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Parsing (Trees)



Ambiguities



Examples from J&M       

I shot [an elephant] [in my pajamas]



Syntactic Ambiguities I

§ Prepositional phrases:
They cooked the beans in the pot on the stove with 
handles.

§ Particle vs. preposition:
The puppy tore up the staircase.

§ Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

§ Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.



Syntactic Ambiguities II
§ Modifier scope within NPs

impractical design requirements
plastic cup holder

§ Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

§ Coordination scope:
Small rats and mice can squeeze into holes or cracks in 
the wall.



Dark Ambiguities
§ Dark ambiguities: most analyses are shockingly bad 

(meaning, they don’t have an interpretation you can 
get your mind around)

This analysis corresponds 
to the correct parse of 

“This will panic buyers ! ”

§ Unknown words and new usages
§ Solution: We need mechanisms to focus attention on 

the best ones, probabilistic techniques do this



Probabilistic 
Context Free Grammars



Probabilistic Context-Free Grammars
§ A context-free grammar is a tuple <N, Σ ,S, R>

§ N : the set of non-terminals
§ Phrasal categories: S, NP, VP, ADJP, etc.
§ Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.

§ Σ : the set of terminals (the words)
§ S : the start symbol

§ Often written as ROOT or TOP
§ Not usually the sentence non-terminal S

§ R : the set of rules
§ Of the form X → Y1 Y2 … Yn, with X ∈ N, n≥0, Yi∈ (N ∪ Σ)

§ Examples: S → NP VP,   VP → VP CC VP

§ A PCFG adds a distribution q:
§ Probability q(r) for each r ∈ R, such that for all X ∈ N:

Why is this a useful problem? A crucial idea is that once we have a function
p(t), we have a ranking over possible parses for any sentence in order of probabil-
ity. In particular, given a sentence s, we can return

arg max
t∈TG(s)

p(t)

as the output from our parser—this is the most likely parse tree for s under the
model. Thus if our distribution p(t) is a good model for the probability of dif-
ferent parse trees in our language, we will have an effective way of dealing with
ambiguity.

This leaves us with the following questions:

• How do we define the function p(t)?

• How do we learn the parameters of our model of p(t) from training exam-
ples?

• For a given sentence s, how do we find the most likely tree, namely

arg max
t∈TG(s)

p(t)?

This last problem will be referred to as the decoding or parsing problem.

In the following sections we answer these questions through defining proba-
bilistic context-free grammars (PCFGs), a natural generalization of context-free
grammars.

3.2 Definition of PCFGs

Probabilistic context-free grammars (PCFGs) are defined as follows:

Definition 1 (PCFGs) A PCFG consists of:

1. A context-free grammar G = (N,Σ, S,R).

2. A parameter
q(α → β)

for each rule α → β ∈ R. The parameter q(α → β) can be interpreted as
the conditional probabilty of choosing rule α → β in a left-most derivation,
given that the non-terminal being expanded is α. For any X ∈ N , we have
the constraint

∑

α→β∈R:α=X

q(α → β) = 1

In addition we have q(α → β) ≥ 0 for any α → β ∈ R.
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PCFG Example
A Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.
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The man sleeps     

The man saw the woman with the telescope 
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PCFGs: Learning and Inference

§ Model
§ The probability of a tree t with n rules αi à βi, i = 1..n

§ Learning
§ Read the rules off of labeled sentences, use ML estimates for 

probabilities

§ and use all of our standard smoothing tricks!

§ Inference
§ For input sentence s, define T(s) to be the set of trees whole yield is s 

(whole leaves, read left to right, match the words in s)

p(t) =
nY

i=1

q(�i ! ⇥i)

qML(� ! ⇥) =
Count(� ! ⇥)

Count(�)

t�(s) = arg max
t⇥T (s)

p(t)



Dynamic Programming
§ We will store: score of the max parse of xi to xj with root 

non-terminal X

§ So we can compute the most likely parse:

§ Via the recursion:

§ With base case:

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.
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The recursive definition is as follows: for all (i, j) such that 1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in the π values bottom-up: first the π(i, i,X) values, using the base
case in the recursion; then the values for π(i, j,X) such that j = i + 1; then the
values for π(i, j,X) such that j = i + 2; and so on.

Note that the algorithm also stores backpointer values bp(i, j,X) for all values
of (i, j,X). These values record the rule X → Y Z and the split-point s leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation of π(3, 8, VP). This will be the highest score for
any tree with root VP, spanning words x3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take the max over two choices: first,
a choice of a rule VP → Y Z which is in the set of rules R—note that there are two
such rules, VP → Vt NP and VP → VP PP. Second, a choice of s ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)
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= max

t2TG(s)
p(t)



The CKY Algorithm

Input: a sentence s = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Set j = i + l

∗ For all X ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.
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§ Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>
§ Initialization: For i = 1 … n and all X in N

§ For l = 1 … (n-1) [iterate all phrase lengths]
§ For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

§ For all X in N [iterate all non-terminals]

§ also, store back pointers
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Book       the        flight    through  Houston

Probabilistic CKY Parser
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01     0.004    0.006
S → Verb NP
S → VP PP
NP →  I   |  he  |  she |  me

0.1   0.02  0.02    0.06
NP → Houston | NWA

0.16           .04
Det→ the |  a  |   an 

0.6    0.1   0.05    
NP → Det Nominal
Nominal → book | flight | meal | money

0.03    0.15   0.06     0.06
Nominal → Nominal Nominal
Nominal → Nominal PP
Verb→ book | include | prefer

0.5      0.04        0.06
VP → Verb NP
VP → VP PP
Prep → through | to | from

0.2          0.3   0.3
PP → Prep NP

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3

1.0

S :.01, 
Verb:.5 
Nominal:.03

Det:.6

Nominal:.15

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
.0024

=.000864

S:.03*.0135*.032
=.00001296

S:.05*.5*
.000864

=.0000216
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Memory
§ How much memory does this require?

§ Have to store the score cache

§ Cache size: |symbols|*n2

§ Pruning: Coarse-to-Fine
§ Use a smaller grammar to rule out most X[i,j]

§ Much more on this later…

§ Pruning: Beam Search
§ score[X][i][j] can get too large (when?)

§ Can keep beams (truncated maps score[i][j]) which only store 
the best K scores for the span [i,j]



Time: Theory

§ How much time will it take to parse?

Y Z

X

i                       k                      j

§ Total time: |rules|*n3

§ Something like 5 sec for an unoptimized parse 
of a 20-word sentences

§ For each diff (:= j – i) (<= n)
§ For each i (<= n)

§ For each rule X → Y Z 
§ For each split point k

Do constant work



Time: Practice
§ Parsing with the vanilla treebank grammar:

~ 20K Rules

(not an 
optimized 

parser!)

Observed 
exponent: 

3.6

§ Why’s it worse in practice?
§ Longer sentences “unlock” more of the grammar
§ All kinds of systems issues don’t scale



Other Dynamic Programs

Can also compute other quantities: 
§ Best Inside: score of the max parse 

of wi to wj with root non-terminal X

§ Best Outside: score of the max 
parse of w0 to wn with a gap from wi
to wj rooted with non-terminal X
§ see notes for derivation, it is a bit more 

complicated

§ Sum Inside/Outside: Do sums 
instead of maxes 

X
n1 i j

X

n1 i j



Book       the        flight    through  Houston

Why Chomsky Normal Form?

S :.01, 
Verb:.5 
Nominal:.03

Det:.6

Nominal:.15

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
.0024

=.000864

S:.03*.0135*.032
=.00001296

S:.05*.5*
.000864

=.0000216

Inference:

§Can we keep N-ary (N > 2) rules and 
still do dynamic programming?

§Can we keep unary rules and still do 
dynamic programming?

Learning:

§Can we reconstruct the original 
trees?



Treebanks



The Penn Treebank: SizeData for Parsing Experiments

I
Penn WSJ Treebank = 50,000 sentences with associated trees

I
Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian

NNP

Utilities

NNPS

NP

had

VBD

1988

CD

revenue

NN

NP

of

IN

C$

$

1.16

CD

billion

CD

,

PUNC,

QP

NP

PP

NP

mainly

RB

ADVP

from

IN

its

PRP$

natural

JJ

gas

NN

and

CC

electric

JJ

utility

NN

businesses

NNS

NP

in

IN

Alberta

NNP

,

PUNC,

NP

where

WRB

WHADVP

the

DT

company

NN

NP

serves

VBZ

about

RB

800,000

CD

QP

customers

NNS

.

PUNC.

NP

VP

S

SBAR

NP

PP

NP

PP

VP

S

TOP

Canadian Utilities had 1988 revenue of C$ 1.16 billion ,

mainly from its natural gas and electric utility businesses in

Alberta , where the company serves about 800,000

customers .



Penn Treebank Non-terminalsTHE PENN TREEBANK: AN OVERVIEW 9

Table 1.2. The Penn Treebank syntactic tagset

ADJP Adjective phrase
ADVP Adverb phrase
NP Noun phrase
PP Prepositional phrase
S Simple declarative clause
SBAR Subordinate clause
SBARQ Direct question introduced by wh-element
SINV Declarative sentence with subject-aux inversion
SQ Yes/no questions and subconstituent of SBARQ excluding wh-element
VP Verb phrase
WHADVP Wh-adverb phrase
WHNP Wh-noun phrase
WHPP Wh-prepositional phrase
X Constituent of unknown or uncertain category

“Understood” subject of infinitive or imperative
0 Zero variant of that in subordinate clauses
T Trace of wh-Constituent

Predicate-argument structure. The new style of annotation provided
three types of information not included in the first phase.

1 A clear, concise distinction between verb arguments and adjuncts where
such distinctions are clear, with an easy-to-use notational device to indi-
cate where such a distinction is somewhat murky.

2 A non-context free annotational mechanism to allow the structure of dis-
continuous constituents to be easily recovered.

3 A set of null elements in what can be thought of as “underlying” posi-
tion for phenomena such as wh-movement, passive, and the subjects of
infinitival constructions, co-indexed with the appropriate lexical mate-
rial.

The goal of a well-developed predicate-argument scheme is to label each
argument of the predicate with an appropriate semantic label to identify its
role with respect to that predicate (subject, object, etc.), as well as distinguish-
ing the arguments of the predicate, and adjuncts of the predication. Unfortu-
nately, while it is easy to distinguish arguments and adjuncts in simple cases,
it turns out to be very difficult to consistently distinguish these two categories
for many verbs in actual contexts. It also turns out to be very difficult to de-
termine a set of underlying semantic roles that holds up in the face of a few



Treebank Grammars
§ Need a PCFG for broad coverage parsing.

§ Can take a grammar right off the trees (doesn’t work well):

§ Better results by enriching the grammar (e.g., lexicalization).

§ Can also get reasonable parsers without lexicalization.

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..



PLURAL NOUN

NOUNDET
DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale
§ Treebank grammars can be enormous

§ As FSAs, the raw grammar has ~10K states, excluding the 
lexicon

§ Better parsers usually make the grammars larger, not smaller

NP:



Grammar encodings: Non-black states are active, non-white states are 
accepting, and bold transitions are phrasal. FSAs for a subset of the 
rules for the category NP. 

LIST TRIE Min FSA



Typical Experimental Setup
§ Corpus: Penn Treebank, WSJ

§ Accuracy – F1: harmonic mean of per-node labeled 
precision and recall.

§ Here: also size – number of symbols in grammar.
§ Passive / complete symbols: NP, NP^S

§ Active / incomplete symbols: NP → NP CC •

Training: sections 02-21
Development: section 22 (here, first 20 files)
Test: section 23



Correct Tree T

S

VP

Verb          NP

Det    Nominal

Nominal     PP

book

Prep        NP

through Houston

the

flight

Noun

Computed Tree P

VP

Verb          NP

Det    Nominalbook

Prep        NP

through

Houston

Proper-Noun
the

flight

Noun

S

VP

PP

How to Evaluate?



Correct Tree T

S

VP

Verb          NP

Det    Nominal

Nominal     PP

book

Prep        NP

through Houston

the

flight

Noun

Computed Tree P

VP

Verb          NP

Det    Nominalbook

Prep        NP

through

Houston

Proper-Noun
the

flight

Noun

S

VP

PP

# Constituents: 11 # Constituents: 12
# Correct Constituents: 10

Recall = 10/11= 90.9% Precision = 10/12=83.3% F1 = 87.4%

PARSEVAL Example



Evaluation Metric
§ PARSEVAL metrics measure the fraction of the 

constituents that match between the computed and 
human parse trees.  If P is the system’s parse tree and T 
is the human parse tree (the “gold standard”):
§ Recall = (# correct constituents in P) / (# constituents in T)

§ Precision = (# correct constituents in P) / (# constituents in P)

§ Labeled Precision and labeled recall require getting 
the non-terminal label on the constituent node correct 
to count as correct.

§ F1 is the harmonic mean of precision and recall.
§ F1= (2 * Precision * Recall) / (Precision + Recall)



Performance with Vanilla PCFGs

§ Use PCFGs for broad coverage parsing
§ Take the grammar right off the trees

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]



Grammar Refinements
1. Markovization



Conditional Independence?

§ Not every NP expansion can fill every NP slot
§ A grammar with symbols like “NP” won’t be context-free
§ Statistically, conditional independence too strong



Non-Independence
§ Independence assumptions are often too strong.

§ Example: the expansion of an NP is highly dependent 
on the parent of the NP (i.e., subjects vs. objects).

§ Also: the subject and object expansions are correlated!

All NPs NPs under S NPs under VP



Vertical Markovization

§ Vertical Markov 
order: rewrites 
depend on past k
ancestor nodes.
(cf. parent 
annotation)

Order 1
Order 2



Horizontal Markovization
Order 1 Order ∞



Vertical and Horizontal

Model F1 Size

v=h=2v 77.8 7.5K



Unlexicalized PCFG Grammar Size

39



Grammar Refinements
2. Lexicalization



Problems with PCFGs

§ These trees differ only in one rule:
§ VP → VP PP
§ NP → NP PP

§ Lexicalization allows us to be sensitive to specific words



§ Add “headwords” to 
each phrasal node
§ Headship not in (most) 

treebanks
§ Usually use (handwritten) 

head rules, e.g.:
§ NP:

§ Take leftmost NP
§ Take rightmost N*
§ Take rightmost JJ
§ Take right child

§ VP:
§ Take leftmost VB*
§ Take leftmost VP
§ Take left child

Lexicalize Trees!



Lexicalized PCFGs?
§ Problem: we now have to estimate probabilities like

§ Solution: break up derivation into smaller steps

§ Never going to get these atomically off of a treebank



Lexical Derivation Steps
§ Main idea: define a linguistically-motivated Markov 

process for generating children given the parent

Step 1: Choose a head tag 
and word

Step 2: Choose a complement bag

Step 3: Generate children 
(incl. adjuncts)

Step 4: Recursively derive children

[Collins 99]



Lexicalized CKY

Y[h] Z[h’]

X[h]

i           h          k         h’ j

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

bestScore(i,j,X, h)
if (j = i+1)
return tagScore(X,s[i])

else
return 
max  max  score(X[h]->Y[h] Z[h’]) *

bestScore(i,k,Y, h) *
bestScore(k+1,j,Z, h’)

max   score(X[h]->Y[h’] Z[h]) *
bestScore(i,k,Y, h’) *
bestScore(k+1,j,Z, h)

k,h’,

X->YZ

k,h’,

X->YZ

still cubic time?



Pruning with Beams

§ The Collins parser prunes with 
per-cell beams [Collins 99]
§ Essentially, run the O(n5) CKY
§ If we keep K hypotheses at each 

span, then we do at most O(nK2) 
work per span (why?)

§ Keeps things more or less cubic

§ Also: certain spans are 
forbidden entirely on the basis 
of punctuation (crucial for 
speed)

Y[h] Z[h’]

X[h]

i           h          k         h’ j

Model F1
Naïve Treebank 
Grammar

72.6

Klein & 
Manning ’03

86.3

Collins 99 88.6



Grammar Refinements
3. Using Latent Sub-categories



Manual Annotation

§ Manually split categories
§ NP: subject vs object
§ DT: determiners vs demonstratives
§ IN: sentential vs prepositional 

§ Advantages:
§ Fairly compact grammar
§ Linguistic motivations

§ Disadvantages:
§ Performance leveled out
§ Manually annotated



Forward/Outside

Learning Latent Annotations
Latent Annotations:

§ Brackets are known
§ Base categories are known
§ Hidden variables for 

subcategories

X1

X2
X7X4

X5 X6X3

He was right

.

Can learn with EM: like Forward-
Backward for HMMs. Backward/Inside



Final Results

F1
≤ 40 words

F1
all wordsParser

Klein & Manning ’03 86.3 85.7

Matsuzaki et al. ’05 86.7 86.1

Collins ’99 88.6 88.2

Charniak & Johnson ’05 90.1 89.6

Petrov et. al. 06 90.2 89.7



“Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

John has a dog è

John has a dog è

§ Linearize a tree into a sequence

§ Then parsing problem becomes similar to machine translation

§ Input: sequence

§ Output: sequence (of different length)

§ Encoder-decoder LSTMs (Long short-term memory networks)



Vinyals et al., 2015

John has a dog è

John has a dog è

§ Penn treebank (~40K sentences) is too small to train LSTMs

§ Create a larger training set with 11M sentences automatically parsed 
by two state-of-the-art parsers (and keep only those sentences for 
which two parsers agreed)

“Grammar as Foreign Language” (deep learning)



Vinyals et al., 2015

“Grammar as Foreign Language” (deep learning)



Supplementary Topics
I. CNF Conversion



Chomsky Normal Form

§ Chomsky normal form:
§ All rules of the form X → Y Z or X → w
§ In principle, this is no limitation on the space of (P)CFGs

§ N-ary rules introduce new non-terminals

§ Unaries / empties are “promoted”
§ In practice it’s kind of a pain:

§ Reconstructing n-aries is easy
§ Reconstructing unaries is trickier
§ The straightforward transformations don’t preserve tree scores

§ Makes parsing algorithms simpler!

VP

[VP → VBD NP •]

VBD            NP PP PP

[VP → VBD NP PP •]

VBD   NP   PP   PP

VP



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar
0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

Lexicon:
Noun → book | flight | meal | money

0.1     0.5      0.2     0.2
Verb → book | include | prefer

0.5      0.2        0.3

Det → the | a   | that | this
0.6  0.2  0.1    0.1

Pronoun → I    | he | she | me
0.5  0.1  0.1    0.3

Proper-Noun → Houston | NWA
0.8         0.2

Aux → does
1.0

Prep → from | to   | on | near | through
0.25  0.25  0.1    0.2     0.2

CNF Conversion 
Example



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form
S → NP VP
S → X1 VP
X1 → Aux NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

Lexicon (See previous slide for full list) :
Noun → book | flight | meal | money

0.1     0.5      0.2     0.2
Verb → book | include | prefer

0.5      0.2        0.3



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01     0.004    0.006
S → Verb NP
S → VP PP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

Lexicon (See previous slide for full list) :
Noun → book | flight | meal | money

0.1     0.5      0.2     0.2
Verb → book | include | prefer

0.5      0.2        0.3



S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun 

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form
S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer

0.01     0.004    0.006
S → Verb NP
S → VP PP
NP → I   |  he  |  she |  me

0.1   0.02  0.02    0.06
NP → Houston | NWA

0.16           .04
NP → Det Nominal
Nominal → book | flight | meal | money

0.03    0.15   0.06     0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer

0.1      0.04        0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

Lexicon (See previous slide for full list) :
Noun → book | flight | meal | money

0.1     0.5      0.2     0.2
Verb → book | include | prefer

0.5      0.2        0.3



Advanced Topics
I. CKY with Unary Rules



CNF + Unary Closure
We need unaries to be non-cyclic
§ Calculate closure Close(R) for unary rules in R 

§ Add X→Y if there exists a rule chain X→Z1, Z1→Z2,..., Zk →Y with q(X→Y) 
= q(X→Z1)*q(Z1→Z2)*…*q(Zk →Y)

§ If no unary rule exist for X, add X→X with q(X→X)=1 for all X in N

§ Rather than zero or more unaries, always exactly one
§ Alternate unary and binary layers
§ What about X→Y with different unary paths (and scores)?

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

WARNING: Watch out 
for unary cycles!



The CKY Algorithm

Input: a sentence s = x1 . . . xn, a PCFGG = (N,Σ, S,R, q).
Initialization:
For all i ∈ {1 . . . n}, for all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

Algorithm:

• For l = 1 . . . (n − 1)

– For i = 1 . . . (n − l)

∗ Set j = i + l

∗ For all X ∈ N , calculate

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

and

bp(i, j,X) = arg max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z))

Output: Return π(1, n, S) = maxt∈T (s) p(t), and backpointers bp which allow recovery
of arg maxt∈T (s) p(t).

Figure 6: The CKY parsing algorithm.
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§ Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>
§ Initialization: For i = 1 … n and all X in N

§ For l = 1 … (n-1) [iterate all phrase lengths]
§ For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

§ For all X in N [iterate all non-terminals]

§ also, store back pointers

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.
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The recursive definition is as follows: for all (i, j) such that 1 ≤ i < j ≤ n,
for all X ∈ N ,

π(i, j,X) = max
X→Y Z∈R,

s∈{i...(j−1)}

(q(X → Y Z) × π(i, s, Y ) × π(s + 1, j, Z)) (1)

The next section of this note gives justification for this recursive definition.
Figure 6 shows the final algorithm, based on these recursive definitions. The

algorithm fills in the π values bottom-up: first the π(i, i,X) values, using the base
case in the recursion; then the values for π(i, j,X) such that j = i + 1; then the
values for π(i, j,X) such that j = i + 2; and so on.

Note that the algorithm also stores backpointer values bp(i, j,X) for all values
of (i, j,X). These values record the rule X → Y Z and the split-point s leading to
the highest scoring parse tree. The backpointer values allow recovery of the highest
scoring parse tree for the sentence.

3.4.3 Justification for the Algorithm

As an example of how the recursive rule in Eq. 2 is applied, consider parsing the
sentence

x1 . . . x8 = the dog saw the man with the telescope

and consider the calculation of π(3, 8, VP). This will be the highest score for
any tree with root VP, spanning words x3 . . . x8 = saw the man with the telescope.
Eq. 2 specifies that to calculate this value we take the max over two choices: first,
a choice of a rule VP → Y Z which is in the set of rules R—note that there are two
such rules, VP → Vt NP and VP → VP PP. Second, a choice of s ∈ {3, 4, . . . 7}.
Thus we will take the maximum value of the following terms:

q(VP → Vt NP) × π(3, 3, Vt) × π(4, 8, NP)

q(VP → VP PP) × π(3, 3, VP) × π(4, 8, PP)

q(VP → Vt NP) × π(3, 4, Vt) × π(5, 8, NP)

q(VP → VP PP) × π(3, 4, VP) × π(5, 8, PP)

q(VP → Vt NP) × π(3, 5, Vt) × π(6, 8, NP)

q(VP → VP PP) × π(3, 5, VP) × π(6, 8, PP)

. . .

q(VP → Vt NP) × π(3, 7, Vt) × π(8, 8, NP)

q(VP → VP PP) × π(3, 7, VP) × π(8, 8, PP)

13



CKY with Unary Closure
§ Input: a sentence s = x1 .. xn and a PCFG = <N, Σ ,S, R, q>
§ Initialization: For i = 1 … n:

§ Step 1: for all X in N:

§ Step 2: for all X in N:

§ For l = 1 … (n-1) [iterate all phrase lengths]
§ For i = 1 … (n-l) and j = i+l [iterate all phrases of length l]

§ Step 1: (Binary) 
§ For all X in N [iterate all non-terminals]

§ Step 2: (Unary)
§ For all X in N [iterate all non-terminals]

s = x1 . . . xn, where xi is the i’th word in the sentence. The output of the algorithm
is

arg max
t∈TG(s)

p(t)

The CKY algorithm is a dynamic-programming algorithm. Key definitions in
the algorithm are as follows:

• For a given sentence x1 . . . xn, define T (i, j,X) for any X ∈ N , for any
(i, j) such that 1 ≤ i ≤ j ≤ n, to be the set of all parse trees for words
xi . . . xj such that non-terminal X is at the root of the tree.

• Define
π(i, j,X) = max

t∈T (i,j,X)
p(t)

(we define π(i, j,X) = 0 if T (i, j,X) is the empty set).

Thus π(i, j,X) is the highest score for any parse tree that dominates words
xi . . . xj , and has non-terminal X as its root. The score for a tree t is again taken
to be the product of scores for the rules that it contains (i.e. if the tree t contains
rules α1 → β1,α2 → β2, . . . ,αm → βm, then p(t) =

∏m
i=1 q(αi → βi)).

Note in particular, that

π(1, n, S) = arg max
t∈TG(s)

because by definition π(1, n, S) is the score for the highest probability parse tree
spanning words x1 . . . xn, with S as its root.

The key observation in the CKY algorithm is that we can use a recursive defini-
tion of the π values, which allows a simple bottom-up dynamic programming algo-
rithm. The algorithm is “bottom-up”, in the sense that it will first fill in π(i, j,X)
values for the cases where j = i, then the cases where j = i + 1, and so on.

The base case in the recursive definition is as follows: for all i = 1 . . . n, for
all X ∈ N ,

π(i, i,X) =

{

q(X → xi) if X → xi ∈ R

0 otherwise

This is a natural definition: the only way that we can have a tree rooted in node
X spanning word xi is if the rule X → xi is in the grammar, in which case the
tree has score q(X → xi); otherwise, we set π(i, i,X) = 0, reflecting the fact that
there are no trees rooted in X spanning word xi.
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⇡
U

(i, j,X) = max

X!Y 2Close(R)
(q(X ! Y )⇥ ⇡

B

(i, j, Y ))

⇡B(i, j,X) = max

X!Y Z2R,s2{i...(j�1)}
(q(X ! Y Z)⇥ ⇡U (i, s, Y )⇥ ⇡U (s+ 1, j, Z)

⇡
U

(i, i,X) = max

X!Y 2Close(R)
(q(X ! Y )⇥ ⇡(i, i, Y ))



Advanced Topics
2. Grammar Refinements :Tag Splits



Tag Splits
§ Problem: Treebank 

tags are too coarse.

§ Example: Sentential, 
PP, and other 
prepositions are all 
marked IN.

§ Partial Solution:
§ Subdivide the IN tag.

Annotation F1 Size

v=h=2v 78.3 8.0K

SPLIT-IN 80.3 8.1K



Other Tag Splits

§ UNARY-DT: mark demonstratives as DT^U
(“the X” vs. “those”)

§ UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

§ TAG-PA: mark tags with non-canonical 
parents (“not” is an RB^VP)

§ SPLIT-AUX: mark auxiliary verbs with –AUX 
[cf. Charniak 97]

§ SPLIT-CC: separate “but” and “&” from other 
conjunctions

§ SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K



A Fully Annotated (Unlex) Tree



Some Test Set Results

§ Beats “first generation” lexicalized parsers.
§ Lots of room to improve – more complex models next.

Parser LP LR F1

Magerman 95 84.9 84.6 84.7
Collins 96 86.3 85.8 86.0
Unlexicalized 86.9 85.7 86.3
Charniak 97 87.4 87.5 87.4
Collins 99 88.7 88.6 88.6


