in NLU

● How do we build NLU systems
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Overview

Illustrations in the slides - courtesy of DALL-E by OpenAI
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What is NLU?

Part 1/3
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What is NLU?

● How is it different from NLP?  (if it is different)
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What is NLU?

● A long history behind the terms:

NLP vs. NLU vs. Computational Linguistics

● NLP is becoming an umbrella term for everything 

language × computation
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The Chinese Room Argument

Suppose there is a person in a room full of books about the Chinese language

The books (in English) describe the grammar, syntax, and distributional 
patterns of Chinese

The person only speaks English
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The Chinese Room Argument

● Can that person pass the Turing test in Chinese (using the books)?

● If so, does it mean that person understands Chinese?
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The Chinese Room Argument

The argument presented here is slightly modified from the original one.

For a more detailed discussion on this topic:

https://plato.stanford.edu/entries/chinese-room/
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The Octopus Test

● A and B, both English speaking, are stranded on two islands

● They can communicate by telegraphs using an underwater cable

● There is an intelligent Octopus underwater

● O has been tapping into the cable

[Bender and Koller, 2020]
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The Octopus Test

● O is good at detecting statistical patterns

● But O cannot directly observe the two islands

● Can O pretend to be B without A noticing?

[Bender and Koller, 2020]
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The Octopus Test

● Scenario: A is being attacked by a bear and asks for B’s help through 
telegraphs

A wants B to help them build a coconut catapult 

[Bender and Koller, 2020]
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Measuring progress in NLU

Part 2/3
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Measuring ‘understanding’

● How do we measure language understanding of an NLP 
system?
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Measuring ‘understanding’

● Task: performance of the system on a task / benchmark

● Cognition: alignment with theories in cognitive science

(linguistics, psychology, etc.)
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Benchmarks

[Wang et al., 2018]
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GLUE

[Wang et al., 2018]
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Winograd Schema

https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html

Proposed by Hector Levesque

Named after Terry Winograd, Prof. of CS @ Stanford

Famous example: 

The city councilmen refused the demonstrators a permit because they         
           [feared / advocated] violence.

Who does they refer to?
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Winograd Schema

https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html

Designed to be
● easy for humans
● not solvable by simple techniques such as selectional restrictions
● Google-proof; that is, there is no obvious statistical test over text corpora that 

will reliably disambiguate these correctly
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Winograd Schema

https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html

Easy case:
● The women stopped taking pills because they were [pregnant / carcinogenic]. 

Which individuals were [pregnant/carcinogenic]?
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Winograd Schema

[Sakaguchi et al., 2019]

● Requires human judgment, expensive

● Winograd at scale  WinoGrande→

● Winograd: 273 problems
● WinoGrande: ~ 44000 problems
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Implicit knowledge is hidden in language

● Human language is highly complex, with many implicit 
assumptions built in

● Accurate measurement of ‘understanding’ is very difficult 
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Implicit knowledge is hidden in language

Are these two expressions equivalent?

(i).  We sent flowers to the French

(ii). We sent the French flowers
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Implicit knowledge is hidden in language

Are these two structures equivalent?

(i).  We sent flowers to the French

(ii). We sent the French flowers
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Implicit knowledge is hidden in language

(iii). We sent flowers to France

(iv).  *We sent France flowers

Key words: 

double object construction, animacy
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Implicit knowledge is hidden in language

Implicature: 
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Implicit knowledge is hidden in language

Implicature:

● Alice ate some of the apples.  Alice didn’t eat → all the apples. 

● Cancellable: In fact, she ate all the apples.

● The implied meaning is not literally expressed, must be inferred through 
pragmatics
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Implicit knowledge is hidden in language

Can BERT learn implicature?
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Bias in measurement

“BERT understands English”

● American English?

● South African English?

● Malaysian English?
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Bias in measurement

Paradigm in NLP: 

• Get as much data as possible from internet

• Filter data

• Pretrain model on data

• Finetune / prompt on downstream tasks

[Gururangan et al., 2022]
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Bias in measurement

● Data from the internet is noisy

● Filtering is needed

● To filter data, we need a standard of what is considered good data

● For example, GPT-3 filter is trained using Wikipedia and newspaper articles 
as ‘good data’

[Gururangan et al., 2022]
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Bias in measurement

[Gururangan et al., 2022]
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Bias in measurement

[Gururangan et al., 2022]
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Ambiguity

(1). Party balloon  → balloon for parties

(2). Rubber balloon → balloon made of rubber
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Ambiguity

Suppose we have the following unseen n-grams in the training

data:

 

???  birthday balloon
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Ambiguity

 

???  birthday balloon

Balloon made of birthdays 

(semantic nonsense)

Balloon for birthdays

Balloons that spell out “birthday”

(maybe?)
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Ambiguity

Can GPT-3 learn this kind of pattern?
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ChatGPT

https://chat.openai.com/chat
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ChatGPT

[Retrieved on Dec. 4, 2022]
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ChatGPT
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ChatGPT

Can you think of any task ChatGPT is not good at?
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ChatGPT

p r o c e s s i n g 

1   2   3   4   5   6   7  8   9  10

[Retrieved on Dec. 4, 2022]
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ChatGPT

[Retrieved on Dec. 4, 2022]
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ChatGPT

(2777 is prime)

[Retrieved on Dec. 4, 2022]
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ChatGPT

[Retrieved on Dec. 4, 2022]

p i t c h e r 
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ChatGPT

[Retrieved on Dec. 4, 2022]

Let’s try again...
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ChatGPT

[Retrieved on Dec. 4, 2022]

And here we go again
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Building NLU systems

Part 3/3
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Experience grounds language

“… successful linguistic communication relies on a 

shared experience of the world.”

The physical world provides grounding for our language.

[Bisk et al., 2020]
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Grounding

● Knowledge base

● Virtual world

● Communication (emergent communication)
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Grounding

● Knowledge base

● Text Generation from Knowledge Graphs with Graph Transformers 

● Virtual world

● Analysis of Language Change in Collaborative Instruction Following

● Communication (emergent communication)

● EMERGENT COMMUNICATION FINE-TUNING (EC-FT) FOR PRE-TRAINED 
LANGUAGE MODELS
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