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Ambiguities



| shot [an elephant] [in my pajamas]

S S
7 S /\
| NP VP
Pronoun Verb/\NP . |
| | Pronoun
I shot /\ | VP PP

Det Nominal I P
| /\ Verb NP 1N My pajamas

M Nominal PP | N
| shot Det Nominal

Noun  in mv pajamas | |
| Y Paj an Noun

elephant |
elephant

Examples from J&M




Syntactic Ambiguities |

» Prepositional phrases:
They cooked the beans in the pot on the stove with
handles.

= Particle vs. preposition:
The puppy tore up the staircase.

= Complement structures

The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

» Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.



Syntactic Ambiguities |l

= Modifier scope within NPs

iImpractical design requirements
plastic cup holder

= Multiple gap constructions

The chicken is ready to eat.
The contractors are rich enough to sue.

= Coordination scope:
Small rats and mice can squeeze into holes or cracks in
the wall.



Dark Ambiguities

= Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can

get your mind around) ROOT
|
S
/-T\
. . NP VP L
This analysis corresponds || T ||

“ DT VBZ VP
to the correct parse Of
P N

‘6 . . . T T]liS iS VB NP
This will panic buyers ! | |

panic ~ NN

» Unknown words and new usages buying

s Solution: We need mechanisms to focus attention on
the best ones, probabilistic techniques do this




Probabilistic
Context Free Grammars



Probabilistic Context-Free Grammars

= A context-free grammar is a tuple <N, 2 ,S, R>

= N:the set of non-terminals

= Phrasal categories: S, NP, VP, ADJP, etc.

= Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
Y : the set of terminals (the words)

S : the start symbol
= Often written as ROOT or TOP
= Not usually the sentence non-terminal S
R : the set of rules
= Oftheform X >Y,VY,...Y,withX e N,n=0,Y, € (N U 3)

= Examples: S - NP VP, VP > VP CC VP

= A PCFG adds a distribution g:
= Probability g(r) for each r € R, such that for all X & N:

Y gla—p)=1

a—BER:a=X



PCFG Example

S = NP VP 1.0
VP = Wi 04
VP = Vt NP 04
VP = VP PP 0.2
NP = DT NN 0.3
NP = NP PP 0.7
PP = P NP 1.0

e Probability of a tree ¢ with rules

1S

041—>517042—>527---7

Vi = sleeps 1.0
Vt = saw 1.0
NN = man 0.7
NN = woman 0.2
NN = telescope | 0.1
DT = the 1.0
IN = with 0.5
IN = 1in 0.5
, — By
;T 6@

where q(a — () is the probablhty for rule a« — (3.




PCFG Example

S = NP VP 1.0
VP = Vi 04
VP = Vt NP 04
VP = VP PP 0.2
NP = DT NN 0.3
NP = NP PP 0.7
PP = P NP 1.0
Vi = sleeps 1.0
Vt = saw 1.0
NN = man 0.7
NN = woman 0.2
NN = telescope | 0.1
DT = the 1.0
IN = with 0.5
IN = i 0.5

S1.O
e
B NP VP
= /\03 | 0.4
|1o NI \{'10
The man sleeps
p(t;)=1.0*0.3*1.0*0.7*0.4*1.0
S1.O
VP 0.2
t = /\
‘ Y o4
N -\
NI‘E).3 Vit NPO.3 IN NPO.3
N\ 10 5 N
DT NN \ DT NN \O DT NN
L [0.7 [0 102 [0 0.1
The man saw the woman with the telescope
p(ty)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1



PCFGs: Learning and Inference

= Model

» The probability of a tree t with nrules o, 2 B, i = 1..n

p(t) = HC](% — B:)

= |earning
= Read the rules off of labeled sentences, use ML estimates for
probabilities

Count(a — )
Count(a)

= and use all of our standard smoothing tricks!

qur(a — B) =

= |nference

= Forinput sentence s, define T(s) to be the set of trees whole yield is s
(whole leaves, read left to right, match the words in s)

t*(s) = arg max »p(t
(5) = arg max p(1)



Dynamic Programming

= We will store: score of the max parse of x; to x; with root
non-terminal X o
(i, 5, X)

= So we can compute the most likely parse:

m(1,n,5) = max p(t)

tETG(S)
= \iathe recursion:
w(i,7,X)= max (¢(X =>YZ)xn(i,s,Y)xn(s+1,5,2))
X—.>YZ.€R,)}
se{i...(j—1

= \With base case: |
r(ii,X) = { (X —@) X =z ek
0 otherwise



The CKY Algorithm

= |nput: a sentence s = x, .. x, and a PCFG =<N, £ S, R, g>

= |nitialization: Fori=1 ... nand all Xin N

- B (X —x;) fX -z, €R
m(i i, X) = { 0 otherwise
= Forl=1...(n-1) literate all phrase lengths]
» Fori=1...(n-l)andj =i+l literate all phrases of length |]
= Forall Xin N [iterate all non-terminals]
R, X) = _max  (q(X —YZ) x 7(i,s,Y) x 7(s+1,j,2))
el (o)

= also, store back pointers

bp(i,j, X) = arg _max_ (¢(X — YZ) x 7(i,5,Y) x w(s +1,j, 2))

XY ZER,

sefi...(7—1)}



Probabilistic CKY Parser

S — NPVP 0.8
S — X1 VP 0.1
X1 — Aux NP 1.0
S — book | include | prefer

0.01 0.004 0.006
S — Verb NP 0.05
S — VP PP 0.03
NP — I | he | she| me

0.1 0.02 0.02 0.06
NP — Houston | NWA

0.16 .04

Det— the| a | an

0.6 0.1 0.05
NP — Det Nominal 0.6

Nominal — book | flight | meal | money
0.03 0.15 0.06 0.06
Nominal — Nominal Nominal 0.2

Nominal — Nominal PP 0.5
Verb— book | include | prefer

0.5 0.04 0.06
VP — Verb NP 0.5
VP — VP PP 0.3
Prep — through | to | from

0.2 0.3 0.3

PP — Prep NP 1.0

Book  the flight through Houston
S :.01, /-S:.OS*.S*.054 / S:.03%.0135*.032
Verb:.5 =,00135 =.00001296
. %\ +.05*%.5%
Nominal:. mvfﬁ*.(m None 000864
|=.0135 .0000216
NP:.6%.6%
6*.6-151— ||| -0024
Det:.6% ’M None =.000864
\l/ INominal:
/ * *
k 5*15*.032
Nominal:.15 | None =.0024
Prep:.2 P:1.0*.2%.16

kw =.032

!

NP:.16




Probabilistic CKY Parser

Book  the flight through Houston
Parse
S:.01, S:.05%.5%.054 / Tree
Verb:.5 06135 $:.0000216 4 41
Nominal:.03 oo
Nome | [VPi5*.5%.054[ None /
=,0135 .
v Pick most
P:.6%.6*
W/ .0024 probable
pet:5 | 05 Nene ~000864 parse, i.e. take
v oo max to
< Nominal: )
Nominal:.15 None 50'(1)24-032 Comblne
| probabilities
f/E’Pﬂ.O*.Z*Jé of rr.wult-lple
Prep:. \ =032 der|vatlons
of each
\ constituent in
NP:.16 each cell.




Probabilistic CKY Parser

Book  the flight through Houston Parse
Tree
S :.01, S:.05*.5%.054 <. FO00T39%
Verb:.S < —o03s_b——" | S: 000021 #2
Nominal:.03 e - S:.0000216
None VP:.%1.§5.054 None
l' Pick most
NP:.6*.6*
NEurents | s probable
pers | |0 one ~00086 parse, i.e. take
. max to
Nominal: )
Nominal:.15| oo ;;(1)22032 Comblﬂ.e..
probabilities
PP11.0*.2*.16 Of I’T.Wu|t'|p|e
Prep: 22—\~ 032 derivations
of each
v constituent in
NP:.16 each cell.




Memory

* How much memory does this require?
= Have to store the score cache
= Cache size: |symbols|*n?

= Pruning: Beam Search
= score[X][i][j] can get too large (when?)

= Can keep beams (truncated maps scoreli][j]) which only store
the best K scores for the span [i,|]

= Pruning: Coarse-to-Fine
= Use a smaller grammar to rule out most X]i, ]

= Much more on this later. ..



Time: Theory

= How much time will it take to parse?

» For each diff (= —1i) (<=n) y
= For each i (<= n)
» ForeachruleX>YZ Y/\Z

= For each split point k
Do constant work /\
[

= Total time: [rules|*n3

» Something like 5 sec for an unoptimized parse
of a 20-word sentences



Time: Practice

= Parsing with the vanilla treebank grammar:

360

300

N
H
o

180

120

Avg. Time (seconds)

o
o

0

0 10 20 30 40 50

Sentence Length

= Why’ s it worse in practice?
= Longer sentences “unlock”™ more of the grammar
= All kinds of systems issues don’ t scale

~ 20K Rules
(hot an

optimized
parser!)

Observed
exponent:

3.6



Other Dynamic Programs

Can also compute other quantities:

= Best Inside: score of the max parse X
of w; to w. with root non-terminal X
| VAN

» Best Qutside: score of the max
parse of wy to w, with a gap from w;
to w. rooted with non-terminal X

J
" see notes for derivation, it is a bit more

complicated

= Sum Inside/Qutside: Do sums
instead of maxes



Why Chomsky Normal Form?

Inference:

=Can we keep N-ary (N > 2) rules and

still do dynamic programming?

=Can we keep unary rules and still do

dynamic programming?

Learning:

Book  the flight through Houston
S :.01, /-S:.OS*.S*.054 / S:.03*.0135*.032
Verb:.5 =.00135 =.00001296
inal- 03— :.05%.5%
Nominal:. N\Vﬁ*.ﬂﬂ None .000864
one |=.0135 .0000216
NP:.6%.6*
<.6%.6% / .0024
Det:.ﬁZéWﬁ"* None -~ 000864
\L INominal:
/ * *
P .5*.15%.032
Nominal:.15 | None =.0024
Prep:.2 - P:1.0*.2*.16

=Can we reconstruct the original

trees”?

’| =.032

!

NP:.16




Treebanks



The Penn Treebank: Size

» Penn WSJ Treebank = 50,000 sentences with associated trees

» Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

CD/\N IAP R‘B m
%P PRP$ JJ NN cC J N NNS I
C

oo FUNG, N/\

P
SBAR
NNP PUNC, WH wp/>\
WALB P
DAN vm

customers .



Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

ADIJP Adjective phrase

ADVP Adverb phrase

NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Subordinate clause

SBARQ Direct question introduced by wh-element
SINV Declarative sentence with subject-aux inversion
SQ Yes/no questions and subconstituent of SBARQ excluding wh-element
VP Verb phrase

WHADVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

* “Understood” subject of infinitive or imperative
0 Zero variant of that in subordinate clauses

T Trace of wh-Constituent




Treebank Grammars

= Need a PCFG for broad coverage parsing.

= Can take a grammar right off the trees (doesn’t work well):

ROOT
| ROOT = S
S
e S > NPVP.
NP VP .
AN NP = PRP
PRP VBD ADJP .
| | | VP - VBD ADJP
He  was J]
riglht

= Better results by enriching the grammar (e.g., lexicalization).

= (Can also get reasonable parsers without lexicalization.



Treebank Grammar Scale

= Treebank grammars can be enormous

= As FSAs, the raw grammar has ~10K states, excluding the
lexicon

» Better parsers usually make the grammars larger, not smaller

NP:

[
é VBN

\%

NNP

K{




NNS

C NNP C NNP
C 37 C NN ..
O ?D Oy

CD NN
C DT C NN . NN
(2L M ) NN C ) DT ® NNS
C DT C NNS .

DT 1 NN 1 . NN
O —0O —0—@ NP cC_, N g
O ) @ NN pp
O NP — SBAR . .
C NN u. PRP SBAR
O :RNP @ AR ’. QP NNS
O—@
O——@

LIST TRIE Min FSA

Grammar encodings: Non-black states are active, non-white states are
accepting, and bold transitions are phrasal. FSAs for a subset of the
rules for the category NP.



Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections  02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.

» Here: also size — number of symbols in grammar.
» Passive / complete symbols: NP, NPAS
= Active / incomplete symbols: NP - NP CC e



How to
Correct Tree T
FP
V?rb P
book et ominal

the Nominal PP

/T~

Noun Prep NP

flight through Houston

-valuate?

Computed Tree P

l

VP
-
Verb P
book et Nominal /P\

the Noun  Prep NP
flight through ProFer—Noun

Houston



PARSEVAL Example

Correct Tree T Computed Tree P

o
Ay

Ver
bfook et/ ominal Ve{;\ /
the Ngmir PPy bc|)ol<
/\
Nouv P[ep/ N4 Nou/ Pep/ I\|IP/
ﬂ|ght through Houston flight  through Proroer Noun
Houston
# Constituents: 11 # Constituents: 12

# Correct Constituents: 10

Recall = 10/11=90.9% Precision = 10/12=83.3% F, =87.4%



—valuation Metric

PARSEVAL metrics measure the fraction of the
constituents that match between the computed and
human parse trees. If P is the system’s parse tree and T
is the human parse tree (the “gold standard”):

» Recall = (# correct constituents in P) / (# constituents in T)

= Precision = (# correct constituents in P) / (# constituents in P)
Labeled Precision and labeled recall require getting
the non-terminal label on the constituent node correct
to count as correct.

F1 is the harmonic mean of precision and recall.

= F1= (2 * Precision * Recall) / (Precision + Recall)



Performance with Vanilla PCFGs

= Use PCFGs for broad coverage parsing [Charniak 96]
= Take the grammar right off the trees
ROOT
| ROOT = S 1
S
/N S-> NPVP. 1
NP VP .
PN ‘ NP > PRP 1
PRP VBD ADJP .
o VP > VBD ADJP 1
He  was 1]
riglht
Model F1

Baseline 72.0




Grammar Refinements
1. Markovization



Conditional Independence?

S
-
NP VP
| —
PRP VBD NP
| /\

|
She heard DT NN
| |

the noise

= Not every NP expansion can fill every NP slot

= A grammar with symbols like “NP” won't be context-free
= Statistically, conditional independence too strong



Non-Independence

* |Independence assumptions are often too strong.

All NPs NPs under S NPs under VP
23%
11%

NPPP DTNN NP PP DTNN NP PP DTNN

= Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).

= Also: the subject and obJect expansions are correlated!



Vertical Markovization

Order 2
= Vertical Markov Order 1
order: rewrites roOT
depend on past k /N /l\
ancestor nodes. : NP’S
| /\ | | /\ |

(cf. parent PRP VBD ADP . PRP VED ADVP'VP .

' A A
annotation) He — was  right He  was right

79% 25000

78%
77%
76%
75%
74%
73%
72%

Symbols

18750
12500
6250 ] I I
0 . . . .
1 2v 2 3v 3

1 2v 2 3v 3
Vertical Markov Order Vertical Markov Order



Horizontal Markovization

NNP NNP NNP

74%
73%
73%
72%
71%

Order 1 Order o0
NP NP
NP o~
NNP NP-... NNPe NNP NP—NNPe
/\ /\
NNP NP-—... NNPe NNP NP—NNP NNPe
|
Nll\IP NNP
12000
w 9000
2
= 6000
b )
R B
' o +HEE : : :
0 1 2v 2 inf 0 1 ov 5 i

Horizontal Markov Orde

Horizontal Markov Order



Vertical and Horizontal

25000
20000
15000 ;

? Vertical

Order 0 1 Order
0
. T 2v 2 inf
Horizontal Order Horizontal Order
Model F1 Size

v=h=2v /7.8 7.5K




Unlexicalized PCFG Grammar Size

Vertical Order

h=20

Horizontal Markov Order
h=1 h<2 h=2 h=

v =1 No annotation

71.27
(854)

72.5 73.46  72.96 72.62
(3119)  (3863)  (6207)  (9657)

v <2 Sel. Parents

74.75
(2285)

77.42 7777  77.50 7691
(6564)  (7619) (11398)  (14247)

v =2 All Parents

74.68
(2984)

77.42 77.81 77.50 76.81
(7312)  (8367) (12132)  (14666)

v <3 Sel. GParents

76.50
(4943)

78.59 79.07 78.97 78.54
(12374)  (13627) (19545)  (20123)

v =3 All GParents

76.74
(7797)

79.18 7974  79.07 78.72
(15740)  (16994) (22886)  (22002)

Figure 2: Markovizations: Fj and grammar sizg,




Grammar Refinements
2. Lexicalization



Problems with PCFGs

S S
/\ /\
NP VP
/\ /\ l)’l‘/\NN\' \'lm/\xp
SR I | | /\
| | /\ /\ The children ate NP rp
The children VBD NP IN NP /\ /\
| /\ ’ /\ DT NN NP
ate DT NN with DT NN | [ | //“\\
’ | ‘ ’ the cake with DT NN
the cake a spoon [ |

a spoon

* These trees differ only in one rule:
= VP> VP PP
= NP> NPPP

= |exicalization allows us to be sensitive to specific words



Adoklw“hﬁadvvlord(s; to
eacn phrasal node >
» Headship not in (most) @////\\\ﬁp

treebanks e N
= Usually use (handwritten) S I
head rules, e.g.: b iden
= NP: Y
" Take leftmost NP S(questioned)

= \/P:

Take rightmost N*
Take rightmost JJ
Take right child

NP(lawyer) VP(questioned)
Take leftmost VB* DT(the) NN(lawyer) /\
Take leftmost VP | | Vt(questioned) NP(witness)
Take left child the fawyer questlioned

DT(the) NN(witness)
| |

the witness



| exicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

VP (saw) VP (saw) VP (saw) VP (saw)

— — I T

VBD (saw) VBD (saw) {Np-cC( )} VBD (saw) NP-C( ) NP ( ) VBD (saw) NP-C(her) NP(today)



[Collins 99]

Lexical Derivation Steps

= Main idea: define a linguistically-motivated Markov
process for generating children given the parent

VP (saw)

/

VBD (saw)
VP (saw)

/

VBD (saw) {NP-C( )}

VP (saw)

el

VBD (saw) NP-C( ) NP ( )

VP (saw)

v

VBD (saw) NP-C(her) NP(today)

Step 1: Choose a head tag
and word

Step 2: Choose a complement bag

Step 3: Generate children
(incl. adjuncts)

Step 4: Recursively derive children



L exicalized CKY

(VP->VBD...NP e)[saw]

/\
(VP->VBD e)[saw] NP[her]

bestScore (i, j,X, h)
if (J = i+1)

return tagScore (X,s[i])

else

return

max max score (X[h]->Y[h] Z[h’ * : A
" b HIRI=>¥ IR 2R 1) [Stlllcubmtlme?
P8y bestScore(i,k,Y, h) *
X->Yz bestScore (k+1,3,Z, h’) :
max score(X[h]->Y[h'] Z[h]) *

k,h’, bestScore(i,k,Y, h’') *
X->YZ bestScore (k+1l,j,Z, h)




Pruning with Beams

= The Collins parser prunes with
per-cell beams [Collins 99]
= Essentially, run the O(n°) CKY

» |[f we keep K hypotheses at each
span, then we do at most O(nK?)
work per span (why?)

= Keeps things more or less cubic

= Also: certain spans are
forbidden entirely on the basis
of punctuation (crucial for
speed)

Model F1
Naive Treebank |72.6
Grammar

Klein & 86.3
Manning 03

Collins 99 88.6




Grammar Refinements
3. Using Latent Sub-categories



Manual Annotation

S
. . ___—— \ —
* Manually split categories NP VP .
m . . . | T~ |
NP: subject vs object PRP VBD ADJP .
= DT: determiners vs demonstratives | =

. N He was right
= IN: sentential vs prepositional

» Advantages: 1
» Fairly compact grammar S"ROOT
* | inguistic motivations
. NP"S-PRP VP’S-BE S
» Disadvantages: | ]
PRP-Z VBD-BE ADJP"VP
» Performance leveled out | | o~
He was right

* Manually annotated



Learning Latent Annotations

Latent Annotations: Forward/Outside
» Brackets are known /\
» Base categories are known

» Hidden variables for
subcategories

S[X1]
B
NP[X2] VP[X4] [X7]
| —— |
PRP[X3] VBD[X5] ADJP[ Xg] . ‘
| | —
He was right

Can learn with EM: like Forward- i
Backward for HMMs. Backward/Inside



Final Results

F1 F1
Parser < 40 words | all words
Klein & Manning '03 86.3 85.7
Matsuzaki et al. ‘05 86.7 86.1
Collins '99 88.6 88.2
Charniak & Johnson 05 90.1 89.6
Petrov et. al. 06 90.2 89.7




"Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

John has a dog = ?
NP //VP\\.
|

NNP VBZ NP
~ N
DT NN

John has a dog =
(S (NP NNP )np (VP VBZ (NP DT NN )np )ve - )s

= Linearize a tree into a sequence

= Then parsing problem becomes similar to machine translation
" |nput: sequence
» Qutput: sequence (of different length)

= Encoder-decoder LSTMs (Long short-term memory networks)



"Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

John has a dog = ?
NP //VP\\.
|

NNP VBZ NP
~ N
DT NN
John has a dog =

(S (NP NNP )xp (VP VBZ (NP DT NN )np )vp - )s

= Penn treebank (~40K sentences) is too small to train LSTMs

= Create a larger training set with 11M sentences automatically parsed
by two state-of-the-art parsers (and keep only those sentences for
which two parsers agreed)



"Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

Parser Training Set WSJ 22 | WSJ 23
baseline LSTM+D WSIJ only <70 <70
LSTM+A+D WSJ only 88.7 88.3
LSTM+A+D ensemble WSIJ only 90.7 90.5
baseline LSTM BerkeleyParser corpus 91.0 90.5
LSTM+A high-confidence corpus 93.3 92.5
LSTM+A ensemble high-confidence corpus 93.5 92.8
Petrov et al. (2006) [12] WSIJ only 91.1 90.4
Zhu et al. (2013) [13] WSJ only N/A 90.4
Petrov et al. (2010) ensemble [14] WSIJ only 92.5 91.8
Zhu et al. (2013) [13] semi-supervised N/A 91.3
Huang & Harper (2009) [15] semi-supervised N/A 91.3
McClosky et al. (2006) [16] semi-supervised 92.4 92.1
Huang & Harper (2010) ensemble [17] semi-supervised 92.8 92.4




Supplementary Topics
l. CNF Conversion



Chomsky Normal Form

= Chomsky normal form:

= Allrules ofthe formX>YZorX->w
» |n principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP
VP
P VP = VBD NP PP o]
) VP VBDWO]//\
VBD NP PP PP g}
VBD NP PP

= Unaries / empties are “promoted”
» |n practice it's kind of a pain:

= Reconstructing n-aries is easy

= Reconstructing unaries is trickier

= The straightforward transformations don't preserve tree scores
» Makes parsing algorithms simpler!

PP



Original Grammar

CNF Conversion

Example

S-> NPVP 0.8
S > Aux NP VP 0.1
S->VP 0.1
NP = Pronoun 0.2
NP - Proper-Noun 0.2
NP = Det Nominal 0.6
Nominal & Noun 0.3
Nominal & Nominal Noun 0.2
Nominal > Nominal PP 0.5
VP = Verb 0.2
VP = Verb NP 0.5
VP > VP PP 0.3
PP - Prep NP 1.0
Lexicon:

Noun = book | flight | meal | money

01 05 02 02

Verb = book | include | prefer

05 02 0.3

Det - the |a |that]this
0.6 0.2 0.1 0.1
Pronoun - | | he|she|me
050101 03
Proper-Noun - Houston | NWA
0.8 0.2
Aux - does
1.0
Prep = from | to |on | near|through
02502501 02 02




Original Grammar

Chomsky Normal Form

S-> NPVP 0.8 S-> NPVP 0.8

S > Aux NP VP 0.1 S > X1VP 0.1
X1 = Aux NP 1.0

S->VP 0.1

NP = Pronoun 0.2

NP - Proper-Noun 0.2

NP = Det Nominal 0.6

Nominal & Noun 0.3

Nominal & Nominal Noun 0.2

Nominal > Nominal PP 0.5

VP = Verb 0.2

VP = Verb NP 0.5

VP > VP PP 0.3

PP - Prep NP 1.0

Lexicon (See previous slide for full list) :
Noun = book | flight | meal | money
0.1 05 02 02
Verb - book | include | prefer
0.5 02 0.3




Original Grammar

Chomsky Normal Form

S -> NP VP 0.8 S-> NPVP 0.8
S > Aux NP VP 0.1 S > X1VP 0.1
X1 > Aux NP 1.0
S-> VP 0.1 S = book | include | prefer
S > Verb NP
S->VPPP
NP = Pronoun 0.2
NP - Proper-Noun 0.2
NP = Det Nominal 0.6
Nominal & Noun 0.3
Nominal & Nominal Noun 0.2
Nominal > Nominal PP 0.5
VP = Verb 0.2
VP - Verb NP 0.5
VP = VP PP 0.3
PP - Prep NP 1.0

Lexicon (See previous slide for full list) :
Noun = book | flight | meal | money
0.1 05 02 02
Verb = book | include | prefer
05 02 0.3




Original Grammar Chomsky Normal Form

S>> NPVP 0.8 S-> NPVP 0.8
S - Aux NP VP 0.1 S > X1VP 0.1

X1 = Aux NP 1.0
S-> VP 0.1 S = book | include | prefer

0.01 0.004 0.006

S > Verb NP 0.05

S->VPPP 0.03
NP - Pronoun 0.2 NP - | | he | she| me

0.1 0.02 0.02 0.06
NP - Proper-Noun 0.2 NP - Houston | NWA
0.16 04
NP - Det Nominal 0.6 NP = Det Nominal 0.6
Nominal = Noun 0.3 Nominal - book | flight | meal | money
0.03 0.15 0.06 0.06
Nominal > Nominal Noun 0.2 Nominal > Nominal Noun 0.2
Nominal = Nominal PP 0.5 Nominal = Nominal PP 0.5
VP - Verb 0.2 VP = book | include | prefer
0.1 0.04 0.06

VP = Verb NP 0.5 VP > Verb NP 0.5
VP - VP PP 0.3 VP - VP PP 0.3
PP = Prep NP 1.0 PP = Prep NP 1.0

Lexicon (See previous slide for full list) :
Noun = book | flight | meal | money
0.1 05 02 02
Verb = book | include | prefer
05 02 0.3




Advanced Topics

. CKY with Unary Rules



CNF + Unary Closure

We need unaries to be non-cyclic

= Calculate closure Close(R) for unary rules in R
= Add XY if there exists a rule chain X->2Z,, Z,>2Z,,..., Z,, >Y with g(X->Y
= qX=>2Z,)*q(Z=>4L)*...*q(Z, =>Y)
= |f no unary rule exist for X, add X=>X with g(X->X)=1 for all X in N

WARNING: Watch out
for unary cycles!

VP

VP _ SBAR
_— VBD NP
VBD NP —> | | SBAR
S l
~ NP —> v
DT NN o~ VPI
DT NN

= Rather than zero or more unaries, always exactly one
= Alternate unary and binary layers
» What about X-=>Y with different unary paths (and scores)?



The CKY Algorithm

= |nput: a sentence s = x, .. x, and a PCFG =<N, £ S, R, g>

= |nitialization: Fori=1 ... nand all Xin N

- B (X —x;) fX -z, €R
m(i i, X) = { 0 otherwise
= Forl=1...(n-1) literate all phrase lengths]
» Fori=1...(n-l)andj =i+l literate all phrases of length |]
= Forall Xin N [iterate all non-terminals]
R, X) = _max  (q(X —YZ) x 7(i,s,Y) x 7(s+1,j,2))
el (o)

= also, store back pointers

bp(i,j, X) = arg _max_ (¢(X — YZ) x 7(i,5,Y) x w(s +1,j, 2))

XY ZER,

sefi...(7—1)}



CKY with Unary Closure

* |nput: a sentence s = x, .. x,anda PCFG =<N, z,S, R, g>
= |nitialization: Fori=1 ... n:

: Step1:fora|.|>.<inN: (X —a) ifX -z €eR
(i1, X) = :
0 otherwise
= Step 2: forall Xin N:
T (i, i, X) = X%Y@gése(R)(q(X —Y) x7(i,4,Y))
= Forl=1...(n-1) literate all phrase lengths]
= Fori=1..(n-l)andj=i+l literate all phrases of length |]
= Step 1: (Binary)
= Forall Xin N literate all non-terminals]
X)) = X 5 YZ) xny(i,s,Y) x 14,2
7TB(2737 ) X—)YZERr?s%)f{i...(j—l)}(Q( ) 7TU(Z S ) 7TU(S + J )
= Step 2: (Unary)
» Forall Xin N literate all non-terminals]
T (i, J, X) = max  (¢(X = Y) x7p(i,5,Y))

X—YeClose(R)



Advanced Topics

2. Grammar Retinements :Tag Splits



Tag Splits

* Problem: Treebank P
/\
tags are 10O coarse. 10 VP
| /\
to VB SBAR
= Example: Sentential, see IN“T“NT /S\
PP, and other f NP VP
prepositions are all N viz
marked IN. 1o
advertising works
= Partial Solution: Annotation F1 Size
v=h=2v 78.3 8.0K

» Subdivide the IN tag.
SPLIT-IN 30.3 |[8.1K




Other Tag Splits

UNARY-DT: mark demonstratives as DTAU
(“the X" vs. “those”)

UNARY-RB: mark phrasal adverbs as RBAU
("quickly” vs. “very”)

TAG-PA: mark tags with non-canonical
parents (‘not” is an RBAVP)

SPLIT-AUX: mark auxiliary verbs with —AUX
[cf. Charniak 97]

SPLIT-CC: separate "but” and “&” from other
conjunctions

SPLIT-%: "% gets its own tag.

F1

Size

80.4

8.1K

80.5

8.1K

81.2

8.5K

81.6

9.0K

81.7

9.1K

81.8

9.3K




A Fully Annotated (Unlex) Tree

ROOT
|
S"ROOT-v
“§  NP"S-B VP*S-VBE-v S
“ DT-U'NP VBZBE'VP NP*VP-B ! "
I /\
This 1S NN'NP NN'NP

panic ~ buying



Some Test Set Results

Parser LP LR F1

Magerman 95 |84.9 [84.6 |84.7
Collins 96 86.3 |85.8 |86.0
Unlexicalized [|86.9 [85.7 |86.3
Charniak 97 87.4 875 |87.4
Collins 99 88.7 |88.6 |88.6

= Beats “first generation” lexicalized parsers.
= |ots of room to improve — more complex models next.



