
Undergrad NLP 2022Yulia Tsvetkov

Natural Language Processing
Syntactic parsing

Yulia Tsvetkov

yuliats@cs.washington.edu

1

Dependency representation

Dependency representation

▪ A dependency structure can be defined as a directed graph G,
consisting of
▪ a set V of nodes – vertices, words, punctuation, morphemes
▪ a set A of arcs – directed edges,
▪ a linear precedence order < on V (word order).

▪ Labeled graphs
▪ nodes in V are labeled with word forms (and annotation).
▪ arcs in A are labeled with dependency types
▪ is the set of permissible arc labels;
▪ Every arc in A is a triple (i,j,k), representing a dependency from to with

label .

Parsing problem

▪ This is equivalent to finding a spanning tree in the complete
graph containing all possible arcs

Parsing algorithms

▪ Transition based
▪ greedy choice of local transitions guided by a good classifier
▪ deterministic
▪ MaltParser (Nivre et al. 2008)

▪ Graph based
▪ Minimum Spanning Tree for a sentence
▪ McDonald et al.’s (2005) MSTParser
▪ Martins et al.’s (2009) Turbo Parser

Transition Based Parsing

▪ greedy discriminative dependency parser
▪ motivated by a stack-based approach called shift-reduce

parsing originally developed for analyzing programming
languages (Aho & Ullman, 1972).

▪ Nivre 2003

Configuration

Configuration

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

Operations

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

▪ Shift

Operations

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

▪ Shift
▪ Reduce left

Operations

Buffer: unprocessed words

Stack: partially
processed words

Oracle: a classifier

At each step choose:

▪ Shift
▪ LeftArc or Reduce left
▪ RightArc or Reduce right

Shift-Reduce Parsing

Configuration:

▪ Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

▪ Shift
▪ remove w1 from the buffer, add it to the top of the stack as s1

▪ LeftArc or Reduce left
▪ assert a head-dependent relation between s1 and s2 (s1 → s2)
▪ remove s2 from the stack

▪ RightArc or Reduce right
▪ assert a head-dependent relation between s2 and s1 (s2 → s1)
▪ remove s1 from the stack

Shift-Reduce Parsing (Arc-standard)

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Configuration:

▪ Stack, Buffer, Oracle, Set of dependency relations

Operations by a classifier at each step:

▪ Shift
▪ remove w1 from the buffer, add it to the top of the stack as s1

▪ LeftArc or Reduce left
▪ assert a head-dependent relation between s1 and s2
▪ remove s2 from the stack

▪ RightArc or Reduce right
▪ assert a head-dependent relation between s2 and s1
▪ remove s1 from the stack

Complexity?

Oracle decisions can
correspond to unlabeled
or labeled arcs

Training an Oracle

▪ Oracle is a supervised classifier that learns a function from the
configuration to the next operation

▪ How to extract the training set?

Training an Oracle

▪ How to extract the training set?
▪ if LeftArc → LeftArc
▪ if RightArc
▪ if s1 dependents have been processed → RightArc

▪ else → Shift

▪ How to extract the training set?
▪ if LeftArc → LeftArc
▪ if RightArc
▪ if s1 dependents have been processed → RightArc

▪ else → Shift

Training an Oracle

Training an Oracle

▪ Oracle is a supervised classifier that learns a function from the
configuration to the next operation

▪ How to extract the training set?
▪ if LeftArc → LeftArc
▪ if RightArc
▪ if s1 dependents have been processed → RightArc

▪ else → Shift

▪ What features to use?

Features

▪ POS, word-forms, lemmas on the stack/buffer
▪ morphological features for some languages
▪ previous relations
▪ conjunction features (e.g. Zhang&Clark’08;

Huang&Sagae’10; Zhang&Nivre’11)

Learning

▪ Before 2014: SVMs,
▪ After 2014: Neural Nets

Chen & Manning 2014

Slides by Danqi Chen
& Chris Manning

Chen & Manning 2014

Chen & Manning 2014

▪ Features
▪ s1, s2, s3, b1, b2, b3
▪ leftmost/rightmost

children of s1 and s2
▪ leftmost/rightmost

grandchildren of
 s1 and s2

▪ POS tags for the above
▪ arc labels for

children/grandchildren

Evaluation of Dependency Parsers

▪ LAS - labeled attachment
score

▪ UAS - unlabeled attachment
score

Chen & Manning 2014

Follow-up

Stack LSTMs (Dyer et al. 2015)

Arc-Eager version

▪ LEFTARC: Assert a head-dependent relation between s1 and
b1; pop the stack.

▪ RIGHTARC: Assert a head-dependent relation between s1 and
b1; shift b1 to be s1.

▪ SHIFT: Remove b1 and push it to be s1.
▪ REDUCE: Pop the stack.

Arc-Eager

Parsing algorithms

▪ Transition based
▪ greedy choice of local transitions guided by a good classifier
▪ deterministic
▪ MaltParser (Nivre et al. 2008), Stack LSTM (Dyer et al. 2015)

▪ Graph based
▪ Minimum Spanning Tree for a sentence
▪ non-projective
▪ globally optimized
▪ McDonald et al.’s (2005) MSTParser
▪ Martins et al.’s (2009) Turbo Parser

Summary

▪ Transition-based
▪ + Fast
▪ + Rich features of context
▪ - Greedy decoding

▪ Graph-based
▪ + Exact or close to exact decoding
▪ - Weaker features

Well-engineered versions of the approaches achieve comparable
accuracy (on English), but make different errors

→ combining the strategies results in a substantial boost in performance

