CSE 447/547
Natural Language Processing
Winter 2020

Feature Rich Models
(Log Linear Models)

Yejin Choi
University of Washington

[Many slides from Dan Klein, Luke Zettlemoyer]

What is the input representation?

Structure in the output variable(s)?

No Structure Structured Inference

Generative models Naive Bayes HMMs
(classical probabilistic PCFGs
models) IBM Models
Log-linear models Perceptron MEMM

(discriminatively
trained feature-rich
models)

Neural network
models
(representation
learning)

Maximum Entropy CRF
Logistic Regression

Feedforward NN RNN
CNN LSTM
GRU ...

Feature Rich Models

= Throw anything (features) you want
into the stew (the model)

* L og-linear models
= Often lead to great performance.

(sometimes even a best paper award) "11,001 New Features for Statistical
Machine Translation", D. Chiang, K. Knight, and W. Wang, NAACL, 2009.

Why want richer features?

= POS tagging: more information about the context?
» |s previous word “the"?
= |s previous word “the” and the next word “of"?
» |s previous word capitalized and the next word is numeric?

» |sthere a word “"program” within [-5,+5] window?
» |s the current word part of a known idiom?
= Conjunctions of any of above?

= Desiderata:
» Lots and lots of features like above: > 200K
» No independence assumption among features
= Classical probability models, however
» Permit very small amount of features
» Make strong independence assumption among features

HMMs: P(tag sequence|sentence)

We want a model of sequences y and observations x

ROaON
STPP\T ! - Stop

P(x1...Tp, Y1 - yn+1)—q(STOP\yn) q(Yilyi—1)e(z:|ys)
1=1

where y,=START and we call g(y’ly) the transition distribution and e(x|]y) the emission
(or observation) distribution.

Assumptions:
» Tag/state sequence is generated by a markov model
= Words are chosen independently, conditioned only on the tag/state
» These are totally broken assumptions: why?

PCFGs: P(parse tree|sentence)

1.0

NPQ3 Vit NPO‘3 IN NPO.3
N 10 A\ 5 A\
DT NN \ DT NN r DT NN
LO]0.7 [0]0.2 .0 101
e man saw the woman with the telescope
p(ty)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1

e Probability of a tree ¢ with rules
ap — P, = Po, .o, 0 — Oy
1S
H q(ai — ;)

where q(a — (3) is the probab1hty for rule o — 3.

Rich tfeatures for long range dependencies

NP CC NP I

TN | | Ml\IS IN NP

NP PP and NNS loos |
| N | o8 mn /I\

NNS IN NP cats NP CcC NP
| | | | |
dolgs m NNS NNS and NNS
| | |
houses houses cats

» \What's different between basic PCFG scores here?
= \What (lexical) correlations need to be scored?

| Ms: P(text)

n

p(1...T,) = Hq(xi|xi_1) where Z q(xi|lri1) =1

1=1 T, EV*
o = START & V*:=V U {STOP}

Generative process: (1) generate the very first word conditioning on the special
symbol START, then, (2) pick the next word conditioning on the previous word,
then repeat (2) until the special word STOP gets picked.

Graphical Model:

Subtleties:

= |f we are introducing the special START symbol to the model, then we are making the
assumption that the sentence always starts with the special start word START, thus

when we talk about p(xy...xzp) Tisin fact p(xq...z,|r0 = START)

» While we add the special STOP symbol to the vocabulary P we do not add the
special START symbol to the vocabulary. Why?

Internals of probabilistic models:
nothing but adding log-prob

= | M: .+ log p(W7 | w5, wb) + log p(w8 | w6, w7) + ...
= PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
= HMM tagging: ... +log p(t7 | t5, t6) + log p(w7 | t7) + ...

- NOiSY channel: [Iog p(source)] + [Iog p(data | source)]
= Naive Bayes:

log p(Class) + log p(featurel | Class) + log p(feature2 | Class) ...

arbitrary scores instead of log probs?

Change log p(this | that) to ®(this ; that)

= | M: .+ ® (W7 ; w5, wé) + ® (W8 ; wb, w7) + ...
= PCFG: oMPVP:S)+ ®(Papa;NP)+ @ (VPPP:VP)..
= HMM tagging: ... + o@7;t5,t6)+ o W7;t7) + ..

= Noisy channel: [o (source)] + [® (data ; source)]

= Naive Bayes:
® (Class) + O (featurel ; Class) + © (feature2 ; Class) ...

arbitrary scores instead of log probs?

Change log p(this | that) to ®(this ; that)

= | M: .+ ® (W7 ; w5, wé) + ® (W8 ; wb, w7) + ...

= PCFG: oMPVP:S)+ ®(Papa;NP)+ @ (VPPP:VP)..

= HMM tagging: ... + o@;t5,t6)+ o W7;t7) + ..
MEMM or CRF

= Noisy channel: [o (source)] + [® (data ; source)]

= Naive payes:
® (Class) + O (featurel ; Class) + © (feature2 ; Class) ...
logistic regression / max-ent

Running example: POS tagging

Roadmap of (known / unknown) accuracies:

Strawman baseline:

= Most freq tag: ~90% / ~50%

Generative models:

= Trigram HMM: ~95% / ~55%

= TnT (HMM++): 96.2% / 86.0% (with smart UNK'ing)

Feature-rich models?

» Upper bound: ~98%

What is the input representation?

Structure in the output variable(s)?

No Structure Structured Inference

Generative models Naive Bayes HMMs
(classical probabilistic PCFGs
models) IBM Models
Log-linear models Perceptron MEMM

(discriminatively
trained feature-rich
models)

Neural network
models
(representation
learning)

Maximum Entropy CRF
Logistic Regression

Feedforward NN RNN
CNN LSTM
GRU ...

Rich features for rich contextual information

= Throw in various features about the context:
= f1:=Is previous word “the” and the next word “of"?
» {2 :=Is previous word capitalized and the next word is numeric?
= 3 := Frequencies of “the” within [-15,+15] window?
» {4 :=|s the current word part of a known idiom?

given a sentence “the blah ... the truth of ... the blah ”
Let's say x = “truth” above, then

f(x) := (1, 12, 13, 14)

f(truth) = (true, false, 3, false)
=>

f(x) = (1,0, 3, 0)

Rich features for rich contextual information

= Throw in various features about the context:
= f1:=Is previous word “the” and the next word “of"?

s 2=

= You can also define features that look at the output "y’!
= f1_N:=Is previous word “the” and the next tag is “N"?
= {2 N:= ...
= {1_V :=Is previous word “the” and the next tag is “V"?
= ... (replicate all features with respect to different values of y)

f(x) := (f1, f2, 13, 14)

f(x,y) := (F1_N, 2_N, 3_N, f4_N,
t1_V, 12_V, 13_V, 14_V,
t1_D, f2_D, 13_D, t4_D,

...

Rich features for rich contextual information

= You can also define features that look at the output ‘y’!
= {1_N:=Is previous word “the” and the next tag is “N"?
= {2 N:= ...
= {1_V:=Is previous word “the” and the next tag is “V"?
= ... (replicate all features with respect to different values of y)

given a sentence “the blah ... the truth of ... the blah “
Let's say x = “truth” above, andy = "N”, then

f(truth) = (true, false, 3, false)
f(x,y) := (F1_N, f2_N, f3_N, f4_N, f(truth, N) = 7
f1.V, 2.V, 13V, 14V,
f1.D,f2 D, {3_D, f4_D,
)

Rich features for rich contextual information

= Throw in various features about the context:
= f1:=Is previous word “the” and the next word “of"?
» {2 :=Is previous word capitalized and the next word is numeric?
= 3 := Frequencies of “the” within [-15,+15] window?
» {4 :=|s the current word part of a known idiom?
= You can also define features that look at the output ‘y’!
= {1_N:=Is previous word “the” and the next tagis “N"?
= {1_V:=Is previous word “the” and the next tag is “V"?

= You can also take any conjunctions of above.

f(z,y) =10,0,0,1,0,0,0,0,3,0.2,0,0,]

= Create a very long feature vector with dimensions often >200K

= Overlapping features are fine — no independence assumption among
features

Goals of this Class

ow to construct a feature vector 1(x)
ow to extend the feature vector to f(x,y)
ow to construct a probability model using any

given f(x,y)

= How to learn the parameter vector w for MaxEnt
(log-linear) models

= Knowing the key differences between MaxEnt
and Nalve Bayes

= How to extend MaxEnt to sequence tagging

18

Maximum Entropy (MaxEnt) Models
Output: y @

e One POS tag for one word (at a time)

Input: x (any words in the context) @ @ @
e Represented as a feature vector f(x, y)

Model parameters: w

Make probability using SoftMax function:

Also known as “Log-linear” Models (linear if you take log)

exp(w . f(gj7 y)) “ Make positive!
Yy’ GXp(w . f(CIZ‘, y/))\ Normalize!

p(y|r) = >

Training MaxEnt Models

Make probability using SoftMax function

exp(w - f(,9))
y/ eXp(w ' f(CIJ, y/))

p(y|r) = >

Training: o
e maximize log likelihood of training data {(ZBZ, yz) ?:1

L(w) = log H p(y'la') = Z log Zei{iw@f-%:(’ﬂzi);’))

e which also incidentally maximizes the entropy (hence
“maximum entropy”)

Training MaxEnt Models

Make probability using SoftMax function

. exp(w- f(z,9))
plylr) = >y exp(w - f(z,y'))

Training:

e maximize log likelihood

zlong(yi\x Zl‘)gzexzxp(- (7y)y)’))

=3 (w-1@'y) - log)_exp(w- /(" 2)

Training MaxEnt Models

Lw) =Y (w- fla'y") ~log y_exp(w- f(a',y))

Take partial derivative for each U in the weight vector w:

E)L(w) _ Z (fk(wza yz) . Zp(y/‘xz)fk(x17 y’)))

c’?wk , ;
7/ Y \

Total count of feature k Expected count of feature k
with respect to the with respect to the
correct predictions predicted output

Convex Optimization for Training
L(w)

/ VL(w) =0
W

The likelihood function is convex. (can get global optimum)

Many optimization algorithms/software available.
e Gradient ascent (descent), Conjugate Gradient, L-BFGS, etc

All we need are:
(1) evaluate the function at current ‘w’
(2) evaluate its derivative at current ‘w’

Goals of this Class

ow to construct a feature vector 1(x)
ow to extend the feature vector to f(x,y)
ow to construct a probability model using any

given f(x,y)

= How to learn the parameter vector w for MaxEnt
(log-linear) models

= Knowing the key differences between MaxEnt
and Nalve Bayes

= How to extend MaxEnt to sequence tagging

24

Graphical Representation of MaxEnt

exp(w) f(xv y))
g exp(w - f(z,y'))

)
0O

pyl|z) = >

Graphical Representation of Nalve Bayes

p(xly) = HP zj|y)
()

() ()
OO0 mOO..0

Naive Bayes Classifier Maximum Entropy Classifier

“Generative” models “Discriminative” models

=> p(input | output) => p(output | input)

=> For instance, for text categorization, => For instance, for text categorization,
P(words | category) P(category | words)

=» Unnecessary efforts on generating input ~ =» Focus directly on predicting the output

=> Independent assumption among input =» By conditioning on the entire input, we
variables: Given the category, each word is don’t need to worry about the
generated independently from other words independent assumption among input
(too strong assumption in reality!) variables

=» Cannot incorporate =» Can incorporate arbitrary features:

arbitrary/redundant/overlapping features redundant and overlapping features

Overview: POS tagging Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
» Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 26.8% / 86.8%

» Q: what's missing in MaxEnt compared to HMM?

= Upper bound: ~98%

What is the input representation?

Structure in the output variable(s)?

No Structure Structured Inference

Generative models Naive Bayes HMMs
(classical probabilistic PCFGs
models) IBM Models
Log-linear models Perceptron MEMM

(discriminatively
trained feature-rich
models)

Neural network
models
(representation
learning)

Maximum Entropy CRF
Logistic Regression

Feedforward NN RNN
CNN LSTM
GRU ...

Goals of this Class

ow to construct a feature vector 1(x)
ow to extend the feature vector to f(x,y)
ow to construct a probability model using any

given f(x,y)

= How to learn the parameter vector w for MaxEnt
(log-linear) models

= Knowing the key differences between MaxEnt
and Nalve Bayes

= How to extend MaxEnt to sequence tagging

30

MEMM Taggers

= One step up: also condition on previous tags

m
p(s1...8m|x1. . Tm) = Hp(sz-|31 81,1 .. L)
i=1

m
— Hp(silsi_l, ri1... CL‘m)
=1

= Train up p(sjs; 1, ..X,,) as a discrete log-linear (maxent) model,
then use to score sequences

exp(w - @(z1...Tm, % Si—1,Si))

SilSi—1,L1...%T — ,
p(®| 1—1,41 m) ZS/ exp (w-gb(ﬂ?l...xm,Z,Si—laS/))

= This is referred to as an MEMM tagger [Ratnaparkhi 96]

NNP =—>» \g7 =3 \\BN =—> TO VB NR

I

Secretariat

¢

is

y

expected

v | |

to race tomorrow

NNP =——>» \B7 =3 \\BN = TO VB NR

T

Secretariat

HMM

“"Generative” models

=> joint probability p(words, tags)

!

is

1

expecied

=> “generate” input (in addition to tags)
=> but we need to predict tags, not words!

Probability of each slice =
emission * transition =

p(word_i | tag_i) * p(tag_i | tag_i-1) =

=» Cannot incorporate long distance

features

t [t

to race tomorrow

MEMM

“Discriminative” or “Conditional” models
=» conditional probability p(tags | words)
=> “condition” on input
=» Focusing only on predicting tags
Probability of each slice =
p(tag_i|tag_i-1, word_i)

or
p(tag_i | tag_i-1, all words)

=» Can incorporate long distance features

The HMM State Lattice / Trellis (repeat slide)

Fed|N)
™
Q/&/Iﬂe(raisesw) e(interest|V) e(STOPV)
@ @ a(v|V) @
Q@&e(ratesU)Q
© O ©
®© ©

9,
© © ©

START Fed raises interest rates STOP

The MEMM State Lattice / Trellis

Decoding: #ersmleraw) = [[aslsiso..

* Decoding maxent taggers:

= Just like decoding HMMs
= Viterbi, beam search, posterior decoding

= Viterbi algorithm (HMMs):

= Define n(i,s;) to be the max score of a sequence of length i ending in tag s,

m(i,8;) = maxe(x;|s;)q(si|si—1)m(t —1,8,-1)

= Viterbi algozr_iithm (Maxent):

= Can use same algorithm for MEMMs, just need to redefine n(i,s) !

7T(i, 87;) — ISIlaXp(Si’SZ'_l, L1CL‘m)ﬂ'(i — 1, 87;_1)
i—1

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 926.9% / 86.9%

» Upper bound: ~98%

What is the input representation?

Structure in the output variable(s)?

No Structure Structured Inference

Generative models Naive Bayes HMMs
(classical probabilistic PCFGs
models) IBM Models
Log-linear models Perceptron MEMM

(discriminatively
trained feature-rich
models)

Neural network
models
(representation
learning)

Maximum Entropy CRF
Logistic Regression

Feedforward NN RNN
CNN LSTM
GRU ...

MEMM v.s. CRF
(Conditional Random Fields)

NNP —» V8/ ——» VBN ——>» 10 ——>» VB ———> NR

| A I R

Secretariat IS expected to race tomorrow
CRF
NNP VBZ VBN TO VB NR

Secretariat IS expected to race tomorrow

NNP ey \/B e BN =—— TO

EEE 1 $) $ 1 4

Secretariat is expected to race tomorrow

NNP VB VBN TO ﬂ NR
| T | | | |
|
Secretariat is expected to race tomorrow
\ISWIY CRF

Directed graphical model Undirected graphical model

“Discriminative” or “Conditional” models
=>» conditional probability p(tags | words)

Probability is defined for each slice = Instead of probability, potential (energy function)
is defined for each slide =
P (tag_i|tag_i-1, word_i) ¢ (tag_i, tag_i-1) * ¢ (tag_i, word_i)
or or

p (tag_i|tag_i-1, all words) ¢ (tag_i, tag_i-1, all words) * ¢ (tag_i, all words)

=» Can incorporate long distance features

Conditional Random Fields (CRFs)

[Lafferty, McCallum, Pereira 01]
= Maximum entropy (logistic regression)

Sentence: Xx=x;...X,
- > p(s|lz;w) = exp (w - (z, s))
—> ’ > exp(w-P(x,s))

Tag Sequence: s=s,...s,,
» Learning: maximize the (log) conditional likelihood of training
data {(xzv Si) ?:1

ai/w]L() Z(xzasz Zp |:C’L7 aj“)>

1=1

» Computational Challenges?

= Most likely tag sequence, normalization constant, gradient

Decoding

« CRFs s* = arg msaxp(s|x;w)

» Features must be local, for x=x,...x,, and s=s,...s

exp (w - P(x, s))

p(s|lz;w) = >

o exp(w - ®(zx,s)) |

exp (w- ®(z,s)) .
A B8] arg max exp (w- P(x,s))
= argmaxw - ®(z, s)

S

= Viterbi recursion

m(i,8;) = maxs, ,w- (x4, 8-1,8) +7(t—1,8_1)

CRFs: Computing Normalization*

slziw) = exp (w - (2, 5)) d(x,s) = Y T,7,8i_1, S
Pl) = = ey) = L0l ns)

Z exp (w - P(x,5"))=3 exp (Zw - ¢(w, 7, 3j173j))

— Z Hexp (w-¢(x,7,85-1,55))
s’ g

Define norm(i,s) to sum of scores for sequences ending in position i

norm(i,y;) = Z exp (w - ¢(x,1,8;_1,8;))norm(i —1,8;_1)

» Forward Algorithm! Remember HMM case:
(i, y;) = Z e(zilyi)q(yilyi—1)a(i — 1,yi-1)

Yi—1
» Could also use backward?

CRFs: Computing Gradient*

slziw) = exp (w - (2, 5)) d(x,s) = Y T,7,8i_1, S
plalri) = <D T Bl ;qx Grsie18)

n

a%“) Z((080 = 2 plska >)

1=1

Y p(slziw)®;(ws,) =D pls|zi; w) Z(bk(ﬂ?z‘,j, Sj-1,5;)
S S 71=1
= ZZ Z p(s|zi; w)or(wi, J, sj-1, S5)

J=1 a,b s:sj_1=a,sp=b

= Need forward and backward messages

See notes for full details!

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 926.9% / 86.9%
= CRF (untuned) 95.7% 1 76.2%

= Upper bound: ~98%

CyC| |C N etWO r|< [Toutanova et al 03]

e Train two MEMMs, (@)=t o >@
multiple together to é
score @ @ @

a) Left-to-Right CMM
= And be very caretul @ .

 Tune regularization (""""""""" @
* Try lots of different
features @ @ @ e éf)

* See paper for full (b) Right-to-Lett CMM

details (.............. @

(¢) Bidirectional Dependency Network

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%

= Trigram HMM: ~95% / ~55%

= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%
= Perceptron 96.7% / ?7?

= CRF (untuned) ?5.7% 1 76.2%
= Cyclictagger: 97.2% / 89.0%

» Upper bound: ~98%

Locally normalized models

= HMMs, MEMMs

» |ocal scores are probabilities

= However: one issue in local models

» “Label bias” and other explaining away effects

= MEMM taggers’ local scores can be near one without having
both good “transitions” and “emissions”

= This means that often evidence doesn't flow properly
= Why isn’t this a big deal for POS tagging?

Globally normalized models

» Local scores are arbitrary scores

» Conditional Random Fields (CRFs)

= Slower to train (structured inference at each iteration of learning)

* Neural Networks (global training w/o structured inference)

What is the input representation?

Structure in the output variable(s)?

No Structure Structured Inference

Generative models Naive Bayes HMMs
(classical probabilistic PCFGs
models) IBM Models
Log-linear models Perceptron MEMM

(discriminatively
trained feature-rich
models)

Neural network
models
(representation
learning)

Maximum Entropy CRF
Logistic Regression

Feedforward NN RNN
CNN LSTM
GRU ...

Supplementary Material

Graphical Models

Y] — > Y2 —> Y3

™~ |

X1 X2 X3

= Conditional probability for each node

" 2.9.p(Y3]Y2, X3)forY3

= e.g.p(X3) for X3
= Conditional independence

" 2.g.p(Y3|Y2, X3)=p(Y3]|Y1,Y2 X1, X2, X3)
= Joint probability of the entire graph

= product of conditional probability of each node

Undirected Graphical Model Basics

Y1 Y2 Y3
X1 X2 X3

Conditional independence

» e.g.p(Y3]all other nodes) = p(Y3]|Y3' neighbor)
No conditional probability for each node

Instead, “potential function” for each clique

" g ¢ (X1, X2,Y1) or $(VY1,Y2)

Typically, log-linear potential functions

> d (Y1, Y2)=exp Zx wfk (Y1, Y2)

Undirected Graphical Model Basics

Y1 Y2 Y3

T~ |

X1 X2 X3

= Joint probability of the entire graph

P(Y)—— [] oo

chque C

E [T ere)

clique C

