OF COMPUTER SCIENCE & ENGINEERING

Natural Language Processing

Syntactic parsing

Yulia Tsvetkov

yuliats@cs.washington.edu

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Yulia Tsvetkov 1 Undergrad NLP 2022

}& Dependency representation

Y

I prefer the morning flight through Denver

}& Dependency representation

root
(rool)

I prefer the morning flight through Denver

= A dependency structure can be defined as a directed graph G,

consisting of
= asetV of nodes — vertices, words, punctuation, morphemes
= asetAofarcs —directed edges,
= alinear precedence order < on V (word order).

b Labeled graphs
nodes in V are labeled with word forms (and annotation).
= arcsin A are labeled with dependency types
= L={l,....l i1} isthe set of permissible arc labels;
= EveryarcinAis atriple (i,j,k), representing a dependency from w: to w;with
label !x.

E{’; Parsing problem

= This is equivalent to finding a spanning tree in the complete
graph containing all possible arcs

root
Peter bought \
bought
root - Peter/\,
picture
d \

picture

}g Parsing algorithms

= Transition based
= greedy choice of local transitions guided by a good classifier
= deterministic
= MaltParser (Nivre et al. 2008)
= Graph based
= Minimum Spanning Tree for a sentence
= McDonald et als (2005) MSTParser
= Martins et als (2009) Turbo Parser

g Transition Based Parsing

= greedy discriminative dependency parser
= motivated by a stack-based approach called shift-reduce

parsing originally developed for analyzing programming
languages (Aho & Ullman, 1972).
= Nivre 2003

rOO
dObj
det nmod

I prefer the morning ﬂlght through Denver

Configuration

Input buffer
wi w2 wn
- 1 D d
w ependency
&5 f E Parser . Relations
Stack | -
S——
sn
—

Basic transition-based parser. The parser examines the top two elements of the
(/8) stack and selects an action based on consulting an oracle that examines the current configura-
A tion.

¥

Configuration

Stack: partially °

Input buffer Buffer: unprocessed words

wi w2

processed words &

Stack

sn
—

Cinitial = ([ROOT]

A

—

Parser

Oracle

N—

wn

Dependency
Relations

Oracle: a classifier

¥

Operations

Stack: partially
processed words

Stack

s1

Input buffer Buffer: unprocessed words

wi w2

s2

sn

—

A

Parser

Oracle

N—

wn

Dependency
Relations

Oracle: a classifier

At each step choose:
= Shift

¥

Operations

Stack: partially
processed words

<

Stack

s1

Input buffer Buffer: unprocessed words

wi w2 wn

~ Dependency |

s2

sn

—

A

Parser

Relations

Oracle: a classifier

N—

At each step choose:

» Shift
= Reduce left

¥

Operations

Input buffer Buffer: unprocessed words

wi w2

Stack: partially (°
processed words &

Stack

sn
—

Parser

Oracle

N—

Caccept — ([ROOT], 4, A)

wn

" Dependency |
Relations

Oracle: a classifier

At each step choose:

= Shift
= |LeftArc or Reduce left
= RightArc or Reduce right

E& Shift-Reduce Parsing

Configuration:

= Stack, Buffer, Oracle, Set of dependency relations
Operations by a classifier at each step:

= Shift

= remove w1l from the buffer, add it to the top of the stack as s1
= LeftArc or Reduce left
= assert a head-dependent relation between s1 and s2 (s1 — s2)
= remove s2 from the stack
= RightArc or Reduce right
= assert a head-dependent relation between s2 and s1 (s2 — s1)
= remove sl from the stack

g Shift-Reduce Parsing (Arc-standard)

Cinitial = ([ROOT], w, @)

Book me the morning flight

Step Stack | Word List Action Relation Added

Shift-Reduce Parsing

I'O

o lOb_]
det
ob [

Y

Book me the morning ﬂlght

Step

Stack

Word List

Action

Relation Added

[root]

[book, me, the, morning, flight]

Shift-Reduce Parsing

I'O

o lOb_]
det
ob [

Y

Book me the morning ﬂlght

Step

Stack

Word List

Action

Relation Added

[root]

[book, me, the, morning, flight]

Shift-Reduce Parsing

erO I

Y

{iobj}

t

@
[
/

Book me the morning flight

Step

Stack

Word List

Action

Relation Added

[root]
[root, book]

[book, me, the, morning, flight]
[me, the, morning, flight]

SHIFT

Shift-Reduce Parsing

I'O

—

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight]

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, k] | [me, the, morning, flight] SHIFT
2 [root, boOk, me] | [the, morning, flight] RIGHTARC

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, k] | [me, the, morning, flight] SHIFT
2 [root, boOk, me] | [the, morning, flight] RIGHTARC (book — me)

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight]

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight]

Shift-Reduce Parsing

II'OO I

- —

[iobj}

A

4

Uobj;

t

@
[
/

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT

g Shift-Reduce Parsing

—

I'O

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight]

g Shift-Reduce Parsing

—

I'O

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT

Shift-Reduce Parsing

I'O

—

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

1 [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, morning] | [flight] SHIFT

6 [root, book, the, morning, flight] | []

Shift-Reduce Parsing

I'O

—

o lOb_]
det
ob [
\4

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

1 [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, Ming] [flight] SHIFT

6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)

Shift-Reduce Parsing

I'O

—

Y

o lOb_]
det
ob [

Book me the morning ﬂlght

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

| [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, morning] | [flight] SHIFT

6 [root, book, the, momirﬂght} [] LEFTARC | (morning < flight)
) [root, book, the, fiYght] | [] LEFTARC (the < flight)

Shift-Reduce Parsing

(100))

t
(deg
| dobj

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, theflight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)

Shift-Reduce Parsing

(100))

t
(det)
(dobj

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, bookeQight] | [] RIGHTARC (book — flight)
9 (root — book)

[root, book]

[]

RIGHTARC

Shift-Reduce Parsing

(100))

t
(dobj

Book me the morning flight

Caccept — ([ROOT]7 4, A)

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

E& Shift-Reduce Parsing

Configuration:

= Stack, Buffer, Oracle, Set of dependency relations
Operations by a classifier at each step: Complexity?
= Shift

= remove w1l from the buffer, add it to the top of the stack as s1
= LeftArc or Reduce left

= assert a head-dependent relation between(Oracle decisions can
= remove s2 from the stack correspond to unlabeled
= RightArc or Reduce right o Bl ize Sl

= assert a head-dependent relation between s2 and sl
= remove sl from the stack

p 3 Training an Oracle

= Oracle is a supervised classifier that learns a function from the
configuration to the next operation
= How to extract the training set?

p 3 Training an Oracle

m ini ?
How to extract the training set-
= if LeftArc — LeftArc det
= if RightArC Book the flight through Houston

= if s1 dependents have been processed — RightArc
= else — Shift

¥

Training an Oracle

= How to extract the training set?

if LeftArc — LeftArc

det

. If nghtArC Book the flight through Houston
= if s1 dependents have been processed — RightArc

» else — Shift

Step Stack Word List Predicted Action
0 [root] [book, the, flight, through, houston] SHIFT
| [root, book] [the, flight, through, houston] SHIFT
2 [root, book, the] [flight, through, houston] SHIFT
3 [root, book, the, flight] [through, houston] LEFTARC
4 v o8 [root, book, flight] [through, houston] SHIFT
5 [root, book, flight, through] [houston] SHIFT
6 [root, book, flight, through, houston] [] LEFTARC
7 [root, book, flight, houston | [] RIGHTARC
8 [root, book, flight] [] RIGHTARC
(0] [root bookl 1 RIGHTARC

p 3 Training an Oracle

= Oracle is a supervised classifier that learns a function from the
configuration to the next operation
= How to extract the training set?
= jf LeftArc — LeftArc
= jf RightArc
= if s1 dependents have been processed — RightArc
= else — Shift

» What features to use?

g Features

= POS, word-forms, lemmas on the stack/buffer ~(s1.w =flights,op = shift)
= morphological features for some languages ($2:w = canceled,op = shift)
= previous relations (s1.t = NNS,o0p = shift)
= conjunction features (e.g. Zhang&Clark’08; (2.1 = VBD, op = shift)
Huang&Sagae’10; Zhang&Nivre’11) (b1.w = 10,0p = shift)
(by.t =TO,o0p = shift)
Source Feature templates <Sl -wt = flightsNNS, op = shift >
One word s;.w 1.1 s1.wi (s1.t os2.t = NNSVBD, op = shift)
S2.W $2.7 §2.Wwi
by.w by.w bo.wt
Two word s;.wosy.w S1.[05857.1 sy.toby.w
S1.[082.wt S1.WOos2.WOos2.f S1.WOS1.108).1

S1.wos1.[082.1 S1.wosy.t

g Learning

= Before 2014: SVMs,
= After 2014: Neural Nets

g Chen & Manning 2014

Stack Buffer
{ ROOT hasVBZ good JJ ! i control NN .1
/nsubj
He_PRP

binary, sparse [oToToT1Tolo[1]0]. Jolo[1]0
dim =106~ 107

: So.w = has A so.t = VBZ :
Indicator . s1.w = good A s1.t = JJ A by.w = control ;
features - lc(s2)t =PRPAsyt =VBZAs;t=J]

lc(sg).w = He A le(s2).l = nsubj A so.w = has Slides by Dangi Chen

g Chen & Manning 2014

Softmax probabilities

Output layer y cross-entropy error will be

y = softmax(Uh + b,) M back-propagated to the
embeddings.

Hidden layer h 92000000

h = ReLU(Wx + b)) m

Input layer x |()(1000 000)

lookup + concat f
Stack Buffer
t ROOT hasVBZ good JJ ; control NN
nsubj

He PRP

¥

Chen & Manning 2014

= Features

s1,s2,s3, bl, b2, b3
leftmost/rightmost
children of s1 and s2
leftmost/rightmost
grandchildren of

sl and s2

POS tags for the above
arc labels for
children/grandchildren

Stack Buffer
i ROOT hasVBZ good.JJ control NN
/nsubj
He PRP

S good J) @
S2 has VBZ %
b1 control NN @
lc(51) =—p @ + @ + @
rc(s) % % %
lc(s2) He PRP nsubj
rc(sz) o @ 2

¥

Evaluation of Dependency Parsers

#correct dependencies

AT

ROOT She saw the video lecture

#of dependencies

0 1 2 3 4 5
Gold Parsed
1 2 She nsubj 1 2 She nsubj
2 0 saw root 2 0 saw root
3 5 the det 3 4 the det
4 5 video nn 4 5 video nsubj
5 2 lecture obj 5 2 lecture ccomp

= LAS - labeled attachment
score

= UAS - unlabeled attachment
score

}% Chen & Manning 2014

Parser UAS LAS sent. /s
MaltParser 89.8 87.2 469
MSTParser 91.4 38.1 10

TurboParser 92.3* 89.6* 8

C& M 2014 92.0 89.7 654

Follow-up

Wethod |uAs__|LAS (PTBWs)5D 33

Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

Stack LSTMs (Dyer et al. 2015)

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Chris Dyer** Miguel Ballesteros®® Wang Ling® Austin Matthews® Noah A. Smith*®
#Marianas Labs “NLP Group, Pompeu Fabra University *Carnegie Mellon University
chris@marianaslabs.com, miguel.ballesteros@upf.edu,

I]{nﬁl.r:nﬂ asmetrinma naemithlBAce Amin adn
N

@
SO
¢

(i) p (i)
Hﬁ *

T F s | T T T !

%] a f decision was made ROOT %)
hasty

«— REDUCE-LEFT(amod)

(iii)

«— SHIFT

}g Arc-Eager version

| root |
dobj

det

Book the flight through Houston

= LEFTARC: Assert a head-dependent relation between s1 and
bl; pop the stack.

= RIGHTARC: Assert a head-dependent relation between s1 and
bl; shift bl to be s1.

= SHIFT: Remove bl and push it to be s1.

= REDUCE: Pop the stack.

Arc-Eager

Step Stacks~ord List Action Relation Added
0 [rodt] | [book, the, flight, through, houston] | RIGHTARC (root — book)
| [root, boo the, flight, through, houston] SHIFT
2 [root, book, the] | [flight, through, houston] LEFTARC (the < flight)
3 [root, book] | [flight, through, houston] RIGHTARC (book — flight)
4 [root, book, flight] | [through, houston] SHIFT
5 [root, book, flight, through] | [houston] LEFTARC | (through < houston)
6 [root, book, flight] | [houston] RIGHTARC | (flight — houston)
) [root, book, flight, houston] | [] REDUCE
8 [root, book, flight] | [] REDUCE
9 [root, book] | [] REDUCE
10 [root] | [] Done

g Parsing algorithms

* Transition based
= greedy choice of local transitions guided by a good classifier
= deterministic
= MaltParser (Nivre et al. 2008), Stack LSTM (Dyer et al. 2015)

= Graph based
= Minimum Spanning Tree for a sentence
= non-projective
= globally optimized
= McDonald et al’s (2005) MSTParser
= Martins et als (2009) Turbo Parser

E& Summary

= Transition-based
= 4+ Fast
= + Rich features of context
= - Greedy decoding

= Graph-based

= + Exact or close to exact decoding
= - Weaker features

Well-engineered versions of the approaches achieve comparable
accuracy (on English), but make different errors

— combining the strategies results in a substantial boost in performance

