

446 Section 4 $\leftarrow (3 - \eta(-1))$

TA: Sankar Harilal

Plans for today!

1. Reminders
2. Train/Val/Test Review
3. Gradient Descent
4. Generalized Least Squares
5. Importance of Regularization in Least Squares
6. Ridge/LASSO (if time)

Reminders

- HW1 was due yesterday
 - Remember that you have 5 late days!
- HW2 was released yesterday; due Wednesday, Feb 11

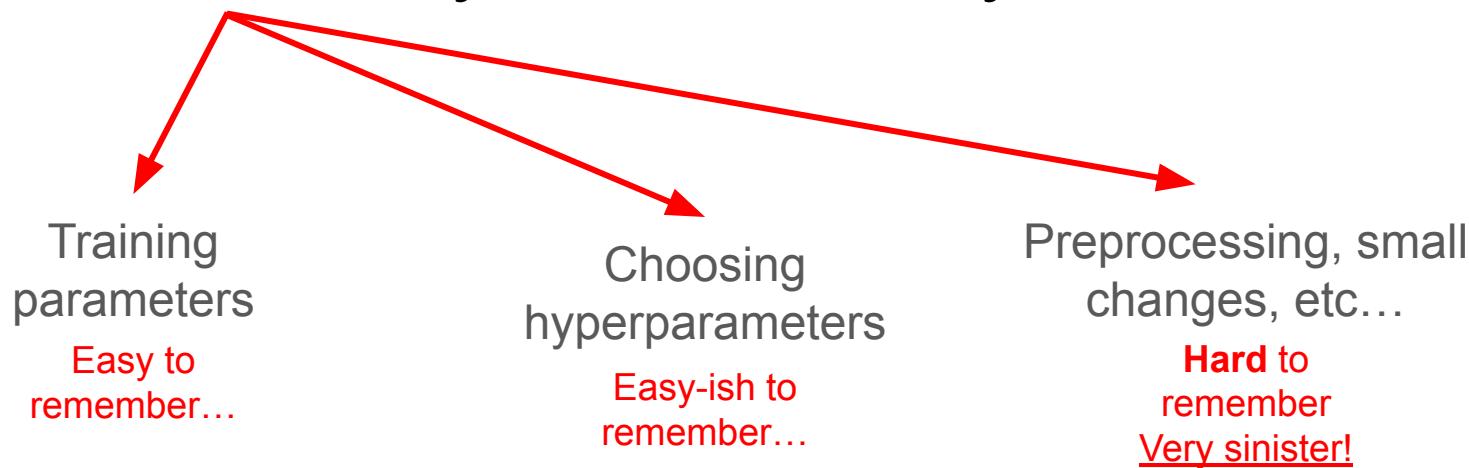
Some tips:

- Use office hours to your advantage
 - Student TA OH for homework questions
 - Professor OH for conceptual questions
- Skim the homeworks the day they are assigned and try one problem
 - Motivates you to get things done on time, starting an untouched assignment can be daunting
- Keep a tab open with the lecture slides while you do the homework for reference

Train/val/test

What do you never ever ever ever ever ever ever ever ever do?

Train/tune your model on your test set!



Easiest way to combat this?

Data

Data

Test

Data

Only touch this until
everything is done

Then you
can free
him

Test

Bonus Questions:

Q: If you have N data points, what choice of k for k-fold validation would give you the same train/val splits as LOOCV?

A: N

Q: How would you get the **most** “pessimistic” estimate on your validation set?

A: Only train on 1 example and validate on the rest

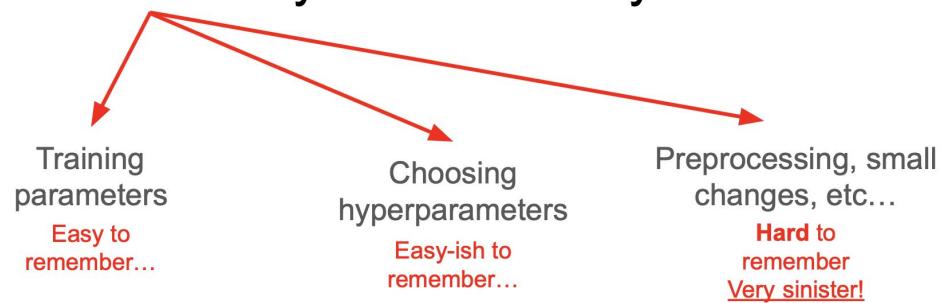
Problems 1.1, 1.2

You are given blocks of code, and something is wrong/not totally right with how they deal with the data.

*Identify them and
propose solutions!*

What do you never ever ever ever ever ever ever ever ever do?

Train/tune your model on your test set!



1.1. Program 1

```
1 # Given dataset of 1000-by-50 feature
2 # matrix X, and 1000-by-1 labels vector
3
4 mu = np.mean(X, axis=0)
5 X = X - mu
6
7 idx = np.random.permutation(1000)
8 TRAIN = idx[0:900]
9 TEST = idx[900::]
10
11 ytrain = y[TRAIN]
12 Xtrain = X[TRAIN, :]
13
14 # solve for argmin_w ||Xtrain*w - ytrain||_2
15 w = np.linalg.solve(np.dot(Xtrain.T, Xtrain), np.dot(Xtrain.T, ytrain))
16
17 b = np.mean(ytrain)
18
19 ytest = y[TEST]
20 Xtest = X[TEST, :]
21
22 train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,
23                      np.dot(Xtrain, w)+b - ytrain ) / len(TRAIN)
24 test_error = np.dot(np.dot(Xtest, w)+b - ytest,
25                      np.dot(Xtest, w)+b - ytest ) / len(TEST)
26
27 print('Train error = ', train_error)
28 print('Test error = ', test_error)
```

μ is calculated from the **entire** data (train + test), intertwining them!

This is bad!

Correct procedure:

- **Split into train and test**
- **Compute the mean of the train data (μ_{train})**
- **De-mean both train and test data using μ_{train}**

1.2. Program 2

```
1 # We are given: 1) dataset X with n=1000 samples and 50 features and 2) a vector y of length 1000 with labels.
2 # Consider the following code to train a model, using cross validation to perform hyperparameter tuning.
3
4 def fit(Xin, Yin, _lambda):
5     w = np.linalg.solve(np.dot(Xin.T, Xin) + _lambda * np.eye(Xin.shape[1]), np.dot(Xin.T, Yin))
6     b = np.mean(Yin) - np.dot(w, mu)
7     return w, b
8
9 def predict(w, b, Xin):
10    return np.dot(Xin, w) + b
11
12 idx = np.random.permutation(1000)
13 TRAIN = idx[0:800]
14 VAL = idx[800:900]
15 TEST = idx[900::]
16
17 ytrain = y[TRAIN]
18 Xtrain = X[TRAIN, :]
19 yval = y[VAL]
20 Xval = X[VAL, :]
21
22 # demean data
23 mu = np.mean(Xtrain, axis=0)
24 Xtrain = Xtrain - mu
25 Xval = Xval - mu
26
27 # use validation set to pick the best hyper-parameter to use
28 lambdas = [10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2]
29 err = np.zeros(len(lambdas))
30
31 for idx, _lambda in enumerate(lambdas):
32     w, b = fit(Xtrain, ytrain, _lambda)
33     yval_hat = predict(w, b, Xval)
34     err[idx] = np.mean((yval_hat - yval)**2)
35
36 lambda_best = lambdas[np.argmax(err)]
37
38 Xtot = np.concatenate((Xtrain, Xval), axis=0)
39 ytot = np.concatenate((ytrain, yval), axis=0)
40
41 w, b = fit(Xtot, ytot, lambda_best)
42
43 ytest = y[TEST]
44 Xtest = X[TEST, :]
45
46 # demean data
47 Xtest = Xtest - mu
48
49 ytot_hat = predict(w, b, Xtot)
50 train_error = np.mean((ytot_hat - ytot) **2)
51 ytest_hat = predict(w, b, Xtest)
52 test_error = np.mean((ytest_hat - ytest) **2)
53
54 print('Train error = ', train_error)
55 print('Test error = ', test_error)
```

The final model is trained on BOTH the training and validation sets.

This is... eh...

Your hyperparameters selected on just the train data may not hold for train + val:

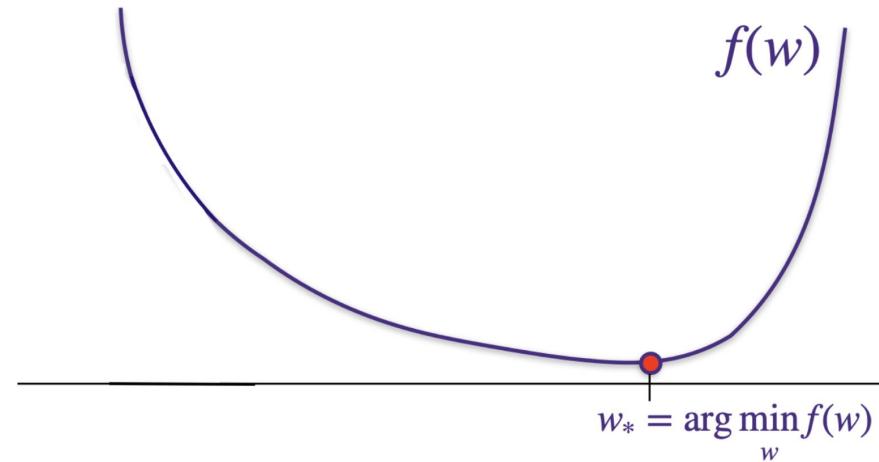
- More data is good but you should ensure that the hyperparameters you tuned do not depend on the number of elements.
- Tradeoff between more data and better test error estimate

Gradient Descent

Gradient Descent

Purpose of this exercise:
Understanding how
gradient descent relates
to approximations, and
why it works.

Consider some function $f(w)$, which has some w_* for which $w_* = \arg \min_w f(w)$:



Question 2a

Let w_0 be some initial guess for the minimum of $f(w)$. Gradient descent will allow us to improve this solution.

(a) For some w that is very close to w_0 , give the Taylor series approximation for $f(w)$ starting at $f(w_0)$.

Remember Taylor expansion?

↳ To approximate a function around a point \underline{a}

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 \dots$$

Exact at \underline{a} , close around a

Better and better approximations

Question 2a

Let w_0 be some initial guess for the minimum of $f(w)$. Gradient descent will allow us to improve this solution.

(a) For some w that is very close to w_0 , give the Taylor series approximation for $f(w)$ starting at $f(w_0)$.

For w very close to w_0 , we see that $f(w) \approx f(w_0) + (w - w_0) \left(\frac{df(w)}{dw} \Big|_{w=w_0} \right)$.



Question 2b

(b) Now, let us choose some $\eta > 0$ that is *very small*. With this very small η , let's assume that $w_1 = w_0 - \eta \left(\frac{df(w)}{dw} \Big|_{w=w_0} \right)$. Using your approximation from part (a), give an expression for $f(w_1)$.

Hint: Plug in here

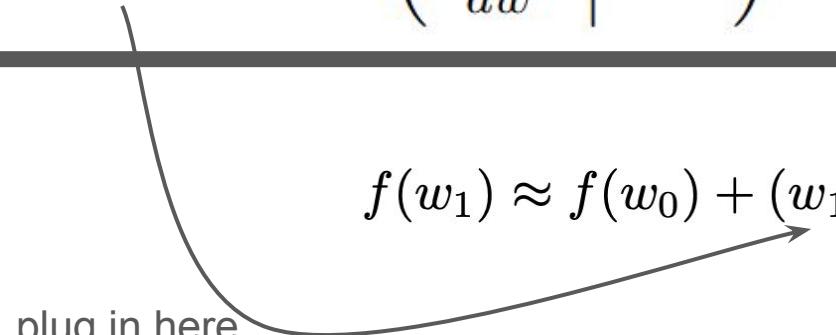
$$f(w) \approx f(w_0) + (w - w_0) \underbrace{\left(\frac{df(w)}{dw} \Big|_{w=w_0} \right)}_{\text{Fancy way of saying } f'(w_0)}.$$

Fancy way of saying $f'(w_0)$

(Derivative of $f(w)$ at w_0)

Question 2b

$$w_1 = w_0 - \eta \left(\frac{df(w)}{dw} \Big|_{w=w_0} \right) \leftarrow \text{Given}$$


$$f(w_1) \approx f(w_0) + (w_1 - w_0) \left(\frac{df(w)}{dw} \Big|_{w=w_0} \right)$$

plug in here

$$= f(w_0) + \left(w_0 - \eta \left(\frac{df(w)}{dw} \Big|_{w=w_0} \right) - w_0 \right) \left(\frac{df(w)}{dw} \Big|_{w=w_0} \right)$$

$$= f(w_0) - \eta \left(\frac{df(w)}{dw} \Big|_{w=w_0} \right)^2$$

Question 2c

(c) Given your expression for $f(w_1)$ from part (b), explain why, if η is small enough and if the function approximation is a good enough approximation, we are guaranteed to move in the “right” direction closer to the minimum w_* .

Remember:

We want to
minimize this

$$f(w_1) \approx f(w_0) - \eta \left(\frac{df(w)}{dw} \bigg|_{w=w_0} \right)^2$$

Hint: Why
would this be
good?

Question 2c

Note that in part (b), the derivative is squared and will always be a nonnegative value. Therefore, $f(w_1) < f(w_0)$.

$$f(w_1) \approx f(w_0) - \eta \left(\frac{df(w)}{dw} \bigg|_{w=w_0} \right)^2$$

In English: The loss function after a weight update will always evaluate to be smaller than before the weight update

- If the step size is small enough
- If the approximation is good enough

Question 2d

(d) Building from your answer in part (c), write a general form for the gradient descent algorithm.

Hint: how could we generalize this equation from part b?

$$w_1 = w_0 - \eta \left(\frac{df(w)}{dw} \bigg|_{w=w_0} \right)$$

Question 2d

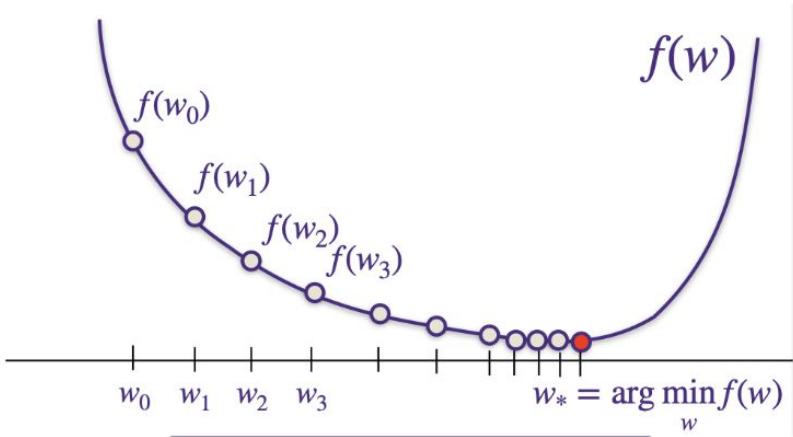
Gradient descent is written as:

For $k = 0, 1, 2, 3, \dots$, $w_{k+1} = w_k - \eta \left(\frac{df(w)}{dw} \Big|_{w=w_k} \right)$.

Note that as $k \rightarrow \infty$, $\left(\frac{df(w)}{dw} \Big|_{w=w_k} \right) \rightarrow 0$.

Convergence guarantees iff convex!

We visualize as:



Generalized Least Squares

Least Squares Proof(s)

Should look familiar...

Has shown up...

- In lecture (Lecture 2)
- On your homework
(A5 Ridge
Regression proof)
- And now here!

You can look at the
generalized proof in your
own time.

$$\hat{\omega}_{\text{general}} = (X^\top X + \lambda D)^{-1} X^\top y$$

$$\hat{\omega}_{\text{general}} = \left(\sum_{i=1}^n x_i x_i^\top + \lambda D \right)^{-1} \left(\sum_{i=1}^n x_i y_i \right)$$

Question 3.2a

$$\widehat{\omega}_{\text{general}} = (X^\top X + \lambda D)^{-1} X^\top y$$

(a) In the simple least squares case ($\lambda = 0$ above), what happens to the resulting $\widehat{\omega}$ if we double all the values of y_i ?

Solution:

As can be seen from the formula $\widehat{\omega} = (X^\top X)^{-1} X^\top y$, doubling y doubles ω as well. This makes sense intuitively as well because if the observations are scaled up, the model should also be.

Question 3.2b

$$\widehat{\omega}_{\text{general}} = (X^\top X + \lambda D)^{-1} X^\top y$$

(b) In the simple least squares case ($\lambda = 0$ above), what happens to the resulting $\widehat{\omega}$ if we double the data matrix $X \in \mathbb{R}^{n \times d}$?

Solution:

As can be seen from the formula $\widehat{\omega} = (X^\top X)^{-1} X^\top y$, doubling X halves ω . This also makes sense intuitively because the error we are trying to minimize is $\|X\omega - y\|_2^2$, and if the X has doubled, while y has remained unchanged, then ω must compensate for it by reducing by a factor of 2.

Importance of Regularization in Least Squares

Question 3.2c

$$\widehat{\omega}_{\text{general}} = (X^\top X + \lambda D)^{-1} X^\top y$$

(c) Suppose $D = I$ (that is, it is the identity matrix). That is, this is the *ridge* regression setting. Explain why $\lambda > 0$ ensures that the solution exists and the matrix can be inverted.

3.2c setup

Let's do a linear algebra refresher so that we can show off an interesting and actually useful result about the utility of regularization!

Way to think about nullspaces

$$A \in \mathbb{R}^{n \times d} \quad x \in \mathbb{R}^d$$

Nullspace: Subspace of \mathbb{R}^d , contains all solutions to $Ax = 0$

In other words, all the vectors are “annihilated” by A

$$A : \mathbb{R}^d \rightarrow \mathbb{R}^n, \text{ if } d \gg n$$

$$\downarrow \\ d$$

$$A : \begin{bmatrix} & & \\ \vdots & \vdots & \vdots \\ & & \end{bmatrix}^n \quad \text{must have a non-empty nullspace (can show using rank-nullity theorem)}$$

This is bad for invertibility

Note: $\text{Null}(A) = \text{Null}(A^T A)$

→ proof in Section 02 handout

Invertible means $(A^T A)^{-1}(A^T A) = I$, so $(A^T A)^{-1}(A^T A)x = x$

Invertible means $(A^\top A)^{-1}(A^\top A) = I$, so $(A^\top A)^{-1}(A^\top A)x = x$

If $A^\top A$ has a non-empty nullspace, then

$$\exists x \text{ s.t. } (A^\top A)x = 0$$

Makes $(A^\top A)^{-1}(A^\top A)x = x$ impossible!

If this = 0, no way to recover x !

Main idea: If $X \in \mathbb{R}^{n \times d}$, $d \gg n$, then

$\text{Null}(X)$ and $\text{Null}(X^\top X)$ are non-empty

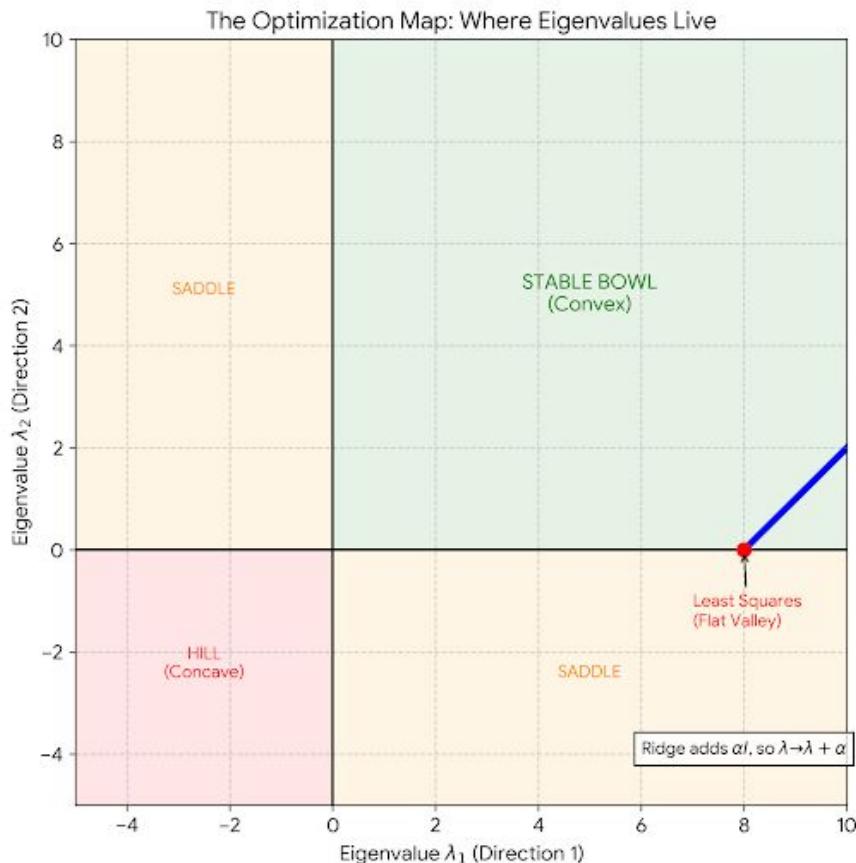
This means $X^\top X$ has no inverse

An issue because... $\hat{w} = (X^\top X)^{-1} X^\top y$

Let's not give up!

Visualized

- If X has a non-empty null space, matrix $X^T X$ has an eigenvalue of 0. This corresponds to a “flat valley” – no unique solution
- By adding I , we shift all the eigenvalues, moving it into a “stable bowl”



Let's add in λI : $\hat{w} = (X^T X + \lambda I)^{-1} X^T Y$

Is $X^T X + \lambda I$ always invertible for $\lambda > 0$?

A matrix A is positive semi-definite if $x^\top A x \geq 0$ and positive definite if $x^\top A x > 0$

Positive Definite (PD): All eigenvalues are strictly positive

Positive Semi-Definite (PSD): All eigenvalues are 0 or positive

We want to show that $u(X^T X + \lambda I)u > 0 \quad \forall u \in \mathbb{R}^d$

→ Show matrix is positive definite, meaning it must have an inverse

We want to show that $u(X^T X + \lambda I)u > 0 \quad \forall u \in \mathbb{R}^d$

$$u(X^T X + \lambda I)u = \underbrace{u(X^T X)u}_{\text{Is this always } >0?} + u(\lambda I)u$$

$$u(X^T X)u = uX^T Xu = \|Xu\|_2^2 \geq 0 \quad \text{Yes!}$$

L2 norm

$$\begin{aligned} u(X^T X + \lambda I)u &= u(X^T X)u + u(\lambda I)u \\ &\geq u(\lambda I)u \leftarrow \text{this is PD, } \therefore > 0 \\ &> 0 \end{aligned}$$

We have shown $X^T X + \lambda I$ is PD and therefore
always invertible if $\lambda > 0$!

\rightarrow Even if $d \gg n$!

Question 3.2c

$$\widehat{\omega}_{\text{general}} = (X^\top X + \lambda D)^{-1} X^\top y$$

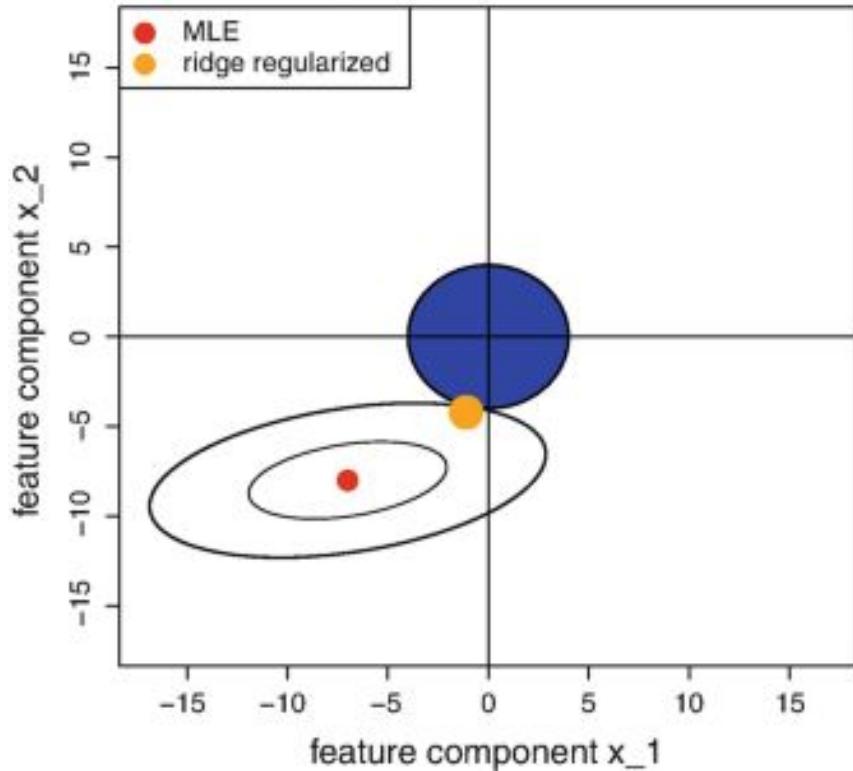
(c) Suppose $D = I$ (that is, it is the identity matrix). That is, this is the *ridge* regression setting. Explain why $\lambda > 0$ ensures that the solution exists and the matrix can be inverted.

Solution:

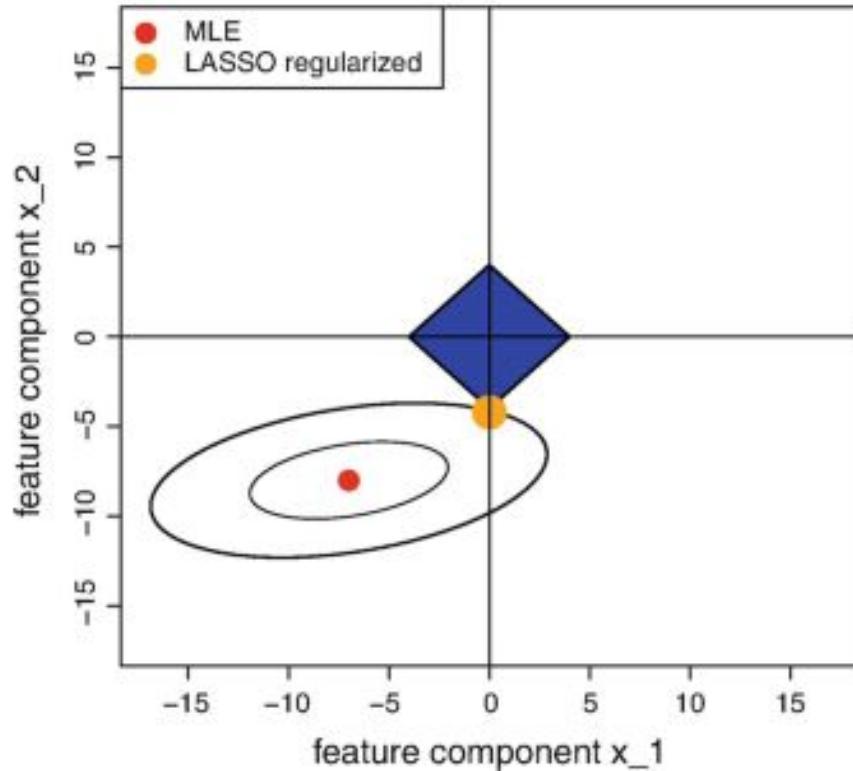
The solution is $\widehat{\omega} = (X^\top X + \lambda I)^{-1} X^\top y$. We already saw in a previous part that $X^\top X$ is always positive semidefinite, that is, its eigenvalues are at least zero. Adding λI , where $\lambda > 0$, ensures that $X^\top X + \lambda I$ is in fact positive *definite*. This helps us have a good condition number.

Ridge vs. LASSO

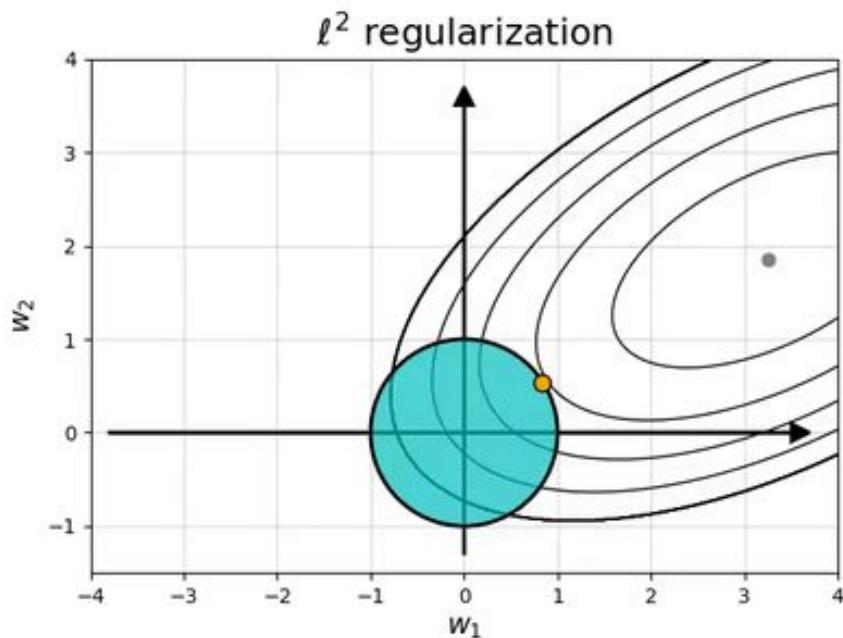
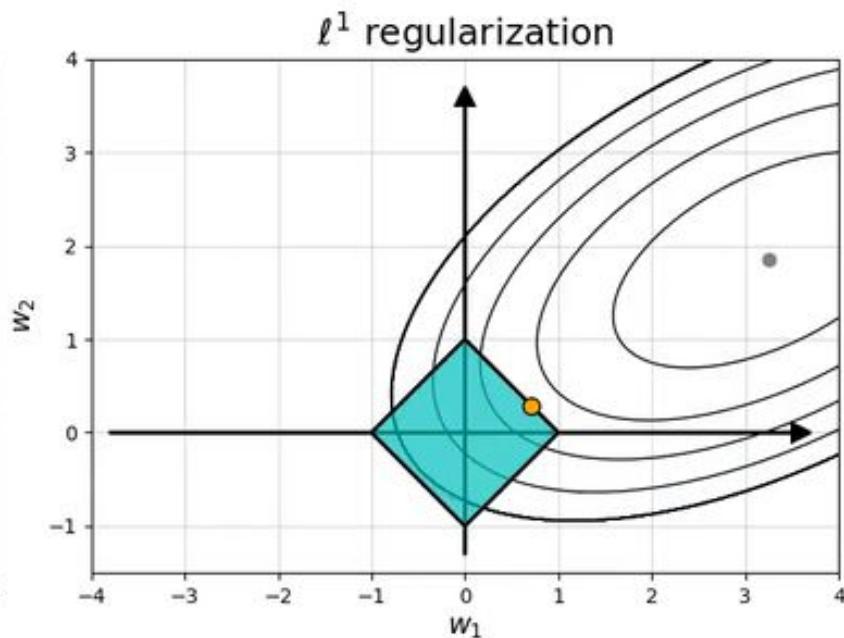
ridge regularization (L2)



LASSO regularization (L1)



ℓ^1 induces sparse solutions for least squares



by @itayevron

Questions/Chat Time!