

446 Section

05

TA: Varun Ananth

Plans for today!

1. This
2. Reminders
3. Subgradients
4. Convexity
5. Midterm review

Reminders

- HW2 due Feb 11, 11:59 PM
 - Are you keeping track of late days? Use them!
- Midterm Monday 02/09.
 - Details on website...

K-fold CV + LASSO

Code on the website for questions 1 & 2 in the section 5 handout

- Check it out to see how k-fold cross validation is done in numpy
- Also a manual implementation of LASSO!

Subgradients

Why subgradients?

You can have convex functions that are not differentiable everywhere

- GD still useful to find minima
- But we may need to find subgradients

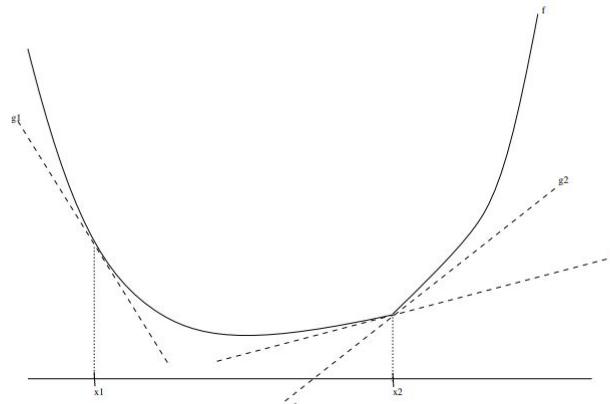
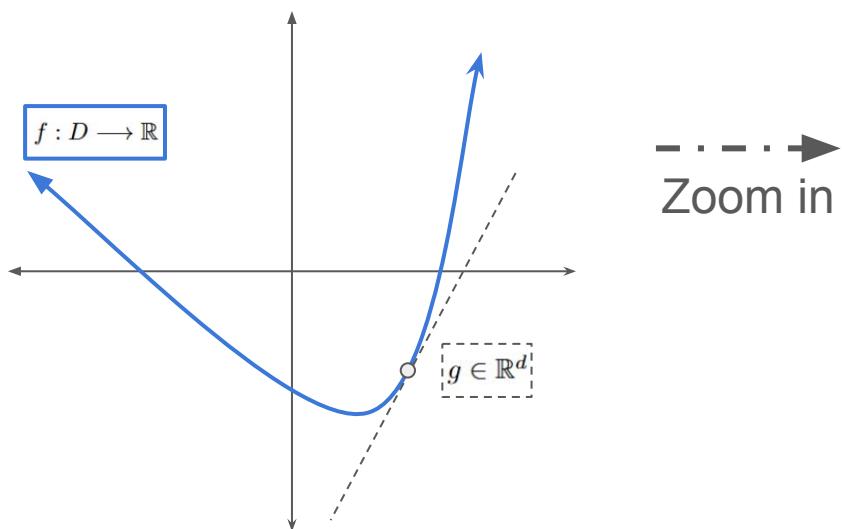


Figure 1: At x_1 , the convex function f is differentiable, and g_1 (which is the derivative of f at x_1) is the unique subgradient at x_1 . At the point x_2 , f is not differentiable. At this point, f has many subgradients: two subgradients, g_2 and g_3 , are shown.

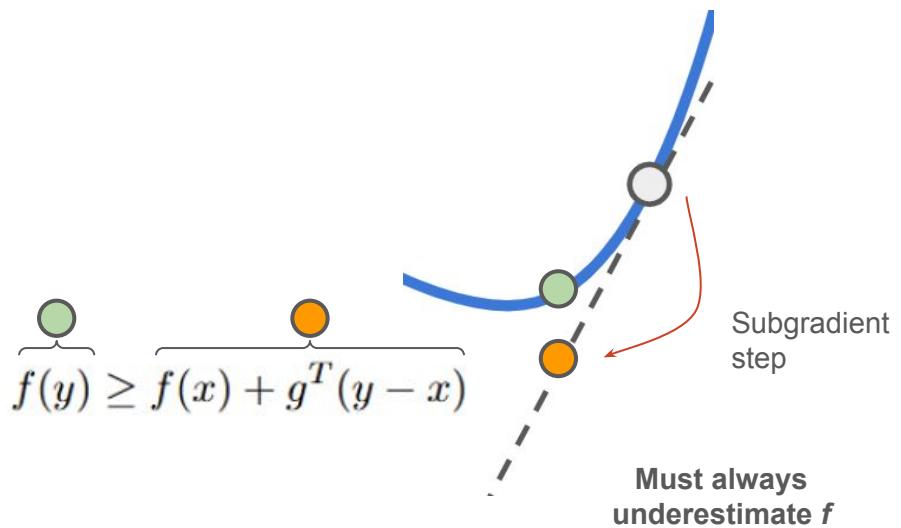
Subgradients visualized

Definition 1 (subgradients). A vector $g \in \mathbb{R}^d$ is a subgradient of a convex function $f : D \rightarrow \mathbb{R}$ at $x \in D \subseteq \mathbb{R}^d$ if

$$f(y) \geq f(x) + g^T(y - x) \quad \text{for all } y \in D.$$



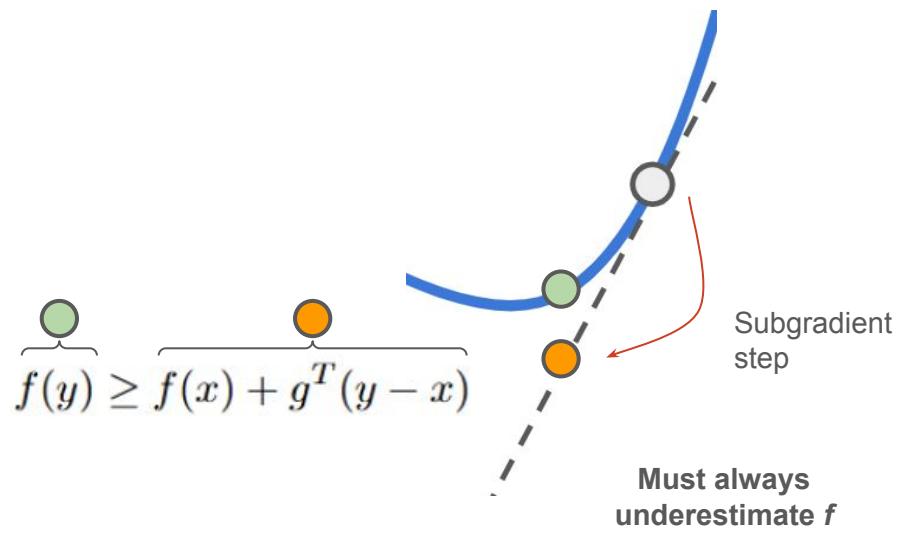
Zoom in



Subgradients visualized

Definition 1 (subgradients). A vector $g \in \mathbb{R}^d$ is a subgradient of a convex function $f : D \rightarrow \mathbb{R}$ at $x \in D \subseteq \mathbb{R}^d$ if

$$f(y) \geq f(x) + g^T(y - x) \quad \text{for all } y \in D.$$



Note:

- You can have many subgradients at a point x
- Subgradients can exist even at non-differentiable points x

Cool fact:

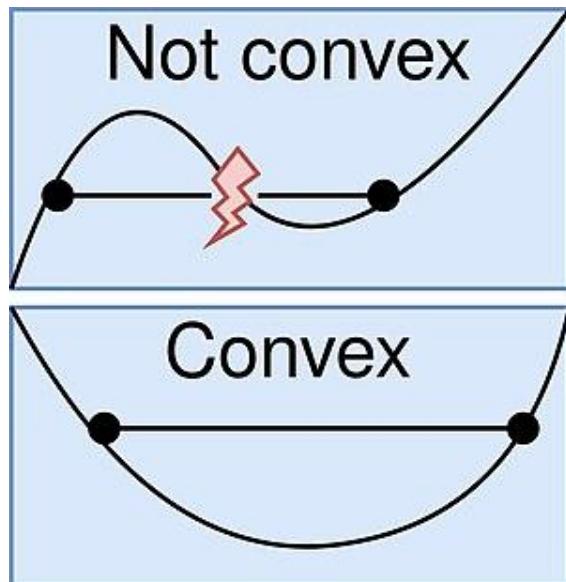
- If f is differentiable at x , then the gradient of f at x is also a subgradient of f at x

Convexity

Convexity in functions

Definition 2 (convex functions). A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is **convex** on a set A if for all $x, y \in A$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$



The function
between x
and y

Must be less
than or equal to

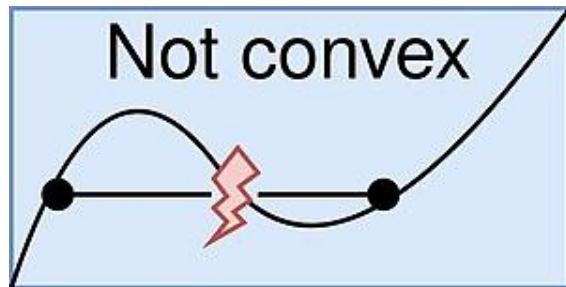
A straight line
between x and y

Note: The sum of convex
functions is convex

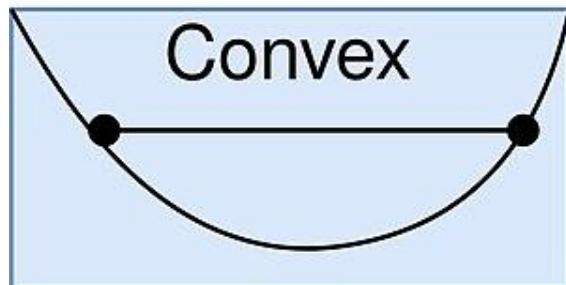
Convexity in functions

Definition 2 (convex functions). A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is **convex** on a set A if for all $x, y \in A$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$



Guarantees that any local minimum we find will be as low as the global minimum



If you perform GD with a small step size on a convex loss function, you **will** reach the best possible performance!

Midterm Review!

Questions/Chat Time!