CSE 447/547
 Natural Language Processing Winter 2018

Parsing (Trees)

Yejin Choi - University of Washington
[Slides from Dan Klein, Michael Collins, Luke Zettlemoyer and Ray Mooney]

Ambiguities

I shot [an elephant] [in my pajamas]

Examples from J\&M

Syntactic Ambiguities I

- Prepositional phrases:

They cooked the beans in the pot on the stove with handles.

- Particle vs. preposition:

The puppy tore up the staircase.

- Complement structures

The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.

- Gerund vs. participial adjective Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions

The chicken is ready to eat.
The contractors are rich enough to sue.

- Coordination scope:

Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

- Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of
"This will panic buyers!"

- Unknown words and new usages

- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Probabilistic

Context Free Grammars

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple $<N, \Sigma, S, R>$
- N : the set of non-terminals
- Phrasal categories: S, NP, VP, ADJP, etc.
- Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
- Σ : the set of terminals (the words)
- S : the start symbol
- Often written as ROOT or TOP
- Not usually the sentence non-terminal S
- R : the set of rules
- Of the form $X \rightarrow Y_{1} Y_{2} \ldots Y_{n}$, with $X \in N, n \geq 0, Y_{i} \in(N \cup \Sigma)$
- Examples: $S \rightarrow$ NP VP, VP \rightarrow VP CC VP
- A PCFG adds a distribution q:
- Probability $q(r)$ for each $r \in R$, such that for all $X \in N$:

$$
\sum_{\alpha \rightarrow \beta \in R: \alpha=X} q(\alpha \rightarrow \beta)=1
$$

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow sleeps	1.0
Vt	\Rightarrow saw	1.0
NN	\Rightarrow man	0.7
NN	\Rightarrow woman	0.2
NN	\Rightarrow telescope	0.1
DT	\Rightarrow the	1.0
IN	\Rightarrow with	0.5
IN	\Rightarrow in	0.5

- Probability of a tree t with rules

$$
\alpha_{1} \rightarrow \beta_{1}, \alpha_{2} \rightarrow \beta_{2}, \ldots, \alpha_{n} \rightarrow \beta_{n}
$$

is

$$
p(t)=\prod_{i=1}^{n} q\left(\alpha_{i} \rightarrow \beta_{i}\right)
$$

where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow in	0.5	

PCFGs: Learning and Inference

- Model
- The probability of a tree t with n rules $\alpha_{i} \rightarrow \beta_{i}, i=1$..n

$$
p(t)=\prod_{i=1}^{n} q\left(\alpha_{i} \rightarrow \beta_{i}\right)
$$

- Learning
- Read the rules off of labeled sentences, use ML estimates for probabilities

$$
q_{M L}(\alpha \rightarrow \beta)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

- and use all of our standard smoothing tricks!
- Inference
- For input sentence s, define $T(s)$ to be the set of trees whole yield is s (whole leaves, read left to right, match the words in s)

$$
t^{*}(s)=\arg \max _{t \in \mathcal{T}(s)} p(t)
$$

Dynamic Programming

- We will store: score of the max parse of x_{i} to x_{j} with root non-terminal X

$$
\pi(i, j, X)
$$

- So we can compute the most likely parse:

$$
\pi(1, n, S)=\max _{t \in \mathcal{T}_{G}(s)} p(t)
$$

- Via the recursion:

$$
\pi(i, j, X)=\max _{\substack{X \rightarrow\{Y \in R, s \in\{\sim \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

- With base case:

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

The CKY Algorithm

- Input: a sentence $s=x_{1} . . x_{n}$ and a PCFG $=\langle N, \Sigma, S, R, q\rangle$
- Initialization: For $\mathrm{i}=1 \ldots \mathrm{n}$ and all X in N

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

- Forl $=1 \ldots(n-1)$
- For $\mathrm{i}=1 \ldots(\mathrm{n}-\mathrm{l})$ and $\mathrm{j}=\mathrm{i}+\mathrm{l}$
[iterate all phrase lengths]
- For all X in $\mathrm{N} \quad$ [iterate all non-terminals]

$$
\pi(i, j, X)=\max _{\substack{X \rightarrow Y Z \in R, s \in\{i \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

- also, store back pointers

$$
b p(i, j, X)=\arg \max _{\substack{X \rightarrow Y Z \in R, s \in\{i \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

Probabilistic CKY Parser

$\mathbf{S} \rightarrow \mathbf{N P}$ VP	0.8	
$\mathrm{S} \rightarrow \mathrm{X} 1 \mathrm{VP}$	0.1	
X1 \rightarrow Aux NP	1.0	
$S \rightarrow \underset{0.01}{\text { book }}\|\underset{\text { include }}{\text { in }}\| \underset{\text { prefer }}{\text { prefer }}$		
$\mathbf{S} \rightarrow$ Verb NP	0.05	
$\mathbf{S} \rightarrow$ VP PP	0.03	
NP \rightarrow Houston \| NWA		
0.16 . 04		
$\mathbf{N P} \rightarrow$ Det Nominal	0.6	
Nominal \rightarrow book \| flight	meal	mo
0.03 0.15 0.06	0.06	
Nominal \rightarrow Nominal Nominal	0.2	
Nominal \rightarrow Nominal PP	0.5	
Verb $\rightarrow \underset{\sim}{\text { book }} \mid$ include \mid prefer		
$\mathbf{V P} \rightarrow$ Verb NP	0.5	
$\mathbf{V P} \rightarrow \mathbf{V P} \mathbf{P P}$	0.3	
$\begin{array}{cccc}\text { Prep } \rightarrow \text { through } & \text { to } & \text { from } \\ 0.2 & 0.3 & 0.3\end{array}$		
$\mathbf{P P} \rightarrow$ Prep NP	1.0	

Book the flight through Houston

$\begin{array}{\|l} \hline \text { S :.01, } \\ \text { Verb:.5 } \\ \text { Nominal: } 03 \end{array}$			\qquad None	$S: .03 * .0135^{*} .032$ $=.00001296$ $: .05^{*} * 5^{*}$.000864 $=.0000216$	
	$\text { Det:. } 6 \longleftarrow \prec$	$\frac{\sqrt{N}: .6 * .6 * 15}{=.054}$	None	$\begin{gathered} * *: .6^{*} .6^{*} \\ .0024 \\ =.000864 \end{gathered}$	
			None	Nominal: $.5^{*} .15^{*} .032$ $\\|=.0024$	
			Prep:. 2		

Probabilistic CKY Parser

Probabilistic CKY Parser

Memory

- How much memory does this require?
- Have to store the score cache
- Cache size: |symbols|* n^{2}
- Pruning: Beam Search
- score[X][i][j] can get too large (when?)
- Can keep beams (truncated maps score[i][j]) which only store the best K scores for the span [i,j]
- Pruning: Coarse-to-Fine
- Use a smaller grammar to rule out most X[i,j]
- Much more on this later...

Time: Theory

- How much time will it take to parse?
- For each diff $(:=j-i)(<=n)$
- For each $i(<=n)$
- For each rule $X \rightarrow Y Z$
- For each split point k Do constant work

- Total time: |rules|* ${ }^{\star}{ }^{3}$
- Something like 5 sec for an unoptimized parse of a 20 -word sentences

Time: Practice

- Parsing with the vanilla treebank grammar:

~ 20K Rules
(not an
optimized parser!)

Observed
exponent:
3.6

- Why's it worse in practice?
- Longer sentences "unlock" more of the grammar
- All kinds of systems issues don't scale

Other Dynamic Programs

Can also compute other quantities:

- Best Inside: score of the max parse of w_{i} to w_{j} with root non-terminal X
- Best Outside: score of the max parse of w_{0} to w_{n} with a gap from w_{i} to w_{j} rooted with non-terminal X
- see notes for derivation, it is a bit more complicated

- Sum Inside/Outside: Do sums instead of maxes

Why Chomsky Normal Form?

Inference:
-Can we keep N -ary ($\mathrm{N}>2$) rules and still do dynamic programming?
-Can we keep unary rules and still do dynamic programming?
Learning:
-Can we reconstruct the original
flight through Houston

S :.01, Verb:.5 Nominal::03	None
	Det:.6K
2) rules and	

Treebanks

The Penn Treebank: Size

- Penn WSJ Treebank $=50,000$ sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

ADJP	Adjective phrase
ADVP	Adverb phrase
NP	Noun phrase
PP	Prepositional phrase
S	Simple declarative clause
SBAR	Subordinate clause
SBARQ	Direct question introduced by $w h$-element
SINV	Declarative sentence with subject-aux inversion
SQ	Yes/no questions and subconstituent of SBARQ excluding $w h$-element
VP	Verb phrase
WHADVP	Wh-adverb phrase
WHNP	Wh-noun phrase
WHPP	Wh-prepositional phrase
X	Constituent of unknown or uncertain category
$*$	"Understood" subject of infinitive or imperative
0	Zero variant of that in subordinate clauses
T	Trace of wh-Constituent

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

Treebank Grammar Scale

- Treebank grammars can be enormous
- As FSAs, the raw grammar has $\sim 10 \mathrm{~K}$ states, excluding the lexicon
- Better parsers usually make the grammars larger, not smaller

NP:

Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.

Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

- Accuracy - F1: harmonic mean of per-node labeled precision and recall.
- Here: also size - number of symbols in grammar.
- Passive / complete symbols: NP, NP^S
- Active / incomplete symbols: NP \rightarrow NP CC•

How to Evaluate?

Correct Tree T

flight through Houston

Computed Tree P

PARSEVAL Example

\# Constituents: 11

Computed Tree P

\# Correct Constituents: 10

$$
\text { Recall }=10 / 11=90.9 \% \quad \text { Precision }=10 / 12=83.3 \% \quad F_{1}=87.4 \%
$$

Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system's parse tree and T is the human parse tree (the "gold standard"):
- Recall = (\# correct constituents in P) / (\# constituents in T)
- Precision = (\# correct constituents in P) / (\# constituents in P)
- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.
- F1 is the harmonic mean of precision and recall.
- F1 = (2 * Precision * Recall) / (Precision + Recall)

Performance with Vanilla PCFGs

- Use PCFGs for broad coverage parsing
[Charniak 96]
- Take the grammar right off the trees

1

Model	F1
Baseline	72.0

Grammar Refinements 1. Markovization

Conditional Independence?

- Not every NP expansion can fill every NP slot
- A grammar with symbols like "NP" won't be context-free
- Statistically, conditional independence too strong

Non-Independence

- Independence assumptions are often too strong.

All NPs

NPs under S

NPs under VP

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes.
(cf. parent annotation)

Order 1

Order 2

Horizontal Markovization

Vertical and Horizontal

Model	F1	Size
$\mathrm{v}=\mathrm{h}=2 \mathrm{v}$	77.8	7.5 K

Unlexicalized PCFG Grammar Size

	Horizontal Markov Order					
Vertical Order	$h=0$	$h=1$	$h \leq 2$	$h=2$	$h=\infty$	
$v=1$	No annotation	71.27	72.5	73.46	72.96	72.62
		(854)	(3119)	(3863)	(6207)	(9657)
$v \leq 2$	Sel. Parents	74.75	77.42	77.77	77.50	76.91
		(2285)	(6564)	(7619)	(11398)	(14247)
$v=2$	All Parents	74.68	77.42	77.81	77.50	76.81
		(2984)	(7312)	(8367)	(12132)	(14666)
$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
		(4943)	(12374)	(13627)	(19545)	(20123)
$v=3$	All GParents	76.74	79.18	79.74	79.07	78.72
		(7797)	(15740)	(16994)	(22886)	(22002)

Figure 2: Markovizations: F_{1} and grammar size.

Grammar Refinements 2. Lexicalization

Problems with PCFGs

- These trees differ only in one rule:
- VP \rightarrow VP PP
- NP \rightarrow NP PP
- Lexicalization allows us to be sensitive to specific words

Lexicalize Trees!

- Add "headwords" to each phrasal node
- Headship not in (most) treebanks
- Usually use (handwritten) head rules, e.g.:
- NP:
- Take leftmost NP
- Take rightmost N^{*}
- Take rightmost JJ
- Take right child
- VP:
- Take leftmost VB*
- Take leftmost VP
- Take left child

Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like

```
VP(saw) -> VBD(saw) NP-C(her) NP(today)
```

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

- Main idea: define a linguistically-motivated Markov process for generating children given the parent

VBD (saw)

Step 1: Choose a head tag and word

Step 2: Choose a complement bag

Step 3: Generate children (incl. adjuncts)

Step 4: Recursively derive children

Lexicalized CKY

(VP->VBD...NP •)[saw]

bestScore (i,j,X,h)

```
if (j = i+1)
    return tagScore(X,s[i])
    else
    return
max max score(X[h]->Y[h] Z[h']) *
    k,h', bestScore(i,k,Y, h) *
    X->YZ bestScore(k+1,j,Z, h')
            max score(X[h]->Y[h'] Z[h]) *
        k,h', bestScore(i,k,Y, h') *
        X->YZ bestScore(k+1,j,Z, h)
```

still cubic time?

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
- Essentially, run the $O\left(n^{5}\right)$ CKY
- If we keep K hypotheses at each span, then we do at most $O\left(\mathrm{nK}^{2}\right)$ work per span (why?)
- Keeps things more or less cubic
- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Model	F1
Naïve Treebank Grammar	72.6
 Manning '03	86.3
Collins 99	88.6

Grammar Refinements
3. Using Latent Sub-categories

Manual Annotation

- Manually split categories
- NP: subject vs object
- DT: determiners vs demonstratives
- IN: sentential vs prepositional
- Advantages:
- Fairly compact grammar
- Linguistic motivations
- Disadvantages:
- Performance leveled out
- Manually annotated

Learning Latent Annotations

Latent Annotations:

- Brackets are known
- Base categories are known
- Hidden variables for subcategories

Can learn with EM: like ForwardBackward for HMMs.

Forward/Outside

Backward/Inside

Final Results

	F1 ≤ 40 words	F1 all words
Parser	86.3	85.7
Klein \& Manning '03	86.7	86.1
Matsuzaki et al. '05	88.6	88.2
Collins '99	90.1	89.6
Charniak \& Johnson '05	$\mathbf{9 0 . 2}$	$\mathbf{8 9 . 7}$
Petrov et. al. 06		

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015
John has a dog $\boldsymbol{\rightarrow}$

John has a dog \rightarrow
$\left.\left(\mathrm{S}(\mathrm{NP} N N P)_{\mathrm{NP}}(\mathrm{VP} \text { VBZ (NP DT NN })_{\mathrm{NP}}\right)_{\mathrm{VP}} \cdot\right)_{\mathrm{S}}$

- Linearize a tree into a sequence
- Then parsing problem becomes similar to machine translation
- Input: sequence
- Output: sequence (of different length)
- Encoder-decoder LSTMs (Long short-term memory networks)

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015
John has a dog $\boldsymbol{\rightarrow}$

John has a dog \rightarrow
$\left.\left(\mathrm{S}(\mathrm{NP} N N P)_{\mathrm{NP}}(\mathrm{VP} \text { VBZ (NP DT NN })_{\mathrm{NP}}\right)_{\mathrm{VP}} \cdot\right)_{\mathrm{S}}$

- Penn treebank (~40K sentences) is too small to train LSTMs
- Create a larger training set with 11M sentences automatically parsed by two state-of-the-art parsers (and keep only those sentences for which two parsers agreed)

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015

Parser	Training Set	WSJ 22	WSJ 23
baseline LSTM+D	WSJ only	<70	<70
LSTM+A+D	WSJ only	88.7	88.3
LSTM+A+D ensemble	WSJ only	90.7	90.5
baseline LSTM	BerkeleyParser corpus	91.0	90.5
LSTM+A	high-confidence corpus	93.3	92.5
LSTM+A ensemble	high-confidence corpus	$\mathbf{9 3 . 5}$	$\mathbf{9 2 . 8}$
Petrov et al. (2006) [12]	WSJ only	91.1	90.4
Zhu et al. (2013) [13]	WSJ only	N/A	90.4
Petrov et al. (2010) ensemble [14]	WSJ only	92.5	91.8
Zhu et al. (2013) [13]	semi-supervised	N/A	91.3
Huang \& Harper (2009) [15]	semi-supervised	N/A	91.3
McClosky et al. (2006) [16]	semi-supervised	92.4	92.1
Huang \& Harper (2010) ensemble [17]	semi-supervised	92.8	92.4

Supplementary Topics I. CNF Conversion

Chomsky Normal Form

- Chomsky normal form:
- All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
- In principle, this is no limitation on the space of (P)CFGs
- N-ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
- Reconstructing n-aries is easy
- Reconstructing unaries is trickier
- The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

Original Grammar

$\mathrm{S} \rightarrow \mathrm{NP}$ VP	0.8
$S \rightarrow$ Aux NP VP	0.1
$S \rightarrow V P$	0.1
$N P \rightarrow$ Pronoun	0.2
NP \rightarrow Proper-Noun	0.2
$N P \rightarrow$ Det Nominal	0.6
Nominal \rightarrow Noun	0.3
Nominal \rightarrow Nominal Noun	0.2
Nominal \rightarrow Nominal PP	0.5
$V P \rightarrow$ Verb	0.2
VP \rightarrow Verb NP	0.5
$V P \rightarrow V P P P$	0.3
PP \rightarrow Prep NP	1.0

CNF Conversion Example

```
Lexicon:
```

Lexicon:
Noun }->\mathrm{ book | flight | meal | money
Noun }->\mathrm{ book | flight | meal | money
0.1
0.1
Verb }->\mathrm{ book | include | prefer
Verb }->\mathrm{ book | include | prefer
0.5 0.2 0.3

```
    0.5 0.2 0.3
```

```
Det }->\mathrm{ the | a | that | this
    0.6 0.2 0.1 0.1
Pronoun }->1\quad|\mathrm{ he | she | me
    0.5 0.1 0.1 0.3
Proper-Noun }->\mathrm{ Houston | NWA
            0.8 0.2
Aux }->\mathrm{ does
    1 . 0
Prep }->\mathrm{ from | to | on | near | through
    0.25}0.250.1 0.2 0.2
```


Original Grammar

Chomsky Normal Form

Original Grammar

Chomsky Normal Form

Original Grammar

Chomsky Normal Form

Advanced Topics
 I. CKY with Unary Rules

CNF + Unary Closure

We need unaries to be non-cyclic

- Calculate closure Close(R) for unary rules in R
- Add $X \rightarrow Y$ if there exists a rule chain $X \rightarrow Z_{1}, Z_{1} \rightarrow Z_{2}, \ldots, Z_{k} \rightarrow Y$ with $q(X \rightarrow Y$ $=q\left(X \rightarrow Z_{1}\right)^{*} q\left(Z_{1} \rightarrow Z_{2}\right)^{*} \ldots * q\left(Z_{k} \rightarrow Y\right)$
- If no unary rule exist for X, add $X \rightarrow X$ with $q(X \rightarrow X)=1$ for all X in N
 WARNING: Watch out

SBAR

- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about $X \rightarrow Y$ with different unary paths (and scores)?

The CKY Algorithm

- Input: a sentence $s=x_{1} . . x_{n}$ and a PCFG $=\langle N, \Sigma, S, R, q\rangle$
- Initialization: For $\mathrm{i}=1 \ldots \mathrm{n}$ and all X in N

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

- Forl $=1 \ldots(n-1)$
- For $\mathrm{i}=1 \ldots(\mathrm{n}-\mathrm{l})$ and $\mathrm{j}=\mathrm{i}+\mathrm{l}$
[iterate all phrase lengths]
- For all X in $\mathrm{N} \quad$ [iterate all non-terminals]

$$
\pi(i, j, X)=\max _{\substack{X \rightarrow Y Z \in R, s \in\{i \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

- also, store back pointers

$$
b p(i, j, X)=\arg \max _{\substack{X \rightarrow Y Z \in R, s \in\{i \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

CKY with Unary Closure

- Input: a sentence $s=x_{1} . . x_{n}$ and a PCFG $=\langle N, \Sigma, S, R, q\rangle$
- Initialization: For $\mathrm{i}=1 \ldots \mathrm{n}$:
- Step 1: for all X in N :

$$
\begin{array}{ll}
\text { or all } \mathrm{X} \text { in } \mathrm{N}: \\
\pi(i, i, X) \\
\text { or all } \mathrm{X} \text { in } \mathrm{N}:
\end{array}= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\
0 & \text { otherwise }\end{cases}
$$

- Step 2: for all X in N :

$$
\pi_{U}(i, i, X)=\max _{X \rightarrow Y \in \operatorname{Close}(R)}(q(X \rightarrow Y) \times \pi(i, i, Y))
$$

- Forl $=1 \ldots(n-1)$ [iterate all phrase lengths]
- For $i=1 \ldots(n-l)$ and $j=i+1 \quad$ [iterate all phrases of length I]
- Step 1: (Binary)
- For all X in N [iterate all non-terminals]

$$
\pi_{B}(i, j, X)=\max _{X \rightarrow Y Z \in R, s \in\{i \ldots(j-1)\}}\left(q(X \rightarrow Y Z) \times \pi_{U}(i, s, Y) \times \pi_{U}(s+1, j, Z)\right.
$$

- Step 2: (Unary)
- For all X in $\mathrm{N} \quad$ [iterate all non-terminals]
$\pi_{U}(i, j, X)=\max _{X \rightarrow Y \in \operatorname{Close}(R)}\left(q(X \rightarrow Y) \times \pi_{B}(i, j, Y)\right)$

Advanced Topics
2. Grammar Refinements :Tag Splits

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:
- Subdivide the IN tag.

Annotation	F1	Size
$\mathrm{v}=\mathrm{h}=2 \mathrm{v}$	78.3	8.0 K
SPLIT-IN	80.3	8.1 K

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an $\mathrm{RB} \wedge \mathrm{V}$)
- SPLIT-AUX: mark auxiliary verbs with -AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "\&" from other conjunctions
- SPLIT-\%: "\%" gets its own tag.

F1	Size
80.4	8.1 K
80.5	8.1 K
81.2	8.5 K
81.6	9.0 K
81.7	9.1 K
81.8	9.3 K

A Fully Annotated (Unlex) Tree

ROOT

Some Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	$\mathbf{8 4 . 7}$
Collins 96	86.3	85.8	$\mathbf{8 6 . 0}$
Unlexicalized	86.9	85.7	$\mathbf{8 6 . 3}$
Charniak 97	87.4	87.5	$\mathbf{8 7 . 4}$
Collins 99	88.7	88.6	$\mathbf{8 8 . 6}$

- Beats "first generation" lexicalized parsers.
- Lots of room to improve - more complex models next.

