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Plans for today!
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Matrix Vector Proof
Vector Calculus
Approximations

Problem 1.2

Today’s section is
going to be super
math heavy...

It's okay if not everything
makes sense right away!

Our goal is to develop
intuition for the math :)
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Aside (quick matrix proof)
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Derivative



What is a derivative?

Derivative = Slope




What is a second derivative?

Second Derivative = Curvature




Find the derivatives along different directions in this
graph




Calculate f (x, y)

Treat y as a constant and take the partial derivative wrt to x




Calculate fy(x, y)

Treat x as a constant and take the partial derivative wrtto y




Gradient



What is the gradient?

Let f be a scalar-valued multivariable function f(x, y, ...)
The gradient of f is the collection of f’s partial derivatives in a vector:
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Scalar-valued multivariable function (o, Yo, ---)
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V f takes the same
type of inputs as f

Notation for gradient, called “nabla”.

s

V f outputs a vector with
all possible partial derivatives of f.



Gradient in multiple dimensions

The gradient vector of a function of several variables at any
point denotes the direction of maximum rate of change
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Gradient vectors at various Poih&s shown with red arrows
Tangent to the contour is in green



Calculating the gradient

Input:
(1)
2
aj p—
\@n/
Function:



Calculating the gradient

Input: Take the partial derivative n times:
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Vocab

Name Symbol Example
Derivative 4 i(:1:2) =: 2
dr dx
. L 0 0 ,
Partial derivative — —(z*—zy) =2z —y
Ox Ox

Gradient \Y V(z? — zy) = [Zw B y]



How to calculate the gradient

Let's take an example. | have a function defined as f(:z:, y) = bx? + 32y + 3y3. First, we need to find the

partial derivatives with respect to the variables & and y as follows:
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This gives us a gradient:
10z + 3y
V= 3
3z + 9y




Jacobian



From Gradient — Jacobian

dx 0x; 0x,,

fiR*>R J=

these are the same values as the gradient!

if we generalize this function to more dimensions...

dfw _ |or@ o

f: R* - RY J

_df(x) | df(x) of(x)
- dx ox;  0x,

]z

0f1(x)
0x1

9f,(X)
0x 1

o (x) |

0x,

0f,(x)

0x,




From Gradient — Jacobian

--—> output

f R* >R input
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Interpreting the Jacobian

How do we interpret the jacobian matrix?

| 0fi(x) ofi(x) |
ifx ot ofm] | ™ a’f"
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S| el

This matrix gives tells us how the outputs will change when we
vary the value of x.

For example, if we increase x, how is g(x) affected?



Hesslian



What is the Hessian?

The hessian matrix of a multivariable function f organizes all
second partial derivatives into a matrix
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What is the Hessian?

The matrix can be evaluated at some point (xg, Yy, . . .) in the domain of f

Hf
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Developing Intuition

We started with a function f that takes n inputs (a vector) — gives you 1 output

This could be the loss value

We take the derivative (gradient) of this scalar function — get a vector of size n

This vector tells you the slope in every direction

Q

f(z)
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Developing Intuition

We started with a function f that takes n inputs (a vector) — gives you 1 output

e This could be the loss value

We take the derivative (gradient) of this scalar function — get a vector of size n

e This vector tells you the slope in every direction

What happens if we differentiate the gradient itself?

e \We can't take the gradient of a vector — vector function
e Ve have to use the jacobian!
e Therefore, the Hessian Matrix is the Jacobian Matrix of the

Gradient Vector.
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Problems 1.2 a-b

(a) Let f(z1,x2) = 27 + €2 + 2log(x,). What are the gradient and the Hessian of f?

Solve them! Ask for

help if you are stuck.

Look at section 1.1 for

help remembering (b) Note that V, f : R” — R™. What is the Jacobian of V,, f?
how these gradients,

Jacobians, and

Hessians compute.



Answers

(a) Let f(z1,22) = 2% + e®12 4+ 2log(x2). What are the gradient and the Hessian of f?

Solution:
af(z Ff(x) 2f(x) 2 : :
Vo) = | T | = [Pt me ] gy = | 2 mmen| [ 24T e oy
z 3(_.9’(x) T1e™172 + = z :;3 f(g-’r) adf(zx) €172 4 1yx:0e®1 2 rye®1 2 — =
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(b) Note that V. f : R™ — R". What is the Jacobian of V. f?
Equivalent
Solution:
g
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Approximations



Linear Approximation

The derivative of f(x) at
some (X,y) can be used
to linearly approximate

f(x £ €)

Good

Where ¢ is very tiny!

This extends to multivariate

functions... proof in your notes Bad approximation




Linear
Approximation

For a “many-to-one”
function, the gradient
gives us a vector we can
use to linearly
approximate a small area
around some X

What about a
“many-to-many” function?

f:R" =R

Let e = [61,- .o ,(-n]T

and z = [mlw . )$7I]T

f@+e) = f(z) + Vof(z) e
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n
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Problem 1.2 ¢

Remember that the
Jacobian is just the
gradient of a
“many-to-many”
function.

Also remember: For a
“many-to-one” function, the
gradient gives us a vector we
can use to linearly
approximate a small area
around some x

(c) The gradient V. f(z) offers the best linear approximation of f around the point z. What does the Jacobian of

a function g : R™ — R™ offer?



Answer

(c) The gradient V. f(x) offers the best linear approximation of f around the point . What does the Jacobian of
a function g : R™ — R™ offer?

Solution:

The Jacobian also offers the best linear approximation of ¢ around a point z, but now it approximates a
vector, instead of a scalar,
g(z +€) = g(x) + Vzg(z)e

where V.g(x)e is a matrix multiplication instead of a dot product.




Problem 1.2 d

(d) If we use the gradient and the Hessian of f : R™ — R, what type of an approximation for the function f
around a point 2 can we create.
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Problem 1.2 g
(IMPORTANT!)

(g) Draw the gradient on the picture. Describe what happens to the values of the approximation of f if we move
from z in directions d,,ds, d3 for which V.. f(z)"d, > 0,V.f(z)"dy < 0,V.f(z)Td; = 0? Can the same
conclusions be drawn about the function of [?
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Answer

(g) Draw the gradient on the picture. Describe what happens to the values of the approximation of [ if we move
from z in directions d;, d», d; for which V, f(z)"d, > 0,V.f(z)Tdy < 0,V.f(z)"d3 = 0? Can the same
conclusions be drawn about the function of ?

Solution:

* d,: Value of approximation goes up.
* ds: Value of approximation goes down.
* d3: Value of approximation stays the same.

The same can be said for [, but only in the immediate vicinity of the point z.

Intuition used here will be useful on the exam



