CSE 447 Lecture Xiaochuang Han (Han)

Prerequisites

- 1. Sequence labeling task
 - Part-of-speech (POS) tagging

 $w_1,w_2,\ldots,w_n \
ightarrow \ y_1,y_2,\ldots,y_n$

- 2. Logistic regression
 - Training and inference

 $p_{ heta}(y \mid x)$

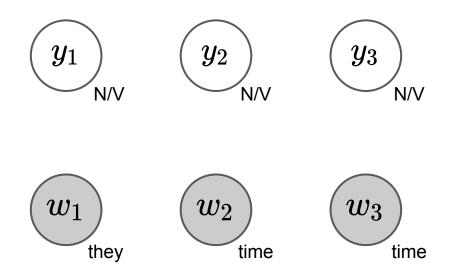
3. Dynamic programming (optional)

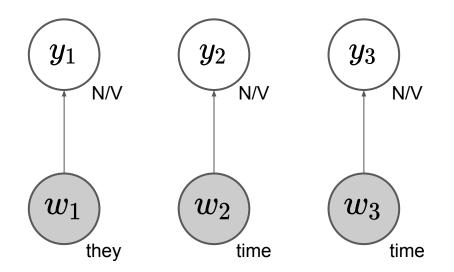
A POS-tagging example

POS? POS? POS?

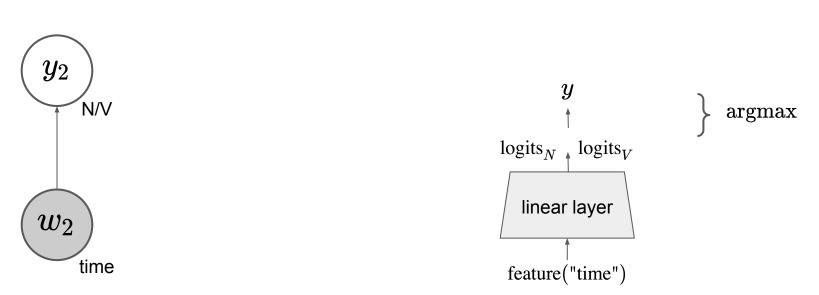
they time time

A POS-tagging example

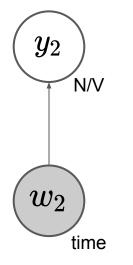




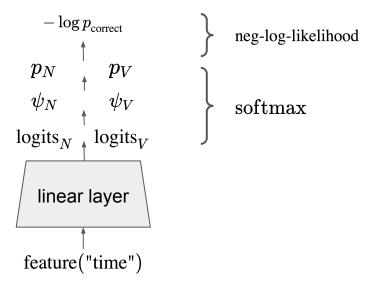
Predict each individual tag with logistic regression

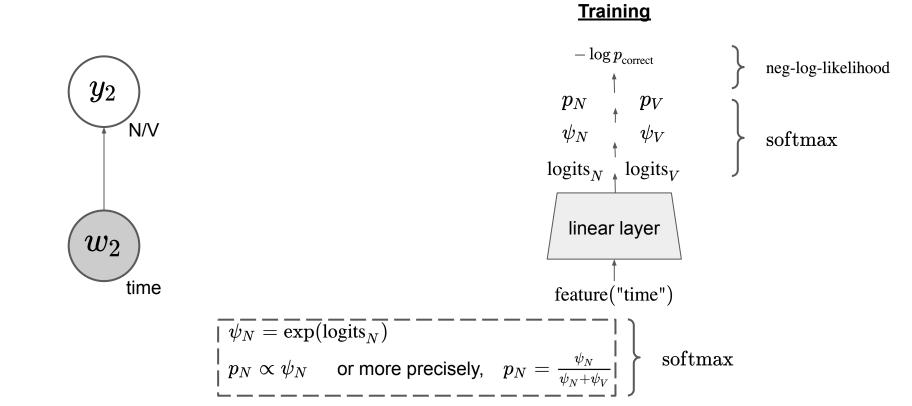


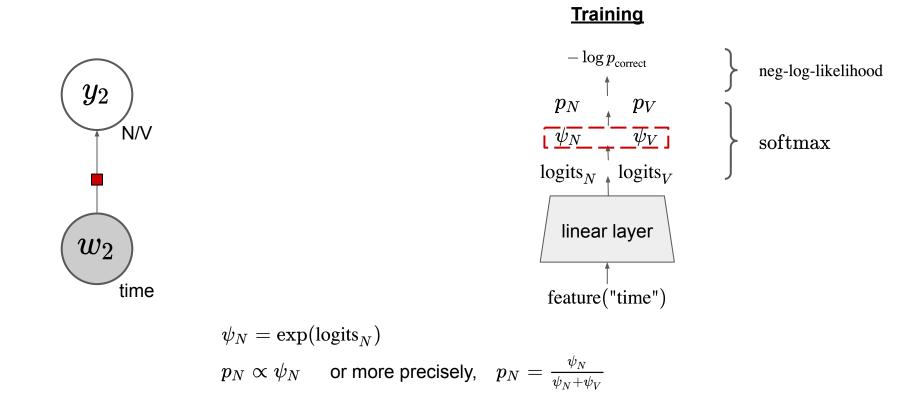
Inference

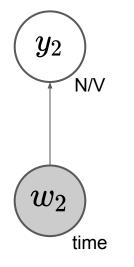


Training

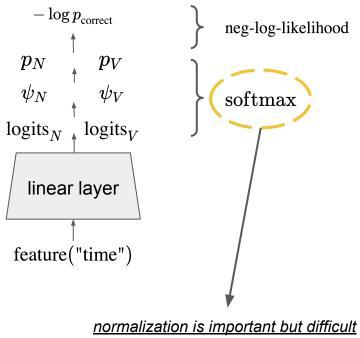




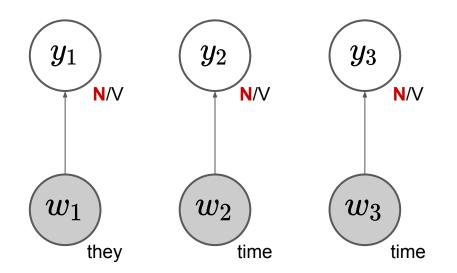




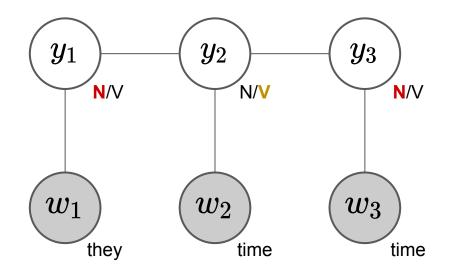
Training



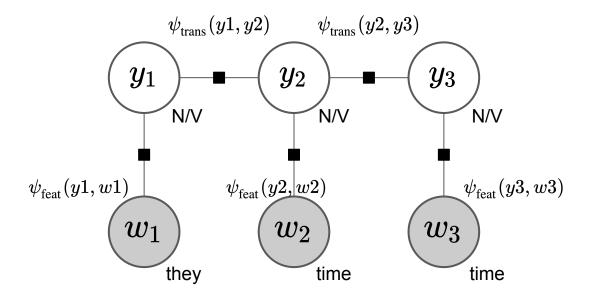
in the sequence setup



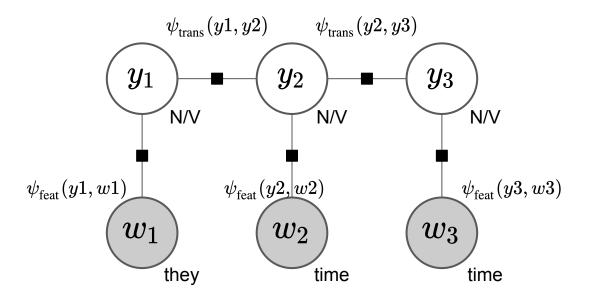
Predicting each individual tag with logistic regression is suboptimal



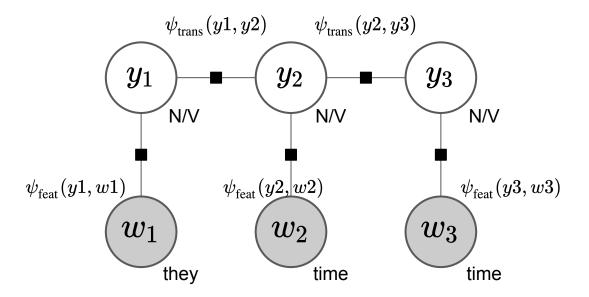
Incorporate structures between the labels



We define a series of scores $\,\psi\,$

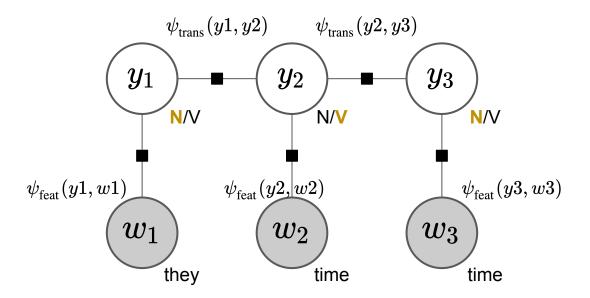


These scores are similar to their counterparts in logistic regression: (0, +inf)

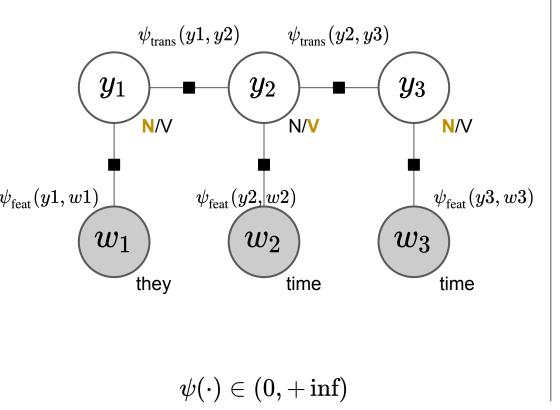


Again like in LR, these scores come from models with learnable parameters. In the homework:

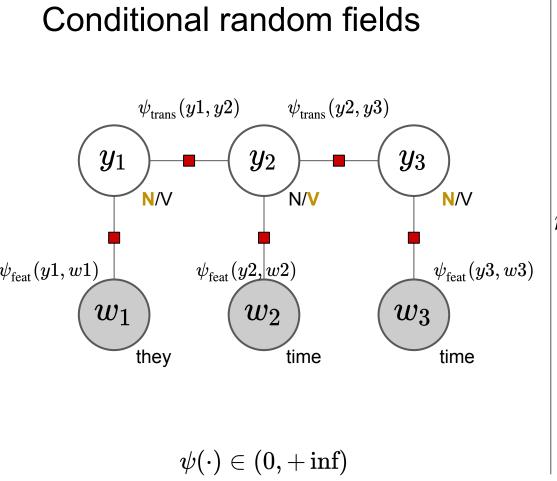
- ψ_{feat} is parameterized by a bidirectional LSTM
- + $\psi_{\rm trans}$ is parameterized by a simple lookup table



The goal of training a CRF is to obtain the probability of the gold label sequence, and optimize the model parameters to maximize that probability.

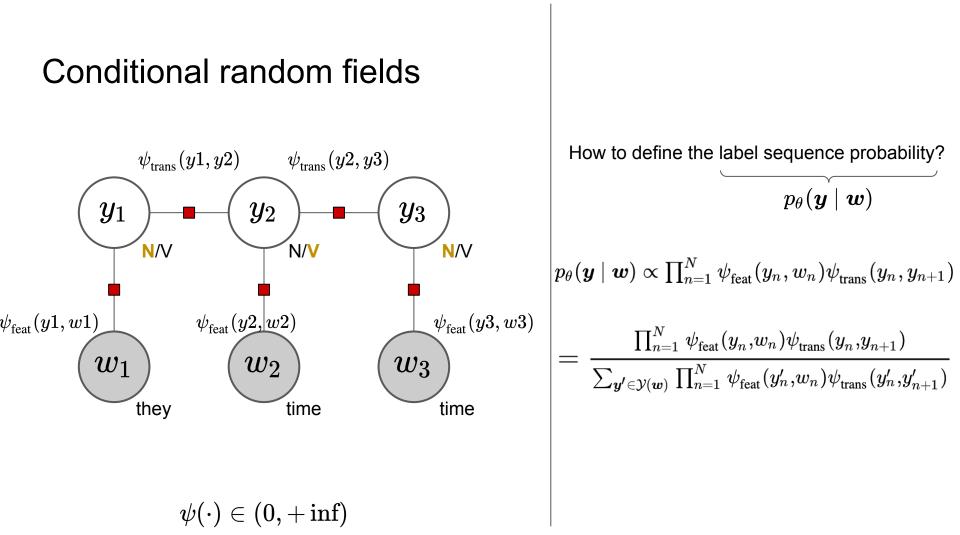


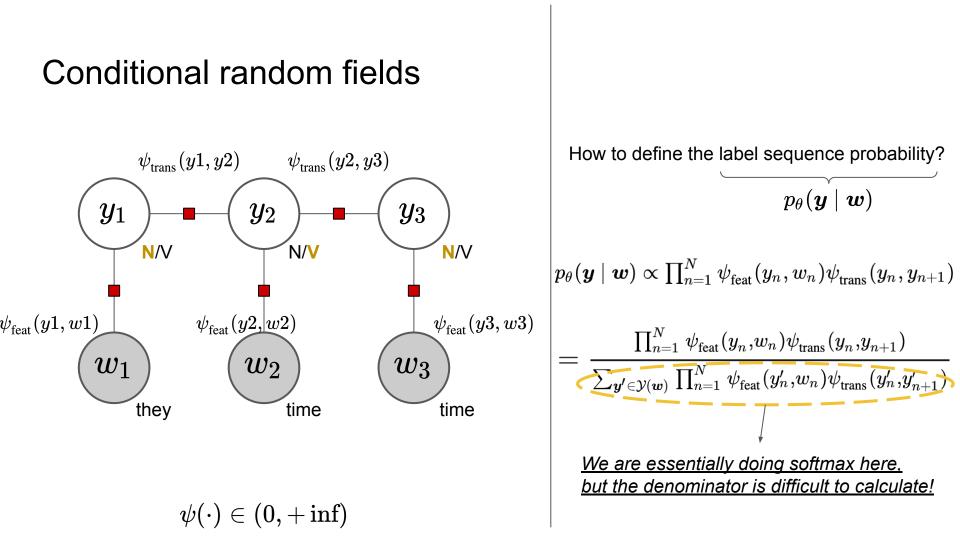
How to define the label sequence probability? $\underbrace{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}_{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}$

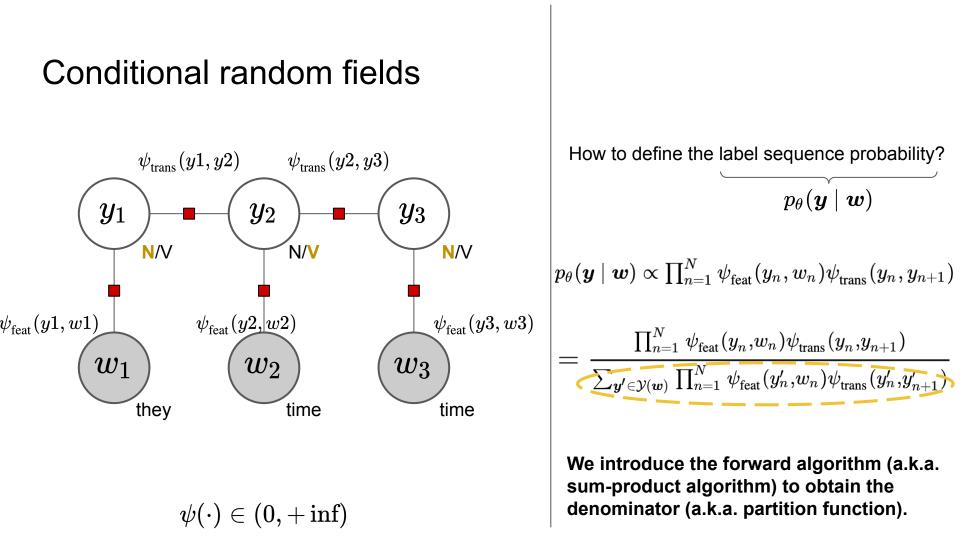


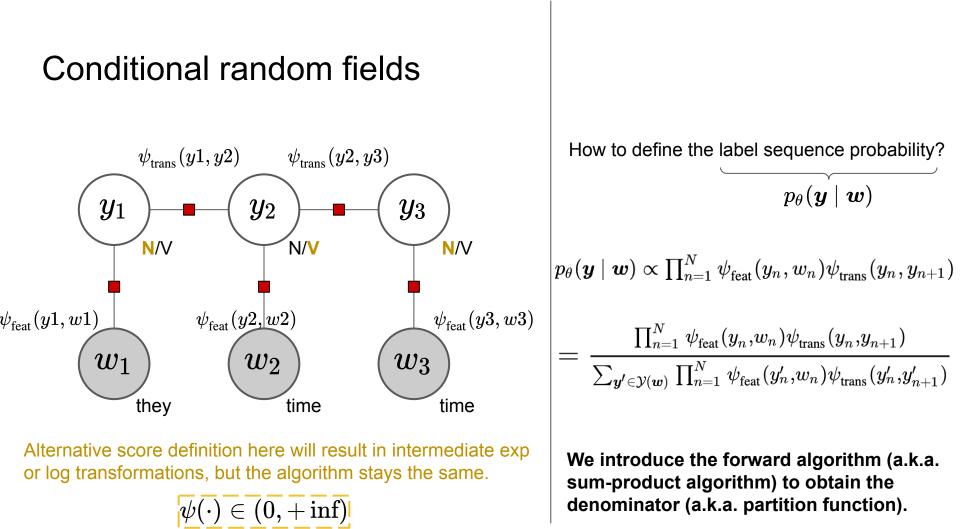
How to define the label sequence probability? $\underbrace{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}_{p_{\theta}(\boldsymbol{y} \mid \boldsymbol{w})}$

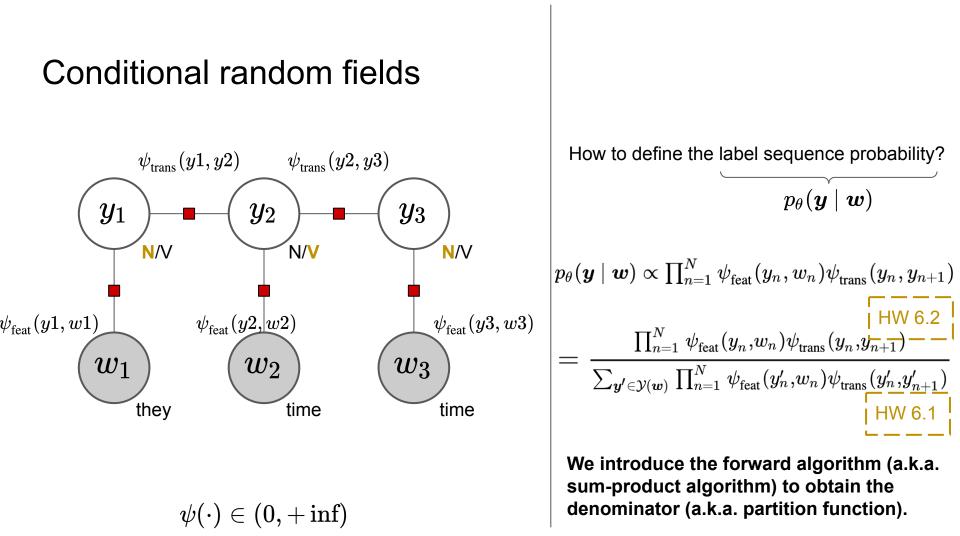
$$p_{ heta}(oldsymbol{y} \mid oldsymbol{w}) \propto \prod_{n=1}^N \psi_{ ext{feat}}(y_n, w_n) \psi_{ ext{trans}}(y_n, y_{n+1})$$



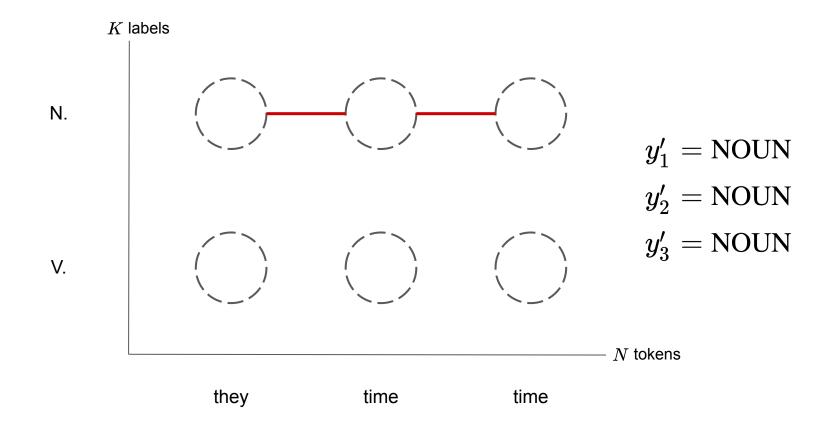




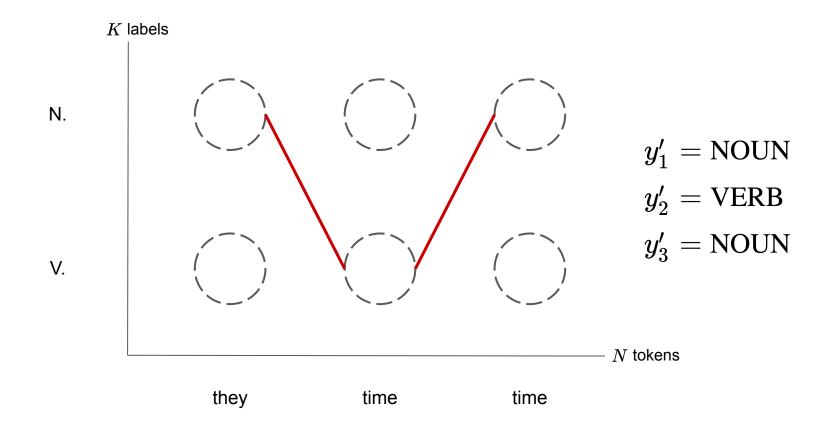




 $\left|Z = \sum_{m{y}' \in \mathcal{Y}(m{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})
ight|$

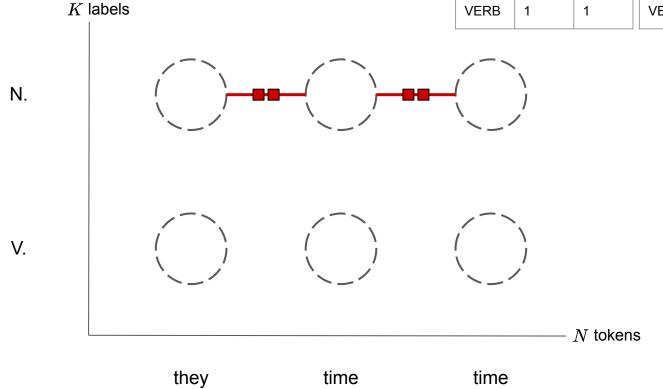


 $Z = \sum_{m{y}' \in \mathcal{Y}(m{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})$



 $Z = \sum_{oldsymbol{y}' \in \mathcal{Y}(oldsymbol{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})$

$\psi_{\rm feat}$	"they"	"time"	ψ_{trans}	NOUN	VERB
NOUN	4	3	NOUN	2	3
VERB	1	1	VERB	3	1

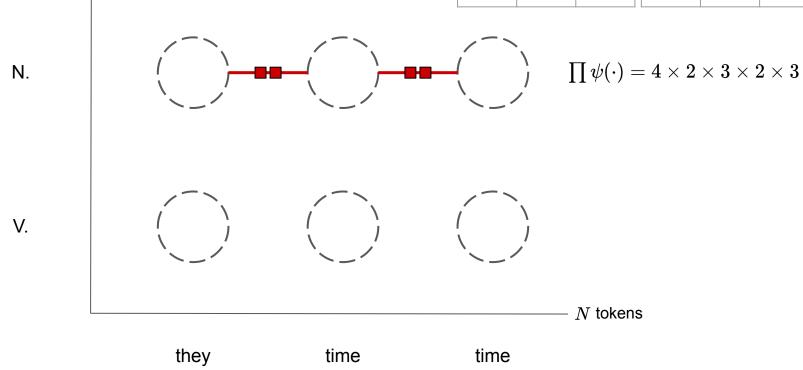


 $Z = \sum_{oldsymbol{y}' \in \mathcal{Y}(oldsymbol{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})$

Conditional random fields

K labels

$\psi_{\rm feat}$	"they"	"time"	ψ_{trans}	NOUN	VERB
NOUN	4	3	NOUN	2	3
VERB	1	1	VERB	3	1

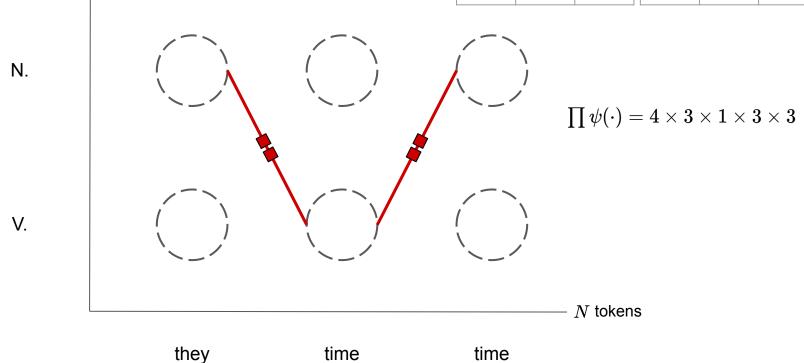


 $Z = \sum_{m{y}' \in \mathcal{Y}(m{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})$

Conditional random fields

K labels

$\psi_{\rm feat}$	"they"	"time"	ψ_{trans}	NOUN	VERB
NOUN	4	3	NOUN	2	3
VERB	1	1	VERB	3	1

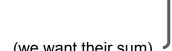


 $Z = \sum_{m{y}' \in \mathcal{Y}(m{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})$

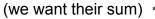
Conditional random fields $\psi_{\rm feat}$ K labels VERB N.

V.

"they" "time" NOUN VERB ψ_{trans} NOUN NOUN 3 3 2 4 VERB 3 1 1 1



 $\prod \psi(\cdot) = 4 imes 2 imes 3 imes 2 imes 3$]



they

time

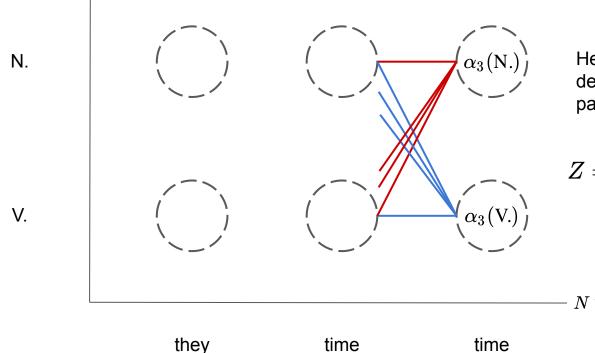
time

 $Z = \sum_{oldsymbol{y}' \in \mathcal{Y}(oldsymbol{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})$

Conditional random fields

K labels

$\psi_{\rm feat}$	"they"	"time"	ψ_{trans}	NOUN	VERB
NOUN	4	3	NOUN	2	3
VERB	1	1	VERB	3	1



Here the alpha variable denotes the sum of all paths ***ending*** at the cell.

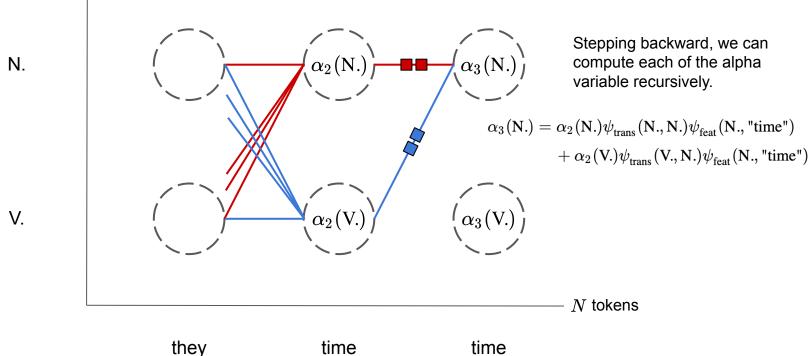
$$Z=lpha_3(\mathrm{N.})+lpha_3(\mathrm{N.})$$

 $Z = \sum_{m{y}' \in \mathcal{Y}(m{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y_n', w_n) \psi_{ ext{trans}}(y_n', y_{n+1}')$

Conditional random fields

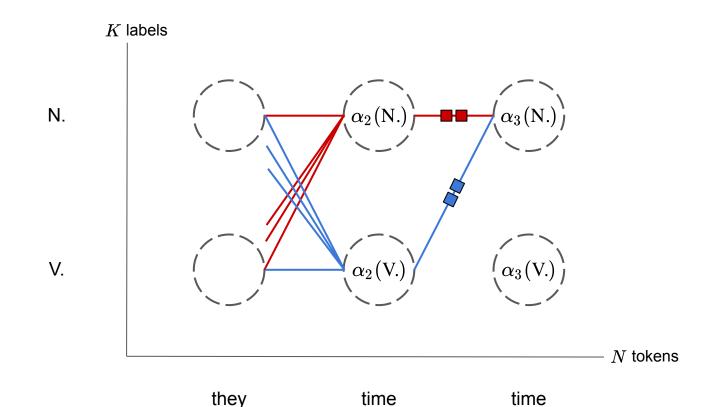
K labels

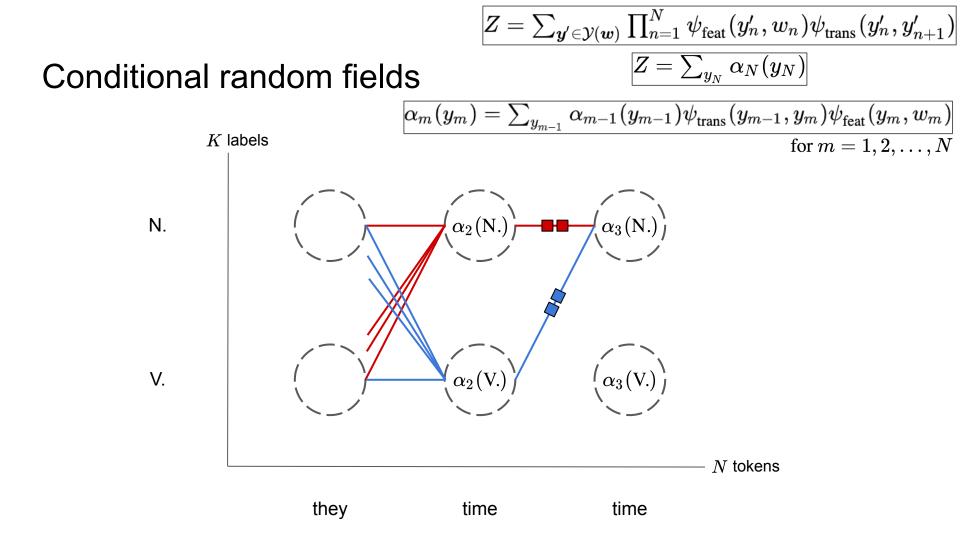
$\psi_{\rm feat}$	"they"	"time"	ψ_{trans}	NOUN	VERB
NOUN	4	3	NOUN	2	3
VERB	1	1	VERB	3	1

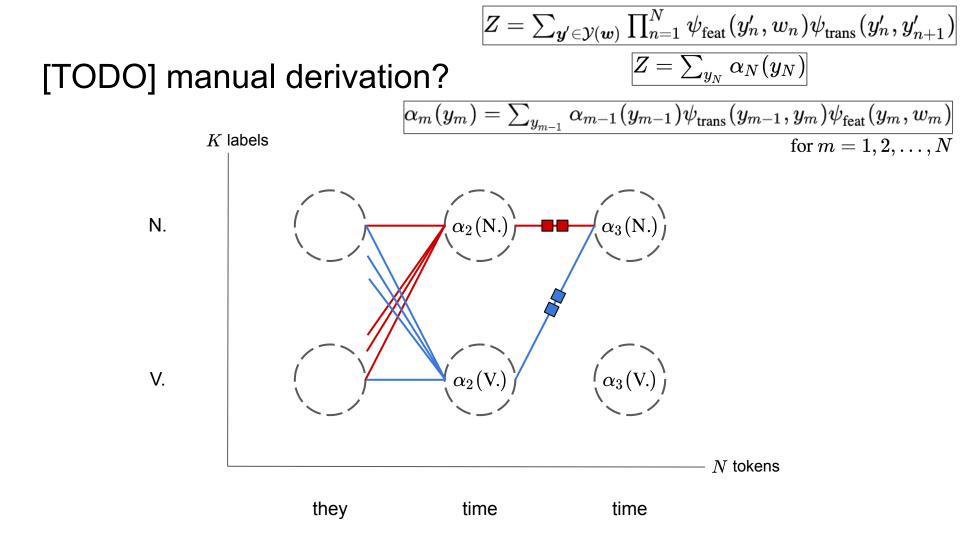


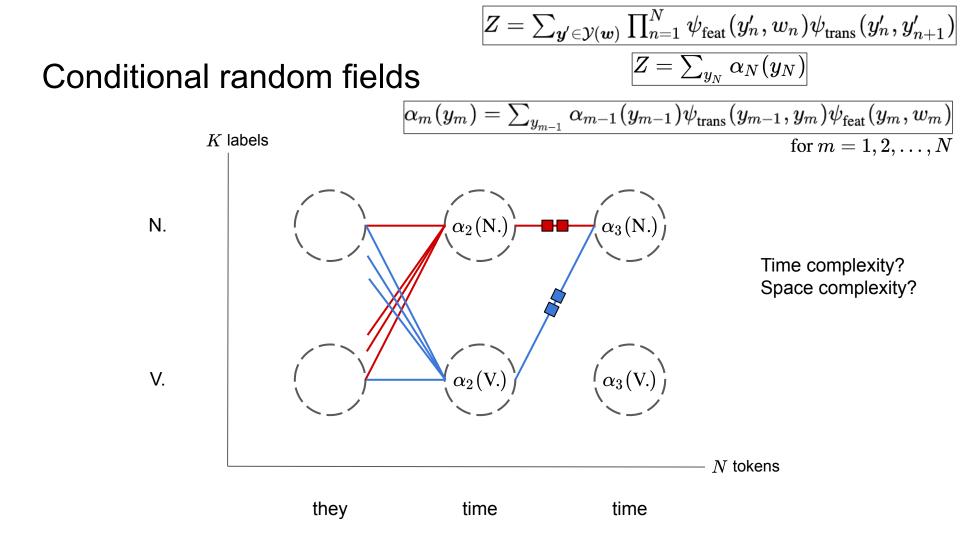
 $Z = \sum_{m{y}' \in \mathcal{Y}(m{w})} \prod_{n=1}^N \psi_{ ext{feat}}(y'_n, w_n) \psi_{ ext{trans}}(y'_n, y'_{n+1})$

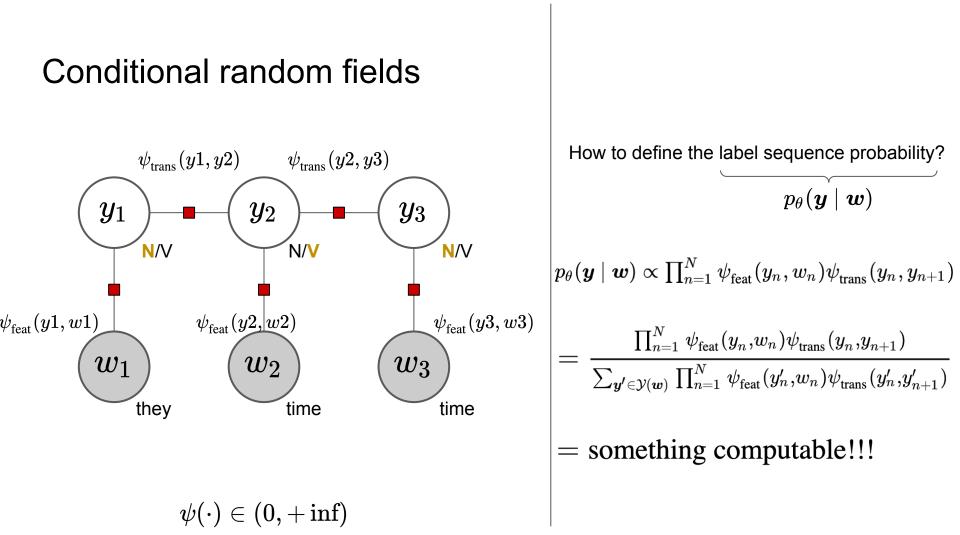
$$Z = \sum_{y_N} lpha_N(y_N)$$

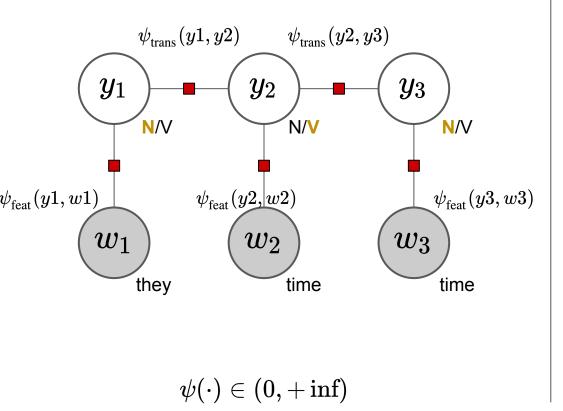










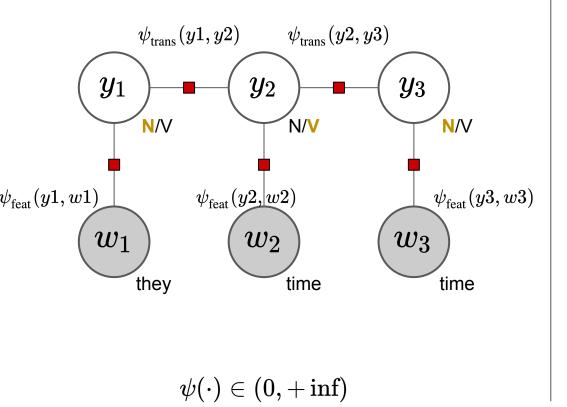


How to maximize the gold sequence probability?

 $p_{ heta}(oldsymbol{y} \mid oldsymbol{w})$

$$heta \leftarrow heta - \eta
abla_ heta (-\log p_ heta(oldsymbol{y} \mid oldsymbol{w}))$$

Gradient descent, or any of your favorite optimizers :)



How to do inference on test-time inputs with the learned model?

The Viterbi algorithm, a.k.a. max-product algorithm (This part is the same as HMMs)

Further details can be found in Chapter 7 of the Eisenstein textbook <u>here</u>.

Other types of CRF

