CSE 447/547
Natural Language Processing
Winter 2018

Parsing (Trees)

Yejin Choi - University of Washington

[Slides from Dan Klein, Michael Collins, Luke Zettlemoyer and Ray Mooney]
Ambiguities
I shot [an elephant] [in my pajamas]

Examples from J&M
Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.

- Particle vs. preposition:
 The puppy tore up the staircase.

- Complement structures
 The tourists objected to the guide that they couldn’t hear. She knows you like the back of her hand.

- Gerund vs. participial adjective
 Visiting relatives can be boring. Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 impractical design requirements
 plastic cup holder

- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.

- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.
Dark Ambiguities

- **Dark ambiguities**: most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

 This analysis corresponds to the correct parse of

 “*This will panic buyers!*”

- Unknown words and new usages
- **Solution**: We need mechanisms to focus attention on the best ones, probabilistic techniques do this
Probabilistic Context Free Grammars
Probabilistic Context-Free Grammars

- A context-free grammar is a tuple $<N, \Sigma, S, R>$
 - N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
 - Σ : the set of terminals (the words)
 - S : the start symbol
 - Often written as ROOT or TOP
 - *Not* usually the sentence non-terminal S
 - R : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \ldots Y_n$, with $X \in N$, $n \geq 0$, $Y_i \in (N \cup \Sigma)$
 - Examples: $S \rightarrow NP \ VP$, $VP \rightarrow VP \ CC \ VP$
- A PCFG adds a distribution q:
 - Probability $q(r)$ for each $r \in R$, such that for all $X \in N$:
 $$\sum_{\alpha \rightarrow \beta \in R: \alpha = X} q(\alpha \rightarrow \beta) = 1$$
PCFG Example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>⇒</td>
<td>NP</td>
<td>VP</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>Vi</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>Vt</td>
<td>NP</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>VP</td>
<td>PP</td>
</tr>
<tr>
<td>NP</td>
<td>⇒</td>
<td>DT</td>
<td>NN</td>
</tr>
<tr>
<td>NP</td>
<td>⇒</td>
<td>NP</td>
<td>PP</td>
</tr>
<tr>
<td>PP</td>
<td>⇒</td>
<td>P</td>
<td>NP</td>
</tr>
<tr>
<td>Vi</td>
<td>⇒</td>
<td>sleeps</td>
<td></td>
</tr>
<tr>
<td>Vt</td>
<td>⇒</td>
<td>saw</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
<td>man</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
<td>woman</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
<td>telescope</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>⇒</td>
<td>the</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>⇒</td>
<td>with</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>⇒</td>
<td>in</td>
<td></td>
</tr>
</tbody>
</table>

- Probability of a tree t with rules $\alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, \ldots, \alpha_n \rightarrow \beta_n$ is

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \rightarrow \beta_i)$$

where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.
PCFG Example

Probabilistic Context-Free Grammar (PCFG)

<table>
<thead>
<tr>
<th>Production</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ⇒ NP VP</td>
<td>1.0</td>
</tr>
<tr>
<td>VP ⇒ Vi</td>
<td>0.4</td>
</tr>
<tr>
<td>VP ⇒ Vt NP</td>
<td>0.4</td>
</tr>
<tr>
<td>VP ⇒ VP PP</td>
<td>0.2</td>
</tr>
<tr>
<td>NP ⇒ DT NN</td>
<td>0.3</td>
</tr>
<tr>
<td>NP ⇒ NP PP</td>
<td>0.7</td>
</tr>
<tr>
<td>PP ⇒ P NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Productions for Terminal Symbols

<table>
<thead>
<tr>
<th>Production</th>
<th>Symbol</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vi ⇒ sleeps</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Vt ⇒ saw</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>NN ⇒ man</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>NN ⇒ woman</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>NN ⇒ telescope</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>DT ⇒ the</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>IN ⇒ with</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>IN ⇒ in</td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

Example Trees

Tree 1 (t₁):
- S ⇒ NP VP
- NP ⇒ DT NN
- VP ⇒ Vi

Example Sentence: The man sleeps

Probability:
\[
p(t₁) = 1.0 \times 0.3 \times 1.0 \times 0.7 \times 0.4 \times 1.0
\]

Tree 2 (t₂):
- S ⇒ VP
- VP ⇒ NP
- NP ⇒ DT NN
- VP ⇒ Vt

Example Sentence: The man saw the woman with the telescope

Probability:
\[
p(t₂) = 1.8 \times 0.3 \times 1.0 \times 0.7 \times 0.2 \times 0.4 \times 1.0 \times 0.3 \times 1.0 \times 0.2 \times 0.4 \times 0.5 \times 0.3 \times 1.0 \times 0.1
\]
PCFGs: Learning and Inference

- **Model**
 - The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, $i = 1..n$

 $p(t) = \prod_{i=1}^{n} q(\alpha_i \rightarrow \beta_i)$

- **Learning**
 - Read the rules off of labeled sentences, use ML estimates for probabilities

 $q_{ML}(\alpha \rightarrow \beta) = \frac{\text{Count}(\alpha \rightarrow \beta)}{\text{Count}(\alpha)}$

 and use all of our standard smoothing tricks!

- **Inference**
 - For input sentence s, define $T(s)$ to be the set of trees whole yield is s (whole leaves, read left to right, match the words in s)

 $t^*(s) = \arg \max_{t \in T(s)} p(t)$
Dynamic Programming

- We will store: score of the max parse of \(x_i\) to \(x_j\) with root non-terminal \(X\)
 \[\pi(i, j, X)\]

- So we can compute the most likely parse:
 \[\pi(1, n, S) = \max_{t \in T_G(s)} p(t)\]

- Via the recursion:
 \[\pi(i, j, X) = \max_{X \rightarrow Y Z \in R, s \in \{i \ldots (j-1)\}} (q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))\]

- With base case:
 \[\pi(i, i, X) = \begin{cases} q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\ 0 & \text{otherwise} \end{cases}\]
The CKY Algorithm

- **Input:** a sentence \(s = x_1 \ldots x_n \) and a PCFG = \(<N, \Sigma, S, R, Q>\)
- **Initialization:** For \(i = 1 \ldots n \) and all \(X \) in \(N \)
 \[
 \pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases}
 \]
- For \(l = 1 \ldots (n-1) \)
 - For \(i = 1 \ldots (n-l) \) and \(j = i+l \)
 - For all \(X \) in \(N \)
 \[
 \pi(i, j, X) = \max_{X \rightarrow YZ \in R, s \in \{i\ldots(j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))
 \]
 also, store back pointers
 \[
 bp(i, j, X) = \arg\max_{X \rightarrow YZ \in R, s \in \{i\ldots(j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))
 \]
- [iterate all phrase lengths]
- [iterate all phrases of length \(l \)]
- [iterate all non-terminals]
Probabilistic CKY Parser

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me
0.1 0.02 0.02 0.06
NP → Houston | NWA
0.16 .04
Det→ the | a | an
0.6 0.1 0.05
NP → Det Nominal
0.6
Nominal → book | flight | meal | money
0.03 0.15 0.06 0.06
Nominal → Nominal Nominal
0.2
Nominal → Nominal PP
0.5
Verb→ book | include | prefer
0.5 0.04 0.06
VP → Verb NP
0.5
VP → VP PP
0.3
Prep → through | to | from
0.2 0.3 0.3
PP → Prep NP
1.0
Probabilistic CKY Parser

Pick most probable parse, i.e. take max to combine probabilities of multiple derivations of each constituent in each cell.
Probabilistic CKY Parser

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: .01,</td>
<td>S: .05*.5*.054</td>
<td>VP: .5*.5*.054</td>
<td>None</td>
<td>S: 00001296</td>
</tr>
<tr>
<td>Verb: .5</td>
<td>= .00135</td>
<td>= .0135</td>
<td></td>
<td>S: 0000216</td>
</tr>
<tr>
<td>Nominal: .03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| VP: .5*.5*.054 | None | VP: .5*.5*.054 | None | S: 00001296 |
| | | | | S: 0000216 |

NP: .6*.6*.15	None	NP: .6*.6* .0024	None	Nominal: .5*.15*.032
		= .054		= .0024
Det: .6				

| Nominal: .15 | None | Nominal: .5*.15*.032 | None | PP: 1.0*.2*.16 |
| | | = .032 | | = .032 |

| Prep: .2 | PP: 1.0*.2*.16 | None | | |
| | | | | |

| PP: 1.0*.2*.16 | None | | | |
| | | | | |

| NP: .16 | None | | | |
| | | | | |

Pick most probable parse, i.e. take max to combine probabilities of multiple derivations of each constituent in each cell.
Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: $|\text{symbols}| \times n^2$

- Pruning: Beam Search
 - $\text{score}[X][i][j]$ can get too large (when?)
 - Can keep beams (truncated maps $\text{score}[i][j]$) which only store the best K scores for the span $[i,j]$

- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most $X[i,j]$
 - Much more on this later…
Time: Theory

- How much time will it take to parse?

- For each diff \((j - i) \leq n\)
 - For each \(i \leq n\)
 - For each rule \(X \rightarrow Y Z\)
 - For each split point \(k\)
 Do constant work

- Total time: \(|\text{rules}| \times n^3\)
- Something like 5 sec for an unoptimized parse of a 20-word sentences
Time: Practice

- Parsing with the vanilla treebank grammar:
 - ~ 20K Rules
 (not an optimized parser!)
 - Observed exponent: 3.6

- Why’s it worse in practice?
 - Longer sentences “unlock” more of the grammar
 - All kinds of systems issues don’t scale
Other Dynamic Programs

Can also compute other quantities:

- **Best Inside**: score of the max parse of w_i to w_j with root non-terminal X

- **Best Outside**: score of the max parse of w_0 to w_n with a gap from w_i to w_j rooted with non-terminal X
 - see notes for derivation, it is a bit more complicated

- **Sum Inside/Outside**: Do sums instead of maxes
Why Chomsky Normal Form?

Inference:
- Can we keep N-ary (N > 2) rules and still do dynamic programming?
- Can we keep unary rules and still do dynamic programming?

Learning:
- Can we reconstruct the original trees?
Treebanks
The Penn Treebank: Size

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:
Table 1.2. The Penn Treebank syntactic tagset

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJP</td>
<td>Adjective phrase</td>
</tr>
<tr>
<td>ADVP</td>
<td>Adverb phrase</td>
</tr>
<tr>
<td>NP</td>
<td>Noun phrase</td>
</tr>
<tr>
<td>PP</td>
<td>Prepositional phrase</td>
</tr>
<tr>
<td>S</td>
<td>Simple declarative clause</td>
</tr>
<tr>
<td>SBAR</td>
<td>Subordinate clause</td>
</tr>
<tr>
<td>SBARQ</td>
<td>Direct question introduced by wh-element</td>
</tr>
<tr>
<td>SINV</td>
<td>Declarative sentence with subject-aux inversion</td>
</tr>
<tr>
<td>SQ</td>
<td>Yes/no questions and subconstituent of SBARQ excluding wh-element</td>
</tr>
<tr>
<td>VP</td>
<td>Verb phrase</td>
</tr>
<tr>
<td>WHADVP</td>
<td>Wh-adverb phrase</td>
</tr>
<tr>
<td>WHNP</td>
<td>Wh-noun phrase</td>
</tr>
<tr>
<td>WHPP</td>
<td>Wh-prepositional phrase</td>
</tr>
<tr>
<td>X</td>
<td>Constituent of unknown or uncertain category</td>
</tr>
<tr>
<td>*</td>
<td>“Understood” subject of infinitive or imperative</td>
</tr>
<tr>
<td>0</td>
<td>Zero variant of that in subordinate clauses</td>
</tr>
<tr>
<td>T</td>
<td>Trace of wh-Constituent</td>
</tr>
</tbody>
</table>
Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn’t work well):

```
ROOT → S 1
S → NP VP . 1
NP → PRP 1
VP → VBD ADJP 1
... 1
```

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.
Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller

NP:
Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.
Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

 ![Training](02-21)
 ![Development](section 22 (here, first 20 files))
 ![Test](section 23)

- Accuracy – F1: harmonic mean of per-node labeled precision and recall.

- Here: also size – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC •
How to Evaluate?

Correct Tree T

```
S
  VP
    Verb book
    NP Det the Nominal
      Noun flight
      Prep through
      NP Houston
```

Computed Tree P

```
S
  VP
    Verb book
    NP Det the Nominal
      Noun flight
      Prep through
      NP Proper-Noun Houston
```
PARSEVAL Example

Correct Tree T

```
S
  VP
    Verb
    NP
      Det
      Nominal
        Noun
        Prep
        NP
          flight
          through
          Houston
```

Constituents: 11
Correct Constituents: 10
Recall = 10/11 = 90.9%

Computed Tree P

```
S
  VP
    Verb
    NP
      Det
      Nominal
        Noun
        Prep
        NP
          flight
          through
          Houston
          Proper-Noun
```

Constituents: 12

Precision = 10/12 = 83.3%

$F_1 = 87.4\%$
Evaluation Metric

- **PARSEVAL** metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system’s parse tree and T is the human parse tree (the “gold standard”):
 - Recall = (# correct constituents in P) / (# constituents in T)
 - Precision = (# correct constituents in P) / (# constituents in P)

- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.

- F_1 is the harmonic mean of precision and recall.
 - $F_1 = (2 \times \text{Precision} \times \text{Recall}) / (\text{Precision} + \text{Recall})$
Performance with Vanilla PCFGs

- Use PCFGs for broad coverage parsing
- Take the grammar right off the trees

Model	**F1**
Baseline | 72.0
Grammar Refinements

1. Markovization
Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like “NP” won’t be context-free
 - Statistically, conditional independence too strong
Non-Independence

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)
Horizontal Markovization

Order 1

Order ∞

Symbols

Horizontal Markov Orde

Horizontal Markov Order
Vertical and Horizontal

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>v=h=2v</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>
Unlexicalized PCFG Grammar Size

<table>
<thead>
<tr>
<th>Vertical Order</th>
<th>$h = 0$</th>
<th>$h = 1$</th>
<th>$h \leq 2$</th>
<th>$h = 2$</th>
<th>$h = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = 1$ No annotation</td>
<td>71.27 (854)</td>
<td>72.5 (3119)</td>
<td>73.46 (3863)</td>
<td>72.96 (6207)</td>
<td>72.62 (9657)</td>
</tr>
<tr>
<td>$v \leq 2$ Sel. Parents</td>
<td>74.75 (2285)</td>
<td>77.42 (6564)</td>
<td>77.77 (7619)</td>
<td>77.50 (11398)</td>
<td>76.91 (14247)</td>
</tr>
<tr>
<td>$v = 2$ All Parents</td>
<td>74.68 (2984)</td>
<td>77.42 (7312)</td>
<td>77.81 (8367)</td>
<td>77.50 (12132)</td>
<td>76.81 (14666)</td>
</tr>
<tr>
<td>$v \leq 3$ Sel. GParents</td>
<td>76.50 (4943)</td>
<td>78.59 (12374)</td>
<td>79.07 (13627)</td>
<td>78.97 (19545)</td>
<td>78.54 (20123)</td>
</tr>
<tr>
<td>$v = 3$ All GParents</td>
<td>76.74 (7797)</td>
<td>79.18 (15740)</td>
<td>79.74 (16994)</td>
<td>79.07 (22886)</td>
<td>78.72 (22002)</td>
</tr>
</tbody>
</table>

Figure 2: Markovizations: F_1 and grammar size.
Grammar Refinements

2. Lexicalization
Problems with PCFGs

- These trees differ only in one rule:
 - VP \rightarrow VP PP
 - NP \rightarrow NP PP
- Lexicalization allows us to be sensitive to specific words
Add "headwords" to each phrasal node

- Headship not in (most) treebanks
- Usually use (handwritten) head rules, e.g.:

 NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child

 VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalize Trees!
Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like

 $$\text{VP(saw)} \rightarrow \text{VBD(saw)} \text{ NP-C(her) NP(today)}$$

- Never going to get these atomically off of a treebank

- Solution: break up derivation into smaller steps
Lexical Derivation Steps

Main idea: define a linguistically-motivated Markov process for generating children given the parent

Step 1: Choose a head tag and word

Step 2: Choose a complement bag

Step 3: Generate children (incl. adjuncts)

Step 4: Recursively derive children

[Collins 99]
Lexicalized CKY

bestScore(i,j,X,h)
 if (j = i+1)
 return tagScore(X,s[i])
 else
 return max
 max
 score(X[h]→Y[h] Z[h']) *
 bestScore(i,k,Y,h) *
 bestScore(k+1,j,Z,h')
 score(X[h]→Y[h'] Z[h]) *
 bestScore(i,k,Y,h') *
 bestScore(k+1,j,Z,h)

still cubic time?
Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the $O(n^5)$ CKY
 - If we keep K hypotheses at each span, then we do at most $O(nK^2)$ work per span (why?)
 - Keeps things more or less cubic

- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

<table>
<thead>
<tr>
<th>Model</th>
<th>$F1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Treebank Grammar</td>
<td>72.6</td>
</tr>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.6</td>
</tr>
</tbody>
</table>
Grammar Refinements

3. Using Latent Sub-categories
Manual Annotation

- Manually split categories
 - NP: subject vs object
 - DT: determiners vs demonstratives
 - IN: sentential vs prepositional

- Advantages:
 - Fairly compact grammar
 - Linguistic motivations

- Disadvantages:
 - Performance leveled out
 - Manually annotated
Learning Latent Annotations

Latent Annotations:
- Brackets are known
- Base categories are known
- Hidden variables for subcategories

He was right.

Can learn with EM: like Forward-Backward for HMMs.
Final Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 ≤ 40 words</th>
<th>F1 all words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
<td>85.7</td>
</tr>
<tr>
<td>Matsuzaki et al. ’05</td>
<td>86.7</td>
<td>86.1</td>
</tr>
<tr>
<td>Collins ’99</td>
<td>88.6</td>
<td>88.2</td>
</tr>
<tr>
<td>Charniak & Johnson ’05</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td>Petrov et. al. 06</td>
<td>90.2</td>
<td>89.7</td>
</tr>
</tbody>
</table>
Grammar as Foreign Language” (deep learning)

John has a dog ➔

$\text{S} \quad \text{NP} \quad \text{VP} \quad .
\text{NNP} \quad \text{VBZ} \quad \text{NP} \quad \text{DT} \quad \text{NN}$

John has a dog ➔

$(\text{S} \ (\text{NP} \ \text{NNP})_{\text{NP}} \ (\text{VP} \ \text{VBZ} \ (\text{NP} \ \text{DT} \ \text{NN})_{\text{NP}})_{\text{VP}} \ .)_{\text{S}}$

- Linearize a tree into a sequence
- Then parsing problem becomes similar to machine translation
 - Input: sequence
 - Output: sequence (of different length)
- Encoder-decoder LSTMs (Long short-term memory networks)
"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015

John has a dog ➔

(S (NP NNP) NP (VP VBZ (NP DT NN) NP) VP .) S

- Penn treebank (~40K sentences) is too small to train LSTMs
- Create a larger training set with 11M sentences automatically parsed by two state-of-the-art parsers (and keep only those sentences for which two parsers agreed)
"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015

<table>
<thead>
<tr>
<th>Parser</th>
<th>Training Set</th>
<th>WSJ 22</th>
<th>WSJ 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline LSTM+D</td>
<td>WSJ only</td>
<td>< 70</td>
<td>< 70</td>
</tr>
<tr>
<td>LSTM+A+D</td>
<td>WSJ only</td>
<td>88.7</td>
<td>88.3</td>
</tr>
<tr>
<td>LSTM+A+D ensemble</td>
<td>WSJ only</td>
<td>90.7</td>
<td>90.5</td>
</tr>
<tr>
<td>baseline LSTM</td>
<td>BerkeleyParser corpus</td>
<td>91.0</td>
<td>90.5</td>
</tr>
<tr>
<td>LSTM+A</td>
<td>high-confidence corpus</td>
<td>93.3</td>
<td>92.5</td>
</tr>
<tr>
<td>LSTM+A ensemble</td>
<td>high-confidence corpus</td>
<td>93.5</td>
<td>92.8</td>
</tr>
<tr>
<td>Petrov et al. (2006) [12]</td>
<td>WSJ only</td>
<td>91.1</td>
<td>90.4</td>
</tr>
<tr>
<td>Zhu et al. (2013) [13]</td>
<td>WSJ only</td>
<td>N/A</td>
<td>90.4</td>
</tr>
<tr>
<td>Petrov et al. (2010) ensemble [14]</td>
<td>WSJ only</td>
<td>92.5</td>
<td>91.8</td>
</tr>
<tr>
<td>Zhu et al. (2013) [13]</td>
<td>semi-supervised</td>
<td>N/A</td>
<td>91.3</td>
</tr>
<tr>
<td>McClosky et al. (2006) [16]</td>
<td>semi-supervised</td>
<td>92.4</td>
<td>92.1</td>
</tr>
</tbody>
</table>
Supplementary Topics

I. CNF Conversion
Chomsky Normal Form

- **Chomsky normal form:**
 - All rules of the form $X \rightarrow YZ$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals
 - Unaries / empties are “promoted”
 - In practice it’s kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don’t preserve tree scores
 - Makes parsing algorithms simpler!
Original Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.6</td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Lexicon:

<table>
<thead>
<tr>
<th>Part of Speech</th>
<th>Words</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>book</td>
<td>flight</td>
</tr>
<tr>
<td>Verb</td>
<td>book</td>
<td>include</td>
</tr>
<tr>
<td>Det</td>
<td>the</td>
<td>a</td>
</tr>
<tr>
<td>Pronoun</td>
<td>I</td>
<td>he</td>
</tr>
<tr>
<td>Proper-Noun</td>
<td>Houston</td>
<td>NWA</td>
</tr>
<tr>
<td>Aux</td>
<td>does</td>
<td>1.0</td>
</tr>
<tr>
<td>Prep</td>
<td>from</td>
<td>to</td>
</tr>
</tbody>
</table>
Original Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.6</td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Lexicon (See previous slide for full list):
- **Noun** → book | flight | meal | money
 - 0.1 0.5 0.2 0.2
- **Verb** → book | include | prefer
 - 0.5 0.2 0.3

Chomsky Normal Form

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → X1 VP</td>
<td>0.1</td>
</tr>
<tr>
<td>X1 → Aux NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Original Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Chomsky Normal Form

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → X1 VP</td>
<td>0.1</td>
</tr>
<tr>
<td>X1 → Aux NP</td>
<td>1.0</td>
</tr>
<tr>
<td>S → book</td>
<td>include</td>
</tr>
<tr>
<td>S → Verb NP</td>
<td></td>
</tr>
<tr>
<td>S → VP PP</td>
<td></td>
</tr>
</tbody>
</table>

Lexicon (See previous slide for full list):

Noun
- book | flight | meal | money
 - 0.1 0.5 0.2 0.2

Verb
- book | include | prefer
 - 0.5 0.2 0.3
Original Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow NP \ VP)</td>
<td>0.8</td>
<td>(S \rightarrow NP \ VP)</td>
<td>0.8</td>
</tr>
<tr>
<td>(S \rightarrow Aux \ NP \ VP)</td>
<td>0.1</td>
<td>(S \rightarrow X1 \ VP)</td>
<td>0.1</td>
</tr>
<tr>
<td>(X1 \rightarrow Aux \ NP)</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S \rightarrow VP)</td>
<td>0.1</td>
<td>(S \rightarrow book \mid include \mid prefer)</td>
<td>0.01 0.004 0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S \rightarrow Verb \ NP)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S \rightarrow VP \ PP)</td>
<td>0.03</td>
</tr>
<tr>
<td>(NP \rightarrow Pronoun)</td>
<td>0.2</td>
<td>(NP \rightarrow I \mid he \mid she \mid me)</td>
<td>0.1 0.02 0.02 0.06</td>
</tr>
<tr>
<td>(NP \rightarrow Proper-Noun)</td>
<td>0.2</td>
<td>(NP \rightarrow Houston \mid NWA)</td>
<td>0.16 0.04</td>
</tr>
<tr>
<td>(NP \rightarrow Det Nominal)</td>
<td>0.6</td>
<td>(NP \rightarrow Det Nominal)</td>
<td>0.6</td>
</tr>
<tr>
<td>(Nominal \rightarrow Noun)</td>
<td>0.3</td>
<td>(Nominal \rightarrow book \mid flight \mid meal \mid money)</td>
<td>0.03 0.15 0.06 0.06</td>
</tr>
<tr>
<td>(Nominal \rightarrow Nominal Noun)</td>
<td>0.2</td>
<td>(Nominal \rightarrow Nominal Noun)</td>
<td>0.2</td>
</tr>
<tr>
<td>(Nominal \rightarrow Nominal PP)</td>
<td>0.5</td>
<td>(Nominal \rightarrow Nominal PP)</td>
<td>0.5</td>
</tr>
<tr>
<td>(VP \rightarrow Verb)</td>
<td>0.2</td>
<td>(VP \rightarrow book \mid include \mid prefer)</td>
<td>0.1 0.04 0.06</td>
</tr>
<tr>
<td>(VP \rightarrow Verb NP)</td>
<td>0.5</td>
<td>(VP \rightarrow Verb NP)</td>
<td>0.5</td>
</tr>
<tr>
<td>(VP \rightarrow VP \ PP)</td>
<td>0.3</td>
<td>(VP \rightarrow VP \ PP)</td>
<td>0.3</td>
</tr>
<tr>
<td>(PP \rightarrow Prep \ NP)</td>
<td>1.0</td>
<td>(PP \rightarrow Prep \ NP)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chomsky Normal Form

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow NP \ VP)</td>
<td>0.8</td>
<td>(S \rightarrow NP \ VP)</td>
<td>0.8</td>
</tr>
<tr>
<td>(S \rightarrow X1 \ VP)</td>
<td>0.1</td>
<td>(X1 \rightarrow Aux \ NP)</td>
<td>1.0</td>
</tr>
<tr>
<td>(S \rightarrow book \mid include \mid prefer)</td>
<td>0.01 0.004 0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S \rightarrow Verb \ NP)</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S \rightarrow VP \ PP)</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lexicon (See previous slide for full list):

<table>
<thead>
<tr>
<th>Category</th>
<th>Items</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>book</td>
<td>0.1 0.5 0.2 0.2</td>
</tr>
<tr>
<td>Verb</td>
<td>book</td>
<td>0.5 0.2 0.3</td>
</tr>
</tbody>
</table>
Advanced Topics

I. CKY with Unary Rules
CNF + Unary Closure

We need unaries to be non-cyclic

- Calculate **closure** $\text{Close}(R)$ for unary rules in R
 - Add $X \rightarrow Y$ if there exists a rule chain $X \rightarrow Z_1, Z_1 \rightarrow Z_2, \ldots, Z_k \rightarrow Y$ with $q(X \rightarrow Y) = q(X \rightarrow Z_1) * q(Z_1 \rightarrow Z_2) * \ldots * q(Z_k \rightarrow Y)$
 - If no unary rule exist for X, add $X \rightarrow X$ with $q(X \rightarrow X) = 1$ for all X in N

- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about $X \rightarrow Y$ with different unary paths (and scores)?

WARNING: Watch out for unary cycles!
The CKY Algorithm

- **Input:** a sentence \(s = x_1 \ldots x_n \) and a PCFG = \(<N, \Sigma, S, R, q>\)
- **Initialization:** For \(i = 1 \ldots n \) and all \(X \) in \(N \)
 \[
 \pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases}
 \]
- For \(l = 1 \ldots (n-1) \)
 - For \(i = 1 \ldots (n-l) \) and \(j = i+l \) [iterate all phrase lengths]
 - For all \(X \) in \(N \) [iterate all non-terminals]
 \[
 \pi(i, j, X) = \max_{X \rightarrow YZ \in R, s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))
 \]
- also, store back pointers
 \[
 bp(i, j, X) = \arg \max_{X \rightarrow YZ \in R, s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))
 \]
CKY with Unary Closure

- **Input:** a sentence \(s = x_1 \ldots x_n \) and a PCFG = \(<N, \Sigma, S, R, q> \)

- **Initialization:** For \(i = 1 \ldots n \):
 - Step 1: for all \(X \) in \(N \):
 \[
 \pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - Step 2: for all \(X \) in \(N \):
 \[
 \pi_U(i, i, X) = \max_{X \rightarrow Y \in \text{Close}(R)} (q(X \rightarrow Y) \times \pi(i, i, Y))
 \]

- For \(l = 1 \ldots (n-1) \) [iterate all phrase lengths]
 - For \(i = 1 \ldots (n-l) \) and \(j = i+l \) [iterate all phrases of length \(l \)]
 - Step 1: (Binary)
 - For all \(X \) in \(N \) [iterate all non-terminals]
 \[
 \pi_B(i, j, X) = \max_{X \rightarrow YZ \in R, s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi_U(i, s, Y) \times \pi_U(s+1, j, Z))
 \]
 - Step 2: (Unary)
 - For all \(X \) in \(N \) [iterate all non-terminals]
 \[
 \pi_U(i, j, X) = \max_{X \rightarrow Y \in \text{Close}(R)} (q(X \rightarrow Y) \times \pi_B(i, j, Y))
 \]
Advanced Topics

2. Grammar Refinements: Tag Splits
Tag Splits

- Problem: Treebank tags are too coarse.

- Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>v=h=2v</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>
Other Tag Splits

- **UNARY-DT**: mark demonstratives as DT\(^{^U}\) ("the X" vs. "those")
- **UNARY-RB**: mark phrasal adverbs as RB\(^{^U}\) ("quickly" vs. "very")
- **TAG-PA**: mark tags with non-canonical parents ("not" is an RB\(^{^VP}\))
- **SPLIT-AUX**: mark auxiliary verbs with –AUX [cf. Charniak 97]
- **SPLIT-CC**: separate “but” and “&” from other conjunctions
- **SPLIT-%**: “%” gets its own tag.

<table>
<thead>
<tr>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
A Fully Annotated (Unlex) Tree
Some Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
</tr>
<tr>
<td>Unlexicalized</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.
- Lots of room to improve – more complex models next.