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Reminders

e HW1 was due yesterday
o Remember that you have 5 late days!
e HW2 was released yesterday; due Wednesday, Feb 11

Some tips:

- Use office hours to your advantage
- Student TA OH for homework questions
- Professor OH for conceptual questions

- Skim the homeworks the day they are assigned and try one problem
- Motivates you to get things done on time, starting an untouched assignment can be daunting

- Keep a tab open with the lecture slides while you do the homework for
reference



Train/val/test



What do you never ever ever ever ever ever ever ever ever do?

Train/tune your model on your test set!

Tralnlr;g Choosing Prephrocessmgt, small
parameters hyperparameters changes, elcC...
Easy to _ Hard to
remember... Easy-ish to remember
remember...

Very sinister!




Easiest way to combat this?

Data

/

Only touch this until
everything is done

Then you
can free
him




Bonus Questions:

Q: If you have N data points, what choice of k for k-fold validation would give you
the same train/val splits as LOOCV?

A: N

Q: How would you get the most “pessimistic” estimate on your validation set?

A: Only train on 1 example and validate on the rest



Problems 1.1, 1.2

You are given blocks of What do you never ever ever ever ever ever ever ever ever do?

code, and something is

wrong/not totally right Train/tune your model on your test set!
with how they deal with
the data.
Training Choosing Preprocessing, small
parameters hyperparameters changes, eftc...
rer::rsnybg. s Easy-ish to rel-;?;?ng:ar
Identify them and ememeer Very shister

propose solutions!



1.1. Program 1

1 # Given dataset of 1000-by-50 feature
2 # matrix X, and 1000-by-1 labels vector

mu is calculated from the
entire data (train + test),
intertwining them!

mu = np.mean(X, axis=0)
X=X-mu

idx = np.random.permutation(1000)
TRAIN = idx[0:900]
TEST = idx[900::]

© ® N o

This is bad!

10
11 ytrain = y[TRAIN]
12 Xtrain = X[TRAIN, :]

14 # solve for argmin_w ||Xtrain*w - ytrain||_2 CorreCt procedure:

15 W = np.linalg.solve(np.dot(Xtrain.T, Xtrain), np.dot(Xtrain.T, ytrain)) - E;F)Iit ir]t() trilir‘ Eir](j t(!SSt
7 b = np.mean(ytrain) - (:()fT\F)llt(! the mean of

o ytest = y[TEST] the train data (.. )

o Xeest = XLTEST, = - De-mean both train and
22 train_error = np.dot(np.dot(Xtrain, w)+b - ytrain, t(}ﬁ;t (jiitii ljf;i[]g; lj .

23 np.dot(Xtrain, w)+b - ytrain ) / len(TRAIN) train

2« test_error = np.dot(np.dot(Xtest, w)+b - ytest,

25 np.dot(Xtest, w)+b - ytest ) / len(TEST)

26
27 print('Train error = ', train_error)
28 print('Test error = ', test_error)




1.2. Program 2

# We are given: 1) dataset X with n=1000 samples and 50 features and 2) a vector y of length 1000 with labels.

# Consider the following code to train a model, using cross validation to perform hyperparameter tuning.

def fit(Xin, Yin, _lambda):
w = np.linalg.solve(np.dot(Xin.T, Xin) + _lambda * np.eye(Xin.shape[11), np.dot(Xin.T, Yin))
b = np.mean(Yin) - np.dot(w, mu)
return w, b

def predict(w, b, Xin):
return np.dot(Xin, w) + b

idx = np.random.permutation(1000)
TRAIN = idx[0:800]
VAL = idx[800:900]
TEST = idx[900::]

ytrain = y[TRAIN]
Xtrain = X[TRAIN, :]
yval = y[VAL]

Xval = X[VAL, :]

# demean data

mu = np.mean(Xtrain, axis=0)
Xtrain = Xtrain - mu

Xval = Xval - mu

# use validation set to pick the best hyper-parameter to use
lambdas = [10 ** -5, 10 *x -4, 10 *x -3, 10 ** -2]
err = np.zeros(len(lambdas))

for idx, _lambda in enumerate(lambdas):
w, b = fit(Xtrain, ytrain, _lambda)
yval_hat = predict(w, b, Xval)
err[idx] = np.mean((yval_hat - yval)**x2)

)

lambda_bgsi.

Xtot = np.concatenate((Xtrain, Xval), axis=0)
ytot = np.concatenate((ytrain, yval), axis=0)

w, b =

ytest = y[TEST]
Xtest = X[TEST, :1]

# demean data
Xtest = Xtest - mu

ytot_hat = predict(w, b, Xtot)

train_error = np.mean((ytot_hat - ytot) **2)
ytest_hat = predict(w, b, Xtest)

test_error = np.mean((ytest_hat - ytest) **2)

print('Train error = ', train_error)
print('Test error = ', test_error)

The final model is trained on
BOTH the training and
validation sets.

Thisis... eh...

Your hyperparameters
selected on just the train data

may not hold for train + val:
- More data is good but you

should ensure that the
hyperparameters you tuned
do not depend on the
number of elements.

- Tradeoff between more data
and better test error
estimate



Gradient Descent



G rad e nt D esce nt Consider some function f(w), which has some w, for which w, = argmin,, f(w):

Purpose of this exercise: fw)
Understanding how
gradient descent relates
to approximations, and
why it works.

W, = arg min f(w)



Question 2a

Let wy be some initial guess for the minimum of f(w). Gradient descent will allow us to improve this solution.

(a) For some w that is very close to w, give the Taylor series approximation for f(w) starting at f(wy).
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Question 2a

Let wy be some initial guess for the minimum of f(w). Gradient descent will allow us to improve this solution.

(a) For some w that is very close to w, give the Taylor series approximation for f(w) starting at f(wy).

For w very close to wg, we see that f(w) ~ f(wo) + (w — wp) (% ‘ wsz).

Jw)
Sfwp)

|
Wo wy = arg min f(w)




Question 2b

(b) Now, let us choose some 1 > 0 that is very small. With this very small 7, let’s assume that w; = wy —
7 (%wﬂ w_wo). Using your approximation from part (a), give an expression for f(w,).

( Hint: Plug in here
) S+ @ w0) (2 | uee).

\ Y,
N

Fancy way of saying f'(w,)

(Derivative of f(w) at w)



Question 2b

wlzwo—n(% =

) (5

= f(wo) =7 (M w=w0)2

=f(’w0)+(’w0—77(w




Question 2c

(c) Given your expression for f(w;) from part (b), explain why, if 5 is small enough and if the function approx-
imation is a good enough approximation, we are guaranteed to move in the “right” direction closer to the
minimum w,.

Hint: Why
would this be

We want to | .
/ minimize this @QIOOC’-
df (w)

f(’wl) ~ f(wo) — 7 “dw | w=wo

Remember:



Question 2c

Note that in part (b), the derivative is squared and will always be a nonnegative value. Therefore, f(w;) <

f (wo).

Fluwn) ~ flwo)—n (D2,

In English: The loss function after a weight
update will always evaluate to be smaller than
before the weight update

- If the step size is small enough

- If the approximation is good enough




Question 2d

(d) Building from your answer in part (c), write a general form for the gradient descent algorithm.

Hint: how could
we generalize this - (df(w)
wy =wo —MN

equation from part dw
b?

w:wo)



Question 2d

Gradient descent is written as:

For k =0,1,2,3, .., wers = wx — 7 (L2 | umus )- Convergence
guarantees iff

df (w)
Note that as & — oo, ( == ‘ w:wk) — 0. convex!

We visualize as:

Jw)

l 1
1 1 1 T 1 I T T
Wo W W, Wy wy = arg min f(w)
w




Generalized Least
Squares



Least Squares Proof(s)

Has shown up...

e Inlecture (Lecture 2)

e On your homework
(A5 Ridge
Regression proof)

e And now here!

n
~ T
Weeneral = E TiT; + AD

You can look at the
generalized proof in your
own time.

Should look familiar...

=1 3=



Question 3.2a

l
l
| Dgeneral = (X ' X +AD) !X Ty
l

(a) In the simple least squares case (A = 0 above), what happens to the resulting @ if we double all the values of
Yi?

Solution:

As can be seen from the formula @ = (X" X)"!X "y, doubling y doubles w as well. This makes sense
intuitively as well because if the observations are scaled up, the model should also be.




Question 3.2b

i
|
|
: Weeneral = (XTX T )‘D)_IXT?/ :
!
|

(b) In the simple least squares case (A = 0 above), what happens to the resulting @ if we double the data matrix
X Rnxd?

Solution:

As can be seen from the formula & = (X' X) !X "y, doubling X halves w. This also makes sense intu-
itively because the error we are trying to minimize is | Xw — y||3, and if the X has doubled, while y has
remained unchanged, then w must compensate for it by reducing by a factor of 2.




Importance of
Regularization In
Least Squares



Question 3.2c

|
|
: Weeneral — (XTX iy )\D)_lXT?/
|

(c) Suppose D = I (that is, it is the identity matrix). That is, this is the ridge regression setting. Explain why
A > 0 ensures that the solution exists and the matrix can be inverted.



A:R* - R™ ifd>n
3.2c setup |

d

Let’'s do a linear algebra i i
refresher so that we can show off A n must have a non-empty nullspace
an interesting and actually useful B (can show using rank-nullity theorem)
result about the utility of
regularization! B i

This is bad for invertibility

Way to think about nullspaces T

Note: Null(A) = Null(A* A)

Ae R zeR? — proof in Section 02 handout

. d : . _ _
Nullspace: Subspace of R, contains all Invertible means ( AT A) 1( AT A) — I, SO ( AT A) 1( AT A) B = &
solutions to Az =0

In other words, all the vectors are “annihilated” by A



Invertible means (A" A)"1(ATA)=1,s0 (ATA) Y (ATA)z =2z

If A" A has a non-empty nullspace, then
3z s.t. (AT A)z =0

l

Makes (A" A)~1(A" A)xz = x impossible!

If this = 0, no way to recover z!




Main idea: If X € R"*% d > n, then
Null(X) and Null(X " X) are non-empty

This means X ' X has no inverse

An issue because... v = (X' X)) !Xy

Let’s not give up!



Visualized

- If X' has a non-empty null space,
matrix X"X has an eigenvalue of
0. This corresponds to a “flat
valley” — no unique solution

- By adding /, we shift all the
eigenvalues, moving it into a
“stable bowl”

Eigenvalue A; (Direction 2)

10

-4

The Optimization Map: Where Eigenvalues Live

STABLE BOWL
(Convex)
Least Sguares
{Flat Valley)
HItL
(Concave) SADDLE
l Ridge adds af, s0 A=A + « I
-4 -2 0 2 4 6 8 10

Eigenvalue Ay (Direction 1)



Let’s add in Al : = (XTX + M)~ XTY
Is X7 X + \I always invertible for A > 07

A matrix A is positive semi-definite if ' Az > 0 and positive definite if z' Az > 0
Positive Definite (PD): All eigenvalues are strictly positive
Positive Semi-Definite (PSD): All eigenvalues are 0 or positive

We want to show that u(XTX +X)u >0 Vu e R?

— Show matrix is positive definite, meaning it must have an inverse



We want to show that w(X1X + A)u >0 Vu € R®

W XTX +M)u= u(X'X)u +u(M)u
N————
Is this always >07

/ L2 norm

w(XTX)u =uXTXu =|Xul5>0 Yes!



w(XTX + ADu = uw(XT X)u +u(M\)u
> u(Al)u < this is PD, . >0
> (0

We have shown X?' X + M is PD and therefore
always invertible if A > 0!

— Even if d > n/!




Question 3.2c

l
l
| Dgeneral = (X ' X +AD) !X Ty
l

(c) Suppose D = I (that is, it is the identity matrix). That is, this is the ridge regression setting. Explain why
A > 0 ensures that the solution exists and the matrix can be inverted.

Solution:

The solution is @ = (X " X + AI)~' X Ty. We already saw in a previous part that X " X is always positive
semidefinite, that is, its eigenvalues are at least zero. Adding A\I, where )\ > 0, ensures that X " X 4+ \I is
in fact positive definite. This helps us have a good condition number.




Ridge vs. LASSO
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W

£? regularization

£' induces sparse solutions for least squares

¢! regularization

A

A

2 3 “

by @itayevron



Questions/Chat Time!



