CSE 447/547

Natural Language Processing Winter 2018

Dependency Parsing
And Other Grammar Formalisms
Yejin Choi - University of Washington

Dependency Grammar

For each word, find one parent.

A child is dependent on the parent.

- A child is an argument of the parent.
- A child modifies the parent.

For each word, find one parent.
Child Parent

A child is dependent on the parent.

- A child is an argument of the parent.
- A child modifies the parent.

For each word, find one parent.

A child is dependent on the parent.

- A child is an argument of the parent.
- A child modifies the parent.

shot an elephant in my pajamas yesterday

I shot an elephant in my pajamas yesterday

Typed Depedencies

nsubj(shot-2, i-1) root(ROOT-0, shot-2) det(elephant-4, an-3) dobj(shot-2, elephant-4)
prep(shot-2, in-5)
poss(pajamas-7, my-6)
pobj(in-5, pajamas-7)

CFG vs Dependency Parse I

- Both are context-free.
- Both are used frequently today, but dependency parsers are more recently popular.
- CKY Parsing algorithm:
- $O\left(N^{\wedge} 3\right)$ using CKY \& unlexicalized grammar
- $\mathrm{O}(\mathrm{N} \wedge 5)$ using CKY \& lexicalized grammar ($\mathrm{O}(\mathrm{N} \wedge 4)$ also possible)
- Dependency parsing algorithm:
- O ($\mathrm{N} \wedge 5$) using naïve CKY
- $O\left(N^{\wedge} 3\right)$ using Eisner algorithm
- $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ based on minimum directed spanning tree algorithm (arborescence algorithm, aka, Edmond-Chu-Liu algorithm - see edmond.pdf)
- Linear-time $O(N)$ Incremental parsing (shift-reduce parsing) possible for both grammar formalisms

CFG vs Dependency Parse II

- CFG focuses on "constituency" (i.e., phrasal/clausal structure)
- Dependency focuses on "head" relations.
- CFG includes non-terminals. CFG edges are not typed.
- No non-terminals for dependency trees. Instead, dependency trees provide "dependency types" on edges.
- Dependency types encode "grammatical roles" like
- nsubj -- nominal subject
- dobj - direct object
- pobj - prepositional object
- nsubjpass - nominal subject in a passive voice

CFG vs Dependency Parse III

- Can we get "heads" from CFG trees?
- Yes. In fact, modern statistical parsers based on CFGs use hand-written "head rules" to assign "heads" to all nodes.
- Can we get constituents from dependency trees?
- Yes, with some efforts.
- Can we transform CFG trees to dependency parse trees?
- Yes, and transformation software exists. (stanford toolkit based on [de Marneffe et al. LREC 2006])
- Can we transform dependency trees to CFG trees?
- Mostly yes, but (1) dependency parse can capture nonprojective dependencies, while CFG cannot, and (2) people rarely do this in practice

Non Projective Dependencies

- Mr. Tomash will remain as a director emeritus.
- A hearing is scheduled on the issue today.

Non Projective Dependencies

- Projective dependencies: when the tree edges are drawn directly on a sentence, it forms a tree (without a cycle), and there is no crossing edge.
- Projective Dependency:
- Eg:

Non Projective Dependencies

- Projective dependencies: when the tree edges are drawn directly on a sentence, it forms a tree (without a cycle), and there is no crossing edge.
- Non-projective dependency:
- Eg:

Non Projective Dependencies

- which word does "on the issue" modify?
- We scheduled a meeting on the issue today.
- A meeting is scheduled on the issue today.
- CFGs capture only projective dependencies (why?)

Coordination across Constituents

-Right-node raising:

- [[She bought] and [he ate]] bananas.
-Argument-cluster coordination:
- I give [lyou an apple] and [him a pear]].
-Gapping:
- She likes sushi, and he sashimi
\rightarrow CFGs don't capture coordination across constituents:

Coordination across Constituents

- She bought and he ate bananas.
- I give you an apple and him a pear.

Compare above to:

- She bought and ate bananas.
- She bought bananas and apples.
- She bought bananas and he ate apples.

The Chomsky Hierarchy

Recursively Enumerable Languages

Context-Sensitive Languages

Mildly Context-Sensitive Languages

Context-Free Languages

Regular (or Right Linear) Languages

The Chomsky Hierarchy

Type	Common Name	Rule Skeleton	Linguistic Example
0	Turing Equivalent	$\alpha \rightarrow \beta$, s.t. $\alpha \neq \epsilon$	HPSG, LFG, Minimalism
1	Context Sensitive	$\alpha A \beta \rightarrow \alpha \gamma \beta$, s.t. $\gamma \neq \epsilon$	
-	Mildly Context Sensitive		TAG, CCG
2	Context Free	$A \rightarrow \gamma$	Phrase-Structure Grammars
3	Regular	$A \rightarrow x B$ or $A \rightarrow x$	Finite-State Automata

- Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1987, 1994)
- Lexical Functional Grammar (LFG) (Bresnan, 1982)
- Minimalist Grammar (Stabler, 1997)
- Tree-Adjoining Grammars (TAG) (Joshi, 1969)
- Combinatory Categorial Grammars (CCG) (Steedman, 1986)

Advanced Topics

- Eisner's Algorithm -

Naïve CKY Parsing

slides from Eisner \& Smith

Eisner Algorithm (Eisner \& Satta, 1999)

This happens only once as the very final step

Without adding a dependency arc

When adding a dependency arc (head is higher)

Eisner Algorithm (Eisner \& Satta, 1999)

slides from Eisner \& Smith

Eisner Algorithm (Eisner \& Satta, 1999)

Gives $O\left(n^{3}\right)$ dependency grammar parsing

Eisner Algorithm

- Base case:

$$
\forall t \in\{\unlhd, \unrhd, \triangleleft, \triangleright\}, \pi(i, i, t)=0
$$

- Recursion:

$$
\begin{aligned}
& \pi(i, j, \unlhd)=\max _{i \leq k<j}\left(\pi(i, k, \triangleright)+\pi(k+1, j, \triangleleft)+\phi\left(w_{j}, w_{i}\right)\right) \\
& \left.\pi(i, j, \unrhd)=\max _{i \leq k<j}\left(\pi(i, k, \triangleright)+\pi(k+1, j, \triangleleft)+\phi\left(w_{i}, w_{j}\right)\right)\right) \\
& \pi(i, j, \triangleleft)=\max _{i \leq k<j}(\pi(i, k, \triangleleft)+\pi(k+1, j, \unlhd)) \\
& \pi(i, j, \triangleright)=\max _{i \leq k<j}(\pi(i, k, \unrhd)+\pi(k+1, j, \triangleright))
\end{aligned}
$$

- Final case:

$$
\pi(1, n, \triangleleft \triangleright)=\max _{1 \leq k<n}(\pi(1, k, \triangleleft)+\pi(k+1, n, \triangleright))
$$

Advanced Topics:

Mildly Context-Sensitive Grammar Formalisms

I. Tree Adjoining Grammar (TAG)

TAG Lexicon (Supertags)

- Tree-Adjoining Grammars (TAG) (Joshi, 1969) "... super parts of speech (supertags): almost parsing" (Joshi and Srinivas 1994)
- POS tags enriched with syntactic structure - also used in other grammar formalisms (e.g., CCG)

TAG Lexicon (Supertags)

TAG rule 1: Substitution

Derived tree:

Derivation tree:

TAG rule 2: Adjunction

Example: TAG Lexicon

$\alpha 2$:
NP
John
$\alpha 3$
:
NP
tapas
 eats
$\beta 1$:

always

Example: TAG Derivation

Example: TAG Derivation

always

Example: TAG Derivation

(1) Can handle long distance dependencies

(2) Cross-serial Dependencies

dat Jan Piet Marie de kinderen zag helpen laten zwemmen

- Dutch and Swiss-German
- Can this be generated from context-free grammar?

$\mathbf{a}^{\mathrm{n}} \mathbf{b}^{n}$: Cross-serial dependencies

Elementary trees:

Deriving aabb

Tree Adjoining Grammar (TAG)

- TAG: Aravind Joshi in 1969
- Supertagging for TAG: Joshi and Srinivas 1994
- Pushing grammar down to lexicon.
- With just two rules: substitution \& adjunction
- Parsing Complexity:
- O(N^7)

- Xtag Project (TAG Penntree) (http://www.cis.upenn.edu/~xtag/)
- Local expert!
- Fei Xia @ Linguistics (https://faculty.washington.edu/fxia/)

II. Combinatory Categorial Grammar (CCG)

Categories

- Categories = types
- Primitive categories
- N, NP, S, etc
- Functions
- a combination of primitive categories
- S/NP, (S/NP) /(S/NP), etc
- V, VP, Adverb, PP, etc

Combinatory Rules

Application

- forward application: x / y y $\rightarrow x$
- backward application: y xly \rightarrow x
- Composition
- forward composition: $x / y \mathrm{y} / \mathrm{z} \rightarrow \mathrm{x} / \mathrm{z}$
- backward composition: y\z xly \rightarrow x\z
- (forward crossing composition: x / y y $\backslash z \rightarrow x \backslash z$)
- (backward crossing composition: xly y/z $\rightarrow x / z$)
- Type-raising
- forward type-raising: $x \rightarrow y /(y \backslash x)$
- backward type-raising: $x \rightarrow y \backslash(y / x)$
- Coordination $<\&>$
- x conj $\mathrm{x} \rightarrow \mathrm{x}$

Combinatory Rules 1 : Application

- Forward application ">"
- X/Y Y $\rightarrow X$
- (S\NP)/NP NP \rightarrow S $\backslash N P$
- Backward application "<"
- Y XIY $\rightarrow \mathrm{X}$
- NP S\NP \rightarrow S

Function

- likes := (S\NP) / NP
- A transitive verb is a function from NPs into predicate S . That is, it accepts two NPs as arguments and results in S.
- Transitive verb: (S\NP) / NP
- Intransitive verb: S\NP
- Adverb: (S\NP) \ (S\NP)
- Preposition: (NP\NP) / NP
- Preposition: ((S\NP)
(S\NP)) / NP

likes

CCG Derivation:

Mary likes musicals
CFG Derivation:

Combinatory Rules

- Application
- forward application: x / y y $\rightarrow x$
- backward application: y xly $\rightarrow x$
- Composition
- forward composition: $x / y \mathrm{y} / \mathrm{z} \rightarrow \mathrm{x} / \mathrm{z}$
- backward composition: $y \backslash z x \backslash y \rightarrow x \backslash z$
- forward crossing composition: $x / y y \backslash z \Rightarrow x \backslash z$
- backward crossing composition: xly y/z $\Rightarrow x / z$
- Type-raising
- forward type-raising: $x \rightarrow y /(y \backslash x)$
- backward type-raising: $x \rightarrow y \backslash(y / x)$

Coordination <\&>

- x conj $x \rightarrow x$

Combinatory Rules 4 : Coordination

- $X \operatorname{conj} X \rightarrow X$
- Alternatively, we can express coordination by defining conjunctions as functions as follows:
- and := (XXX) /X

Coordination with CCG

Coordination with CCG

$\frac{\text { Marcel }}{N P} \frac{\text { conjectured }}{(S \backslash N P) / N P}$
$$
\frac{\text { and }}{(\mathrm{X} \backslash \mathrm{X}) / \mathrm{X}} \frac{\text { proved }}{(\mathrm{S} \backslash N P) / \mathrm{NP}}
$$

- Application
- forward application: x/y y $\rightarrow x$
- backward application: y xly \rightarrow x

Coordination with CCG

| $\frac{\text { Marcel }}{N P} \frac{\text { conjectured }}{(S \backslash N P) / N P} \frac{\text { and }}{\frac{\text { proved }}{(\mathrm{X} \backslash \mathrm{X}) / \mathrm{X}} \frac{\text { (S\NP)/NP }}{(\mathrm{S} \backslash N P) / N P) \backslash((S \backslash N P) / N P)}}<$ |
| :---: |$>\frac{\text { completeness }}{\mathrm{NP}}$

Application

- forward application: x / y y $\rightarrow \mathrm{x}$
- backward application: y xly \rightarrow x

Combinatory Rules

- Application
- forward application: x / y y $\rightarrow x$
- backward application: y xly \rightarrow x

Composition

- forward composition: $x / y ~ y / z \rightarrow x / z$
- backward composition: $y \backslash z \times l y \rightarrow x \backslash z$
- forward crossing composition: $x / y y \backslash z \rightarrow x \backslash z$
- backward crossing composition: x ly $y / z \Rightarrow x / z$
- Type-raising
- forward type-raising: $x \rightarrow y /(y \backslash x)$
- backward type-raising: $x \rightarrow y \backslash(y / x)$
- Coordination <\&>
- $x \operatorname{conj} x \rightarrow x$

Cooroinationnwith

$\frac{\text { Marcel }}{N P} \frac{\text { conjectured }}{(S \backslash N P) / N P} \frac{\text { and }}{(X \backslash X) / X} \frac{\text { might }}{(S \backslash N P) /((S \backslash N P))} \frac{\text { prove }}{(S \backslash N P) / N P} \frac{\text { completenes }}{N P}$

- Application
- forward application: x/y y \rightarrow x
- backward application: y xly \rightarrow x
- Composition
- forward composition: $x / y ~ y / z \rightarrow x / z$
- backward composition: $y \backslash z x l y \rightarrow x \backslash z$
- forward crossing composition: x / y y $\gg x \backslash z$
- backward crossing composition: xly $y / z \rightarrow x / z$

Cooroination with

Combinatory Rules

- Application
- forward application: x / y y $\rightarrow x$
- backward application: y xly \rightarrow x
- Composition
- forward composition: $x / y \mathrm{y} / \mathrm{z} \rightarrow \mathrm{x} / \mathrm{z}$
- backward composition: $y \backslash z$ xly $\rightarrow x \backslash z$
- forward crossing composition: $x / y ~ y \backslash z ~ \Rightarrow x \backslash z$
- backward crossing composition: xly $y / z \Rightarrow x / z$

Type-raising

- forward type-raising: $x \rightarrow y /(y \backslash x)$
- backward type-raising: $x \rightarrow y \backslash(y / x)$
- Coordination <\&>
- x conj $x \rightarrow x$

Combinatory Rules 3 : Type-Raising

- Turns an argument into a function
- Forward type-raising: $X \rightarrow T /(T \backslash X)$
- Backward type-raising: $X \rightarrow T \backslash(T / X)$

For instance...

- Subject type-raising: $N P \rightarrow S /(S \backslash N P)$
- Object type-raising: $N P \rightarrow$ (S\NP)
((S\NP) / NP)

Combinatory Rules 3 : Type-Raising

$\frac{\mathrm{I}}{N P} \frac{\text { dislike }}{(S \backslash N P) / N P} \frac{\text { and }}{C O N J} \frac{\text { Mary }}{N P} \frac{\text { likes }}{(S \backslash N P) / N P} \frac{\text { musicals }}{N P}$

Application

- forward application: x/y y \rightarrow x
- backward application: y xly \rightarrow x

Type-raising

- forward type-raising: $x \rightarrow y /(y \backslash x)$
- backward type-raising: $x \rightarrow y \backslash(y / x)$
- Subject type-raising: NP \rightarrow S / (S \NP)
- Object type-raising: $N P \rightarrow(S \backslash N P) \backslash((S \backslash N P) / N P)$
- Coordination $\langle \&>$
- x conj $\mathrm{x} \rightarrow \mathrm{x}$

Combinatory Rules 3 : Type-Raising

$\xrightarrow[S /(S \backslash N P)^{T}]{ }>B$
$\frac{: \text { mary }^{\prime}}{S /(S \backslash N P)^{T}}: \lambda x . \lambda y$. like' $^{\prime} x y$
$: \lambda f . f$ mary
$S / N P$$B$
: λx. like'x mary'
S/NP

Combinatory Categorial Grammar (CCG)

- CCG: Steedman in 1986
- Pushing grammar down to lexicon.
- With just a few rules: application, composition, type-raising
- We've looked at only syntactic part of CCG
- A lot more in the semantic part of CCG (using lambda calculus)
- Parsing Complexity:
- $\mathrm{O}\left(\mathrm{N}^{\wedge} \mathrm{b}\right)$
- Local expert!
- Luke Zettlemoyer (https://www.cs.washington.edu/people/faculty/lsz)

