

Natural Language Processing

Neural Sequence Labeling

Sachin Kumar

sachink@cs.cmu.edu

Includes slides/images from Graham Neubig, Emma Strubell, Wei Xu, Greg Durrett

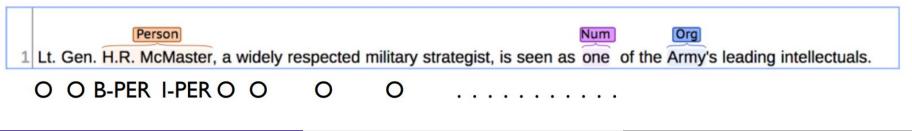
Recap: Sequence Labeling

Input
$$x = (x_1, ..., x_n)$$
 Output $y = (y_1, ..., y_n)$

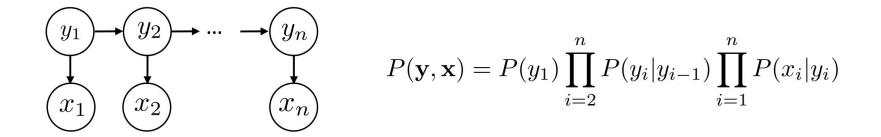
Part-of-Speech:

1	INP INP INP INP , DT RB JJ JJ INN , VBZ VBN IN CD IN DT INP POS VBG Lt. Gen. H.R. McMaster, a widely respected military strategist, is seen as one of the Army 's leading
	ntellectuals.

Named Entity Recognition:



Recap: Generative Models of Sequence Labeling



• Training: Maximum Likelihood Estimation (Count and Divide)

• Inference (decoding):
$$\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y}, \mathbf{x})}{P(\mathbf{x})}$$

• Viterbi:
$$score_i(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_i|s) score_{i-1}(y_{i-1})$$

Limitations of HMMs



I will friend him on Facebook.

- Difficult to handle a word with an unseen tag or an unknown word
- HMMs don't allow adding additional features.
 - e.g. Facebook is capitalized (should be a NN), friend is followed by will, might be a VB.
- HMMs perform poorly on more complex tasks like Named Entity Recognition (NER)

Named Entity Recognition

• Why might an HMM not do so well here?

- Lots of O's, so tags are not as informative [about the context].
- Lots of unknown entities at test time smoothing will not work.

Today: Discriminative Models

Goal: To tag a sequence

- Directly model p(y|x)
 - Simply using logistic regression, Maximum Entropy Markov Models (or MEMMs)
 - Conditional Random Fields (or CRFs).

Generative vs Discriminative Models

 Generative Models specify a *joint* distribution over the labels and the data. e.g. HMMs

$$p(\mathbf{y}, \mathbf{x}) = p(\mathbf{y})p(\mathbf{x}|\mathbf{y})$$

• Discriminative models compute the *conditional* distribution of the labels given the input. You want to **discriminate** between different labels.

$$p(\mathbf{y}|\mathbf{x})$$

Discriminative Model

• General form:

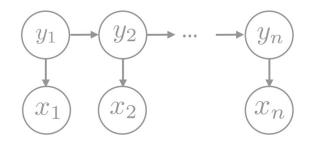
 $p(\mathbf{y}|\mathbf{x})$

• Zero-th order Markov assumption

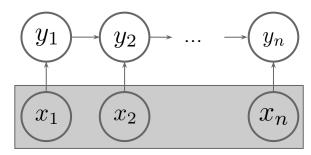
 $\prod_{i=1}^{n} p(y_i | \mathbf{x})$

• First order Markov assumption

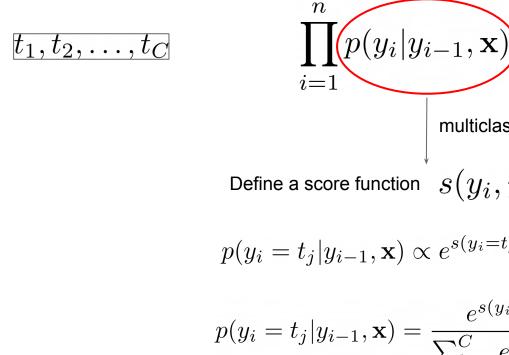
$$\prod_{i=1}^{n} p(y_i | y_{i-1}, \mathbf{x})$$



MEMM



Maximum Entropy Markov Models



A text classification problem (with more than 2 classes)

multiclass logistic regression

Define a score function
$$\ s(y_i,y_{i-1},{f x})$$

$$p(y_i = t_j | y_{i-1}, \mathbf{x}) \propto e^{s(y_i = t_j, y_{i-1}, \mathbf{x})}$$

$$p(y_i = t_j | y_{i-1}, \mathbf{x}) = \frac{e^{s(y_i = t_j, y_{i-1}, \mathbf{x})}}{\sum_{k=1}^{C} e^{s(y_i = t_k, y_{i-1}, \mathbf{x})}}$$
Normalization

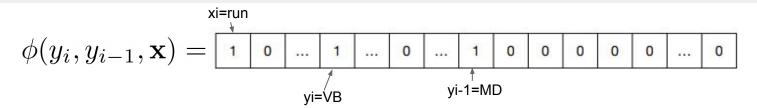
Scoring Function

$$s(y_i, y_{i-1}, \mathbf{x}) = \mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})$$
weights
(vector)
Feature function
(vector)

Three Questions

- 1. How to define features?
- 2. How to learn the weights for features?
- 3. How to perform inference (decoding)?

How to define features



- What is the current word, xi?
 - Number of features: size of vocabulary
- What is the previous label y_{i-1}
 - Number of features: total number of tags

- What is the previous word x_{i-1} ... ?
 - Number of features: size of vocabulary

Example: I will run.

More interesting features

• Is the current word capitalized?

I will absolutely friend you on Facebook.

• Does the current (or previous) word end in -ly, -ed, ...

• Does the current word contain digits, or a period?

Features can also be learned

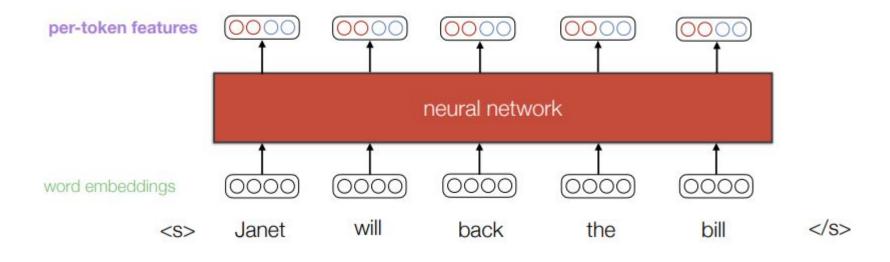
Using neural networks.

Basic Idea: encode the sequence of words into a sequence of vectors

Features can also be learned

Using neural networks.

Basic Idea: encode the sequence of words into a sequence of vectors



Features can also be learned

How to encode: Recurrent Neural Networks

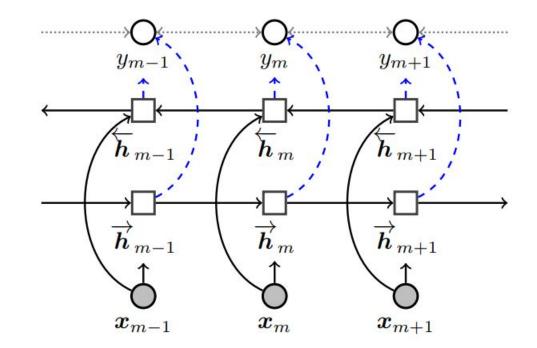
$$\begin{array}{l} h_i = F_{\!\theta}(h_{i-1}, x_i) & h_0 = \mathbf{0} \\ \hline \\ \text{Token Feature at i} & \text{Token Feature at i-1} & \text{Input at i} \\ \phi(y_i, y_{i-1}, \mathbf{x}) = G(h_i, y_i, y_{i-1}) \end{array}$$

What is F:

- LSTM
- Transformers

...

Bi-RNN-CRF



How to estimate the weights?

$$p(y_i|y_{i-1}, \mathbf{x}) = \frac{e^{s(y_i, y_{i-1}, \mathbf{x})}}{\sum_{i=1}^C e^{s(y_i, y_{i-1}, \mathbf{x})}}$$

$$s(y_i, y_{i-1}, \mathbf{x}) = \mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})$$

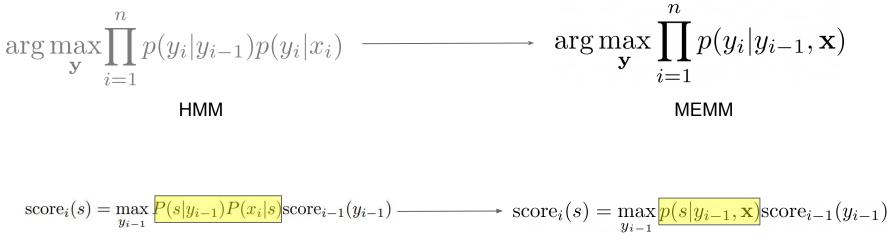
• Supervised Classification (text and labels are provided as training data)

Input
$$x = (x_1, ..., x_n)$$
 Output $y = (y_1, ..., y_n)$

• Minimize cross entropy (aka Negative Log Likelihood) to find weights w and (also neural network parameters).

$$\sum -\log p(y_i|y_{i-1},\mathbf{x})$$

How to decode? Viterbi again!



Viterbi decoding with HMMs

Viterbi decoding with MEMMs

How to decode?

$$\arg \max_{\mathbf{y}} \prod_{i=1}^{n} p(y_i | y_{i-1}, \mathbf{x})$$

$$\max_{y_1, \dots, y_n} p(y_1 | y_0, \mathbf{x}) p(y_2 | y_1, \mathbf{x}) \dots p(y_n | y_{n-1}, \mathbf{x})$$
Say I knew the value of y_{n-1} = u
$$\operatorname{score}_n(y_{n-1} = s) = \max_{(y_1, \dots, y_{n-2})} p(y_1 | y_0, \mathbf{x}) \dots p(y_{n-1} = s | y_{n-2}, \mathbf{x})$$

$$\operatorname{score}_n(y_n = s') = \max_{y_{n-1}} p(y_n = s' | y_{n-1}, \mathbf{x}) \operatorname{score}_{n-1}(y_{n-1})$$

This recurrence relation can be solved by dynamic programming. AKA Viterbi algorithm

Sachin Kumar

MEMMs - Summary

$$\prod_{i=1}^{n} p(y_i | y_{i-1}, \mathbf{x})$$

$$p(y_i|y_{i-1}, \mathbf{x}) = \frac{e^{s(y_i, y_{i-1}, \mathbf{x})}}{\sum_{i=1}^{C} e^{s(y_i, y_{i-1}, \mathbf{x})}}$$

$$s(y_i, y_{i-1}, \mathbf{x}) = \mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})$$

• Training – Cross Entropy Loss and Gradient Descent

• Decoding: Viterbi Algorithm $\arg \max_{\mathbf{y}} \prod_{j=1}^{n} p(y_i | y_{i-1}, \mathbf{x})$

Local Normalization

• MEMMs are locally normalized.

$$p(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|y_{i-1}, \mathbf{x})$$

Conditional distribution sums to one for each step i.

$$p(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} \frac{e^{\mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}}{\sum_{i=1}^{C} e^{\mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}}$$

Local Normalization to Global Normalization Conditional Random Fields

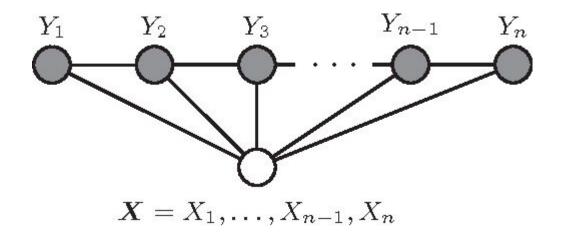
• If we do global normalization, we get "conditional random fields" or CRFs.

$$\prod_{i=1}^{n} \frac{e^{\mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}}{\sum_{i=1}^{C} e^{\mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}} \longrightarrow p(\mathbf{y} | \mathbf{x}) = \frac{e^{\mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})}}{\sum_{\mathbf{y}'} e^{\mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})}}$$

$$\Phi(\mathbf{y}, \mathbf{x}) = \sum_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x})$$
 Old feature vector

CRF - Undirected Graphical Model

$$\Phi(\mathbf{y}, \mathbf{x}) = \sum_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x})$$



CRFs

- How to find the weights training?
 - Same as MEMM, minimize cross entropy
 - We have the same set of weights we had with MEMM. How they are learned is different (and better).

- How to find tags at test time decoding?
 - Viterbi

Decoding with CRFs - Viterbi Algorithm

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} \underbrace{\frac{e^{\mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})}}{\sum_{\mathbf{y}'} e^{\mathbf{w} \cdot \Phi(\mathbf{y}', \mathbf{x})}}}_{\mathbf{y}'}$$

Independent of y

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y}} e^{\mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})}$$

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y}} \mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})$$

Decoding with CRFs - Viterbi Algorithm

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y}} \mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})$$

$$\Phi(\mathbf{y}, \mathbf{x}) = \sum_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x})$$

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y}} \mathbf{w} \cdot \sum_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x})$$

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y}} \sum_{i=1}^{n} \mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})$$

Decoding with CRFs - Viterbi Algorithm

$$\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} \sum_{i=1}^{n} \mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})$$

This can be also solved with Viterbi!

$$score_{i}(s) = \max_{y_{i-1}} P(s|y_{i-1})P(x_{i}|s)score_{i-1}(y_{i-1})$$

Viterbi decoding with HMMs
$$score_{i}(s) = \max_{y_{i-1}} \mathbf{w} \cdot \phi(s, y_{i} - 1, \mathbf{x}) + score_{i-1}(y_{i-1})$$

Viterbi decoding with CRFs

Training CRF weights

Input
$$x = (x_1, ..., x_n)$$
 Output $y = (y_1, ..., y_n)$

Supervised Classification (text and labels are provided as training data)

$$\mathcal{L}(\mathbf{w}) = -\log p(\mathbf{y}|\mathbf{x})$$

$$\mathcal{L}(\mathbf{w}) = -\log \frac{e^{\mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})}}{\sum_{\mathbf{y}'} e^{\mathbf{w} \cdot \Phi(\mathbf{y}', \mathbf{x})}} \text{ Really expensive!}$$

The normalization complexity is huge — every possible sequence of labels of length

Can solve fast by dynamic programming!

 $\sum_{\mathbf{y}'} e^{\mathbf{w} \cdot \Phi(\mathbf{y}', \mathbf{x})}$

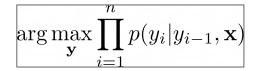
 $\sum e^{\mathbf{w} \cdot \sum_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x})}$ \mathbf{v}'

 $\sum_{\mathbf{y}'} e^{\sum_{i=1}^{n} \mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}$

Forward Algorithm

$$\sum_{\mathbf{y}'} e^{\sum_{i=1}^{n} \mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}$$

$$\sum_{\mathbf{y}'} \prod_{i=1}^{n} e^{\mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}$$



Both terms compute a product of some values dependent of yi, yi-1, and x

The max is replaced with sum

Dynamic Programming: Forward Algorithm

$$\sum_{\mathbf{y}'} \prod_{i=1}^{n} e^{\mathbf{w} \cdot \phi(y_i, y_{i-1}, \mathbf{x})}$$

$$score_{i}(s) = \max_{y_{i-1}} P(s|y_{i-1})P(x_{i}|s)score_{i-1}(y_{i-1})$$

Viterbi decoding with HMMs
$$score_{i}(s) = \sum_{y_{i-1}} e^{\mathbf{w} \cdot \phi(s, y_{i}-1, \mathbf{x})}score_{i-1}(y_{i-1})$$

Forward algorithm in CRFs

To summarize:

CRFs:
$$p(\mathbf{y}|\mathbf{x}) = \frac{e^{\mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})}}{\sum_{\mathbf{y}'} e^{\mathbf{w} \cdot \Phi(\mathbf{y}, \mathbf{x})}}$$

$$\Phi(\mathbf{y}, \mathbf{x}) = \sum_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x})$$

Features:

• Hand engineered or based on neural networks.

Training:

• Cross Entropy Loss (and Gradient Descent) + Forward Algorithm

Decoding

• Viterbi Algorithm

Readings

- Log Linear Models, MEMMs and CRFS (Michael Collins): <u>crf.pdf (columbia.edu)</u>
- BiLSTM-CRFs for sequence labeling: [1508.01991] Bidirectional LSTM-CRF Models for Sequence Tagging (arxiv.org)
- Natural Language Processing, Jacob Eisenstein (7.5.3): <u>eisenstein-nov18.pdf (ucsd.edu)</u>