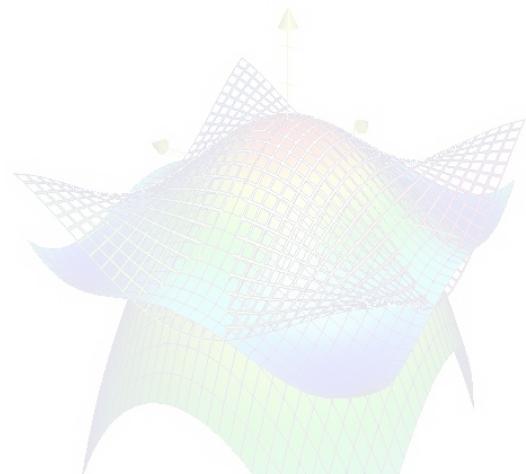


446 Section 3.000001

TA: Yufei Zhang



Plans for today!

1. This
2. Matrix Vector Proof
3. Vector Calculus
4. Approximations
5. Problem 1.2

Today's section is going to be *super* math heavy...

It's okay if not everything makes sense right away!

Our goal is to develop *intuition* for the math :)

Plans for today!

1. This
2. Matrix Vector Proof
3. Vector Calculus
4. Approximations
5. Problem 1.2

Reminders

- HW1 due Wed, Jan 28

Aside (quick matrix proof)

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad X = \begin{bmatrix} - & x_1^\top & - \\ - & x_2^\top & - \\ \vdots & \vdots & \vdots \\ - & x_m^\top & - \end{bmatrix}, \quad w = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} \quad Xw - Y = \begin{bmatrix} x_1^\top w - y_1 \\ x_2^\top w - y_2 \\ \vdots \\ x_m^\top w - y_m \end{bmatrix}$$

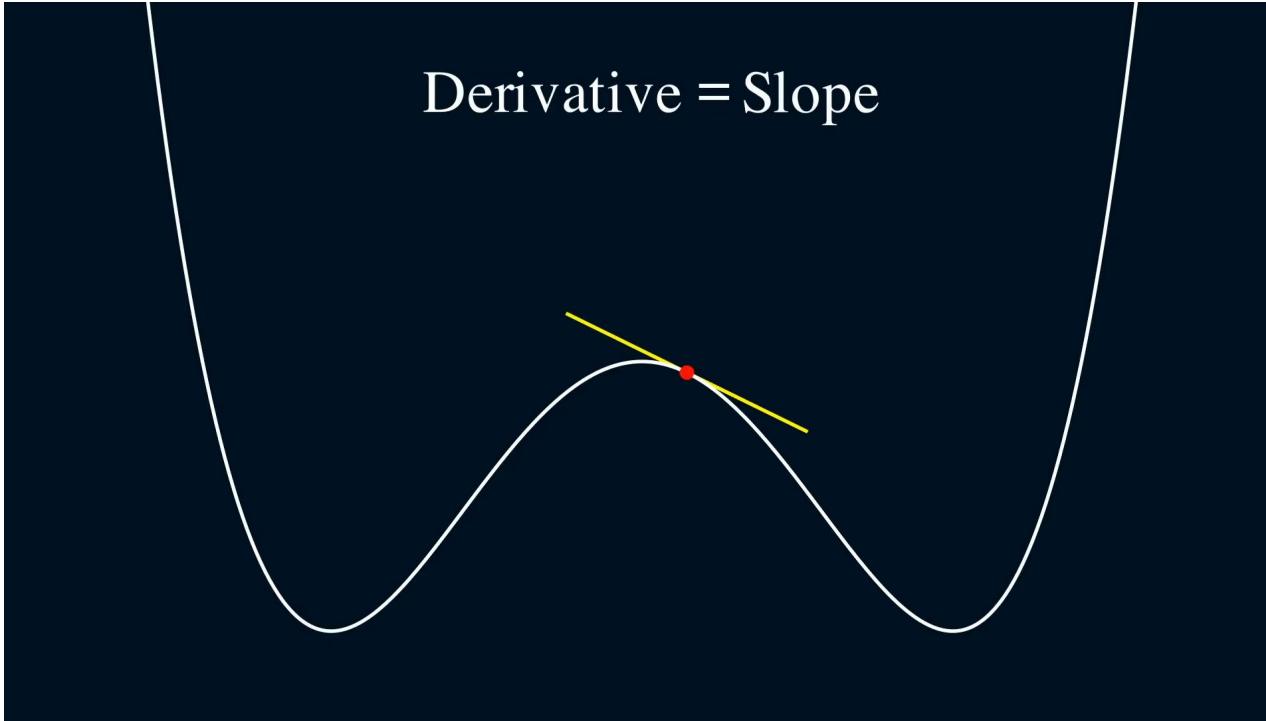
$$\|Xw - Y\|_2^2 = \sum_{i=1}^m (x_i^\top w - y_i)^2 \quad (a - b)^2 = (b - a)^2. \text{ Therefore:} \\ (x_i^\top w - y_i)^2 = (y_i - x_i^\top w)^2$$

$$\|Xw - Y\|_2^2 = \sum_{i=1}^m (y_i - x_i^\top w)^2$$

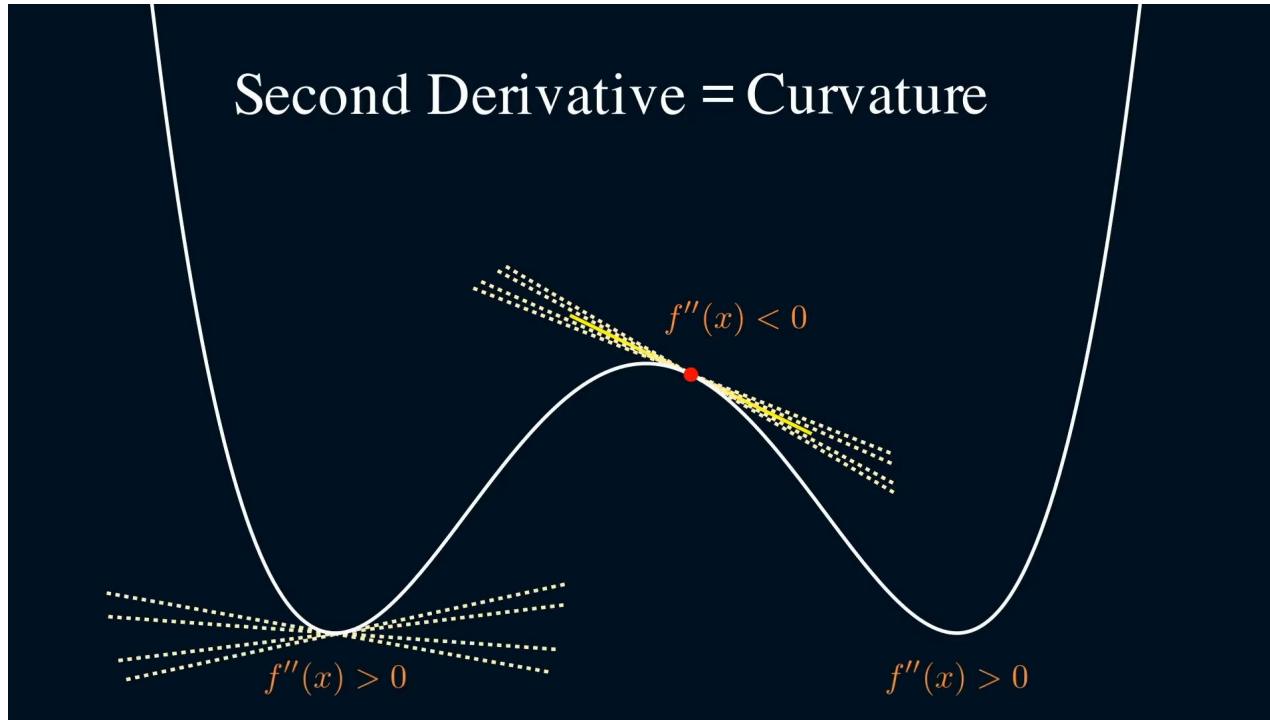
Derivative

What is a derivative?

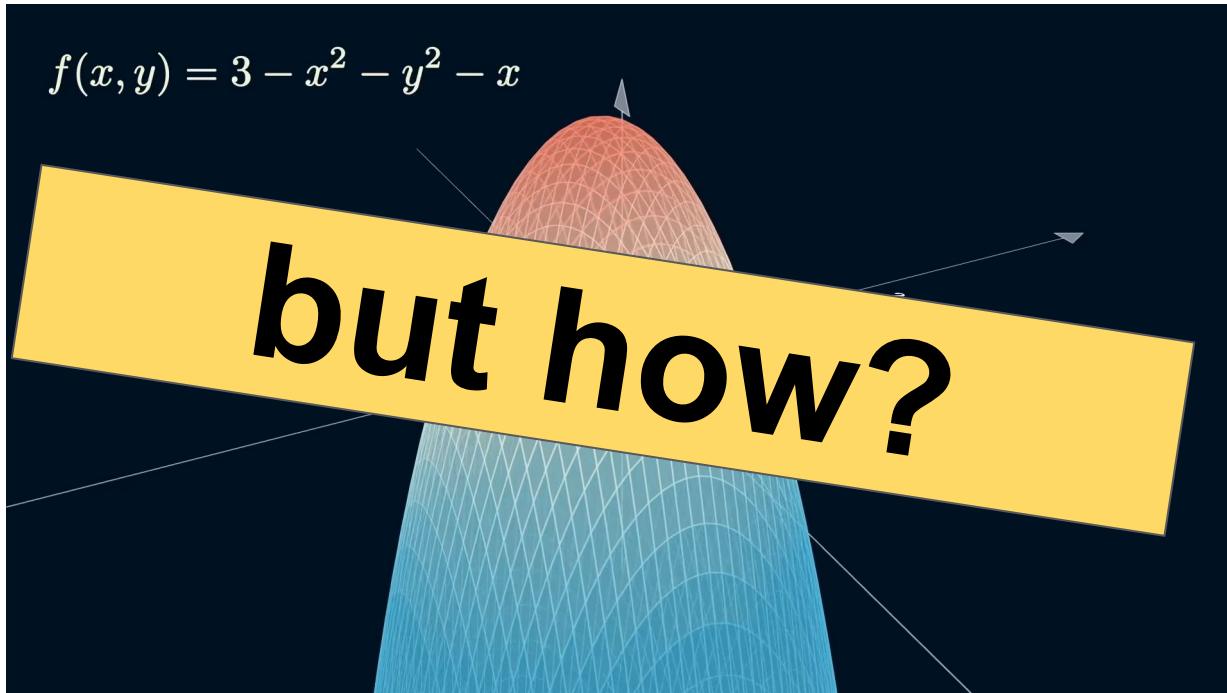
Derivative = Slope



What is a second derivative?

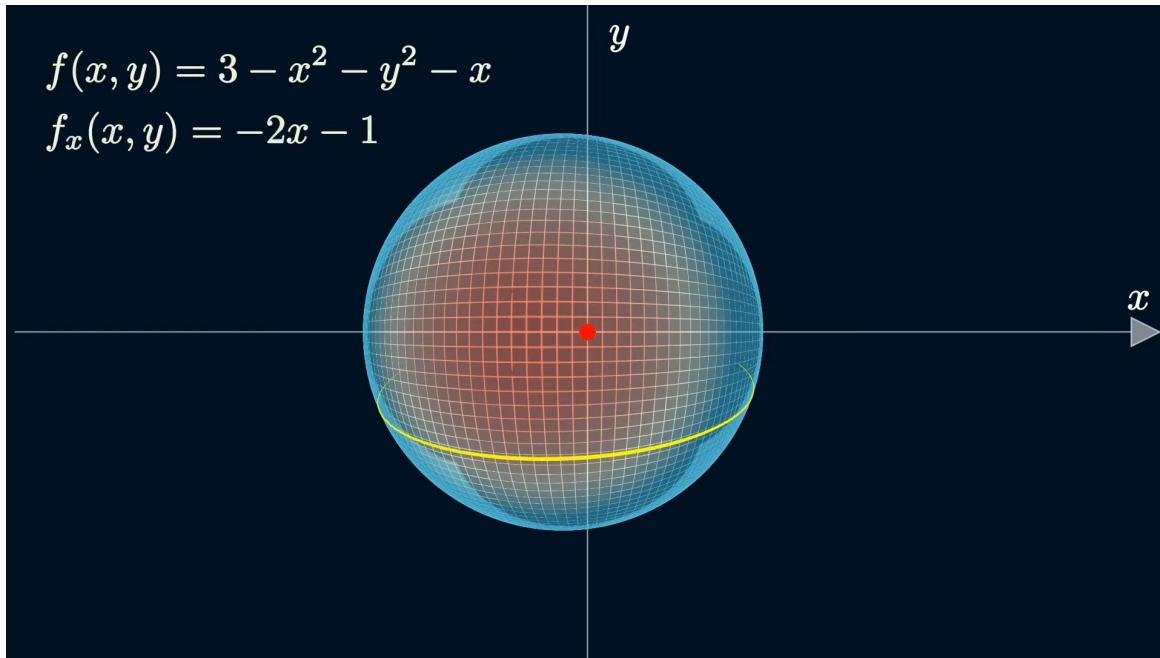
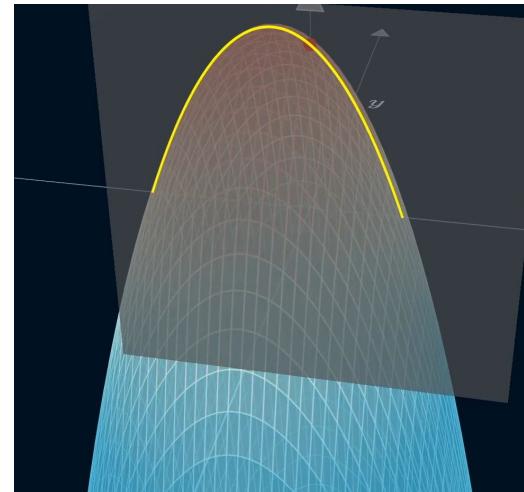


Find the derivatives along different directions in this graph



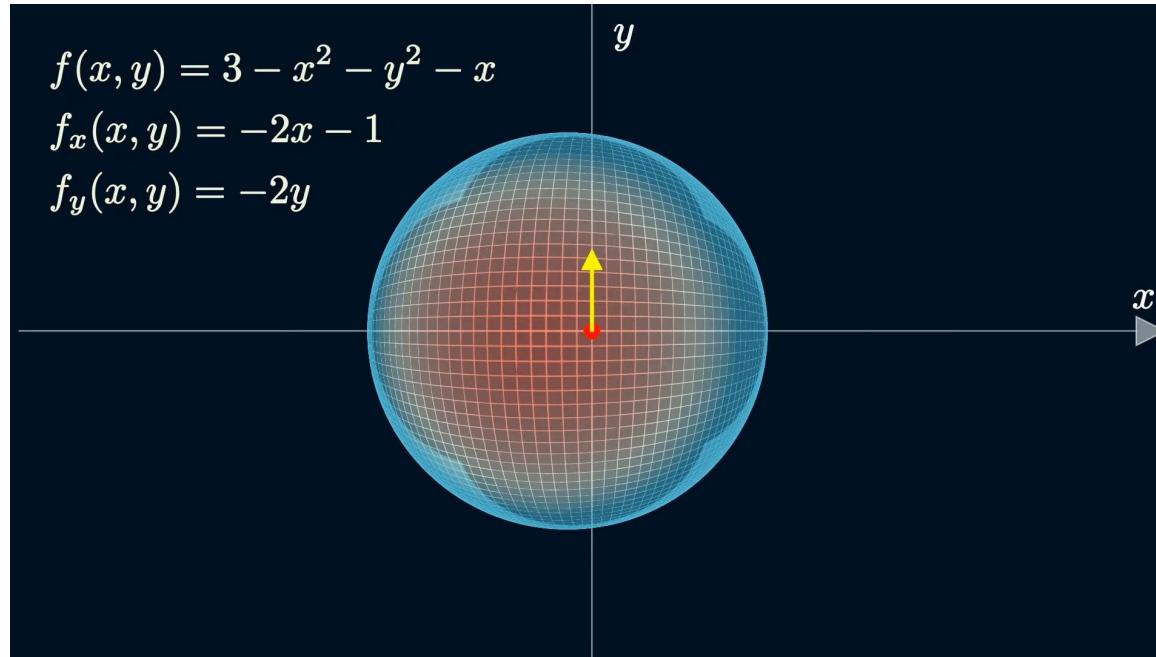
Calculate $f_x(x, y)$

Treat y as a constant and take the partial derivative wrt to x



Calculate $f_y(x, y)$

Treat x as a constant and take the partial derivative wrt to y



Gradient

What is the gradient?

Let f be a scalar-valued multivariable function $f(x, y, \dots)$

The **gradient of f** is the collection of f 's **partial derivatives** in a vector:

Scalar-valued multivariable function

$$\nabla f(\underbrace{x_0, y_0, \dots}_{\nabla f \text{ takes the same type of inputs as } f})$$

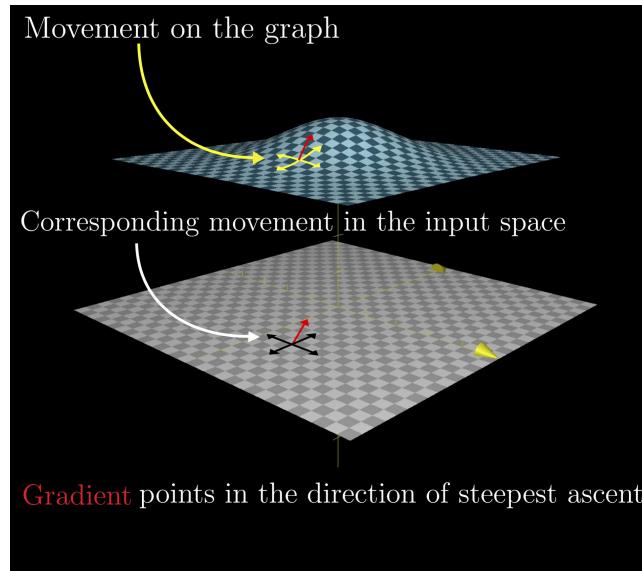
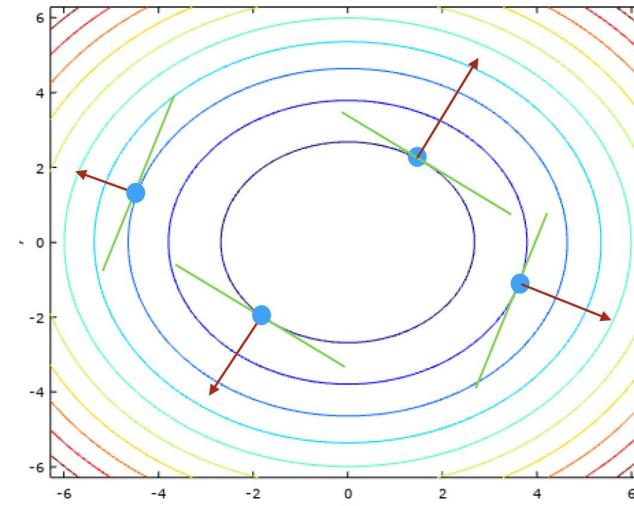
Notation for gradient, called “nabla”.

$$\left[\begin{array}{c} \frac{\partial f}{\partial x}(x_0, y_0, \dots) \\ \frac{\partial f}{\partial y}(x_0, y_0, \dots) \\ \vdots \end{array} \right]$$

∇f outputs a vector with all possible partial derivatives of f .

Gradient in multiple dimensions

The *gradient vector* of a function of several variables at any point denotes the direction of maximum rate of change



Calculating the gradient

Input:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Function:

$$f(x) : \mathbb{R}^n \rightarrow \mathbb{R}$$

Calculating the gradient

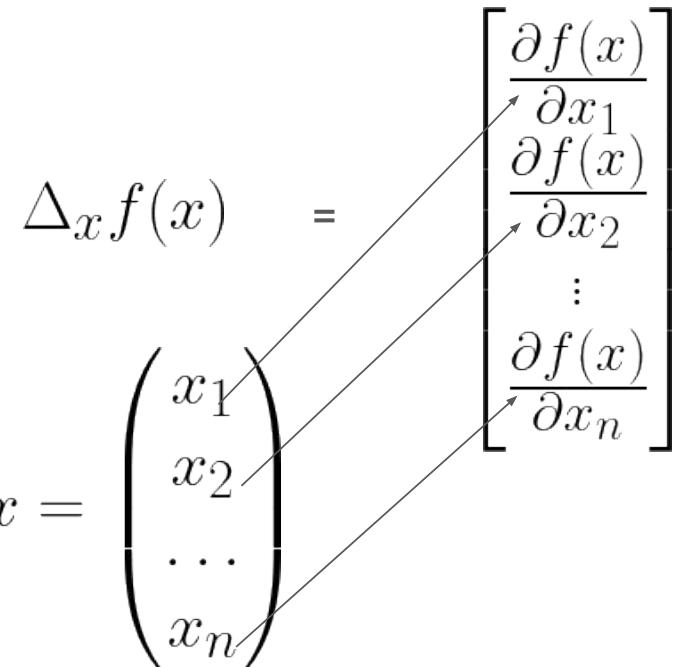
Input:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Function:

$$f(x) : \mathbb{R}^n \rightarrow \mathbb{R}$$

Take the partial derivative n times:

$$\Delta_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$


Vocab

Name	Symbol	Example
Derivative	$\frac{d}{dx}$	$\frac{d}{dx}(x^2) = 2x$
Partial derivative	$\frac{\partial}{\partial x}$	$\frac{\partial}{\partial x}(x^2 - xy) = 2x - y$
Gradient	∇	$\nabla(x^2 - xy) = \begin{bmatrix} 2x - y \\ -x \end{bmatrix}$

How to calculate the gradient

Let's take an example. I have a function defined as $f(x, y) = 5x^2 + 3xy + 3y^3$. First, we need to find the partial derivatives with respect to the variables x and y as follows:

$$\frac{\partial f}{\partial x} = 10x + 3y$$

$$\frac{\partial f}{\partial y} = 3x + 9y^2$$

This gives us a gradient:

$$\nabla f = \begin{bmatrix} 10x + 3y \\ 3x + 9y^2 \end{bmatrix}$$

Jacobian

From Gradient → Jacobian

$$f : \mathbb{R}^u \rightarrow \mathbb{R} \quad \mathbf{J} = \frac{df(x)}{dx} = \left[\frac{\partial f(x)}{\partial x_1} \dots \frac{\partial f(x)}{\partial x_u} \right]$$

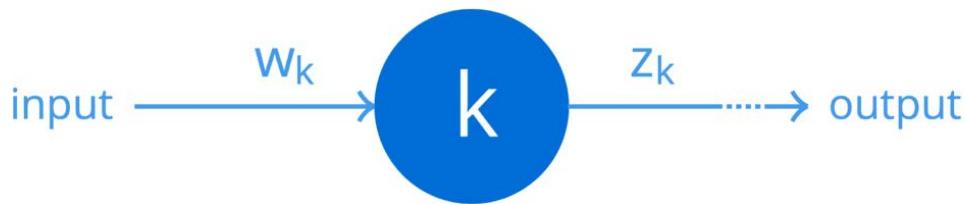
these are the same **values** as the gradient!

if we generalize this function to more dimensions...

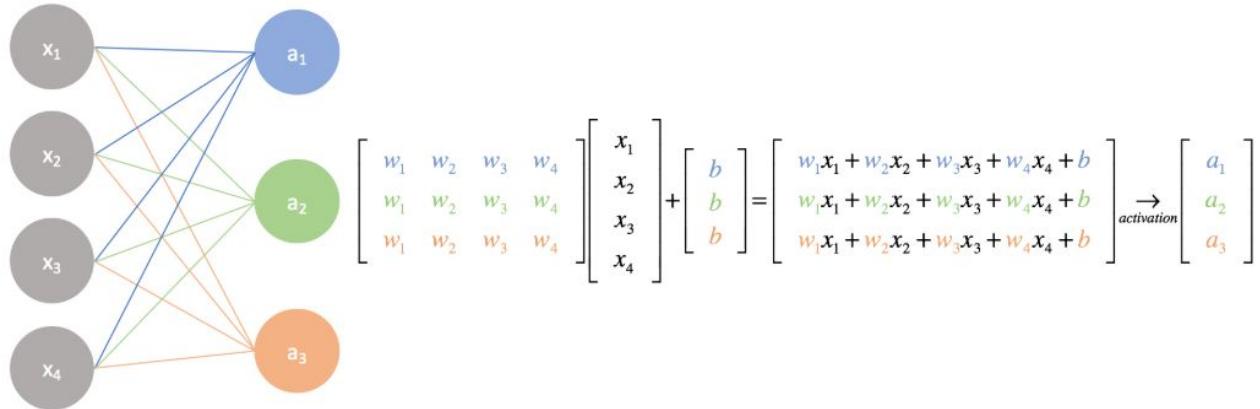
$$\mathbf{f} : \mathbb{R}^u \rightarrow \mathbb{R}^v \quad \mathbf{J} = \frac{d\mathbf{f}(\mathbf{x})}{d\mathbf{x}} = \left[\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} \dots \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_u} \right] = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_1(\mathbf{x})}{\partial x_u} \\ \vdots & & \vdots \\ \frac{\partial f_v(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_v(\mathbf{x})}{\partial x_u} \end{bmatrix}$$

From Gradient → Jacobian

$$f : \mathbb{R}^u \rightarrow \mathbb{R}$$



$$\mathbf{f} : \mathbb{R}^u \rightarrow \mathbb{R}^v$$



Interpreting the Jacobian

How do we interpret the jacobian matrix?

$$\mathbf{J} = \frac{d\mathbf{f}(\mathbf{x})}{d\mathbf{x}} = \left[\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} \dots \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_u} \right] = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f_v(\mathbf{x})}{\partial x_1} \\ \dots \\ \frac{\partial f_1(\mathbf{x})}{\partial x_u} \\ \vdots \\ \frac{\partial f_v(\mathbf{x})}{\partial x_u} \end{bmatrix}$$

This matrix gives tells us how the outputs will change when we vary the value of x_i

For example, if we increase x_1 , how is $g(x)$ affected?

Hessian

What is the Hessian?

The hessian matrix of a multivariable function \mathbf{f} organizes all **second partial derivatives** into a matrix

$$\mathbf{H}\mathbf{f} = \begin{bmatrix} \frac{\partial^2 f}{\partial \mathbf{x}^2} & \frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{y}} & \frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{z}} & \dots \\ \frac{\partial^2 f}{\partial \mathbf{y} \partial \mathbf{x}} & \frac{\partial^2 f}{\partial \mathbf{y}^2} & \frac{\partial^2 f}{\partial \mathbf{y} \partial \mathbf{z}} & \dots \\ \frac{\partial^2 f}{\partial \mathbf{z} \partial \mathbf{x}} & \frac{\partial^2 f}{\partial \mathbf{z} \partial \mathbf{y}} & \frac{\partial^2 f}{\partial \mathbf{z}^2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

What is the Hessian?

The matrix can be evaluated at some point (x_0, y_0, \dots) in the domain of \mathbf{f}

$$\mathbf{H}f = \begin{bmatrix} \frac{\partial^2 f}{\partial \mathbf{x}^2} & \frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{y}} & \frac{\partial^2 f}{\partial \mathbf{x} \partial z} & \dots \\ \frac{\partial^2 f}{\partial \mathbf{y} \partial \mathbf{x}} & \frac{\partial^2 f}{\partial \mathbf{y}^2} & \frac{\partial^2 f}{\partial \mathbf{y} \partial z} & \dots \\ \frac{\partial^2 f}{\partial z \partial \mathbf{x}} & \frac{\partial^2 f}{\partial z \partial \mathbf{y}} & \frac{\partial^2 f}{\partial z^2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$\mathbf{H}f(x_0, y_0, \dots) = \begin{bmatrix} \frac{\partial^2 f}{\partial \mathbf{x}^2}(x_0, y_0, \dots) & \frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{y}}(x_0, y_0, \dots) & \dots \\ \frac{\partial^2 f}{\partial \mathbf{y} \partial \mathbf{x}}(x_0, y_0, \dots) & \frac{\partial^2 f}{\partial \mathbf{y}^2}(x_0, y_0, \dots) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Developing Intuition

We started with a function f that takes n inputs (a vector) → gives you 1 output

- This could be the **loss value**

We take the derivative (gradient) of this scalar function → get a vector of size n

- This vector tells you the **slope in every direction**

$$\begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Developing Intuition

We started with a function f that takes n inputs (a vector) → gives you 1 output

- This could be the **loss value**

We take the derivative (gradient) of this scalar function → get a vector of size n

- This vector tells you the **slope in every direction**

What happens if we differentiate the gradient itself?

- We can't take the *gradient* of a vector → vector function
- We have to use the jacobian!
- Therefore, the Hessian Matrix is the Jacobian Matrix of the Gradient Vector.

$$\begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Problems 1.2 a-b

Solve them! Ask for help if you are stuck.
Look at section 1.1 for help remembering how these gradients, Jacobians, and Hessians compute.

- (a) Let $f(x_1, x_2) = x_1^2 + e^{x_1 x_2} + 2 \log(x_2)$. What are the gradient and the Hessian of f ?
- (b) Note that $\nabla_x f : \mathbb{R}^n \rightarrow \mathbb{R}^n$. What is the Jacobian of $\nabla_x f$?

Answers

(a) Let $f(x_1, x_2) = x_1^2 + e^{x_1 x_2} + 2 \log(x_2)$. What are the gradient and the Hessian of f ?

Solution:

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 + x_2 e^{x_1 x_2} \\ x_1 e^{x_1 x_2} + \frac{2}{x_2} \end{bmatrix} \text{ and } \nabla_x^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 2 + x_2^2 e^{x_1 x_2} & e^{x_1 x_2} + x_1 x_2 e^{x_1 x_2} \\ e^{x_1 x_2} + x_1 x_2 e^{x_1 x_2} & x_1^2 e^{x_1 x_2} - \frac{2}{x_2^2} \end{bmatrix}$$

(b) Note that $\nabla_x f : \mathbb{R}^n \rightarrow \mathbb{R}^n$. What is the Jacobian of $\nabla_x f$?

Equivalent

Solution:

$$\nabla_x(\nabla_x f)(x) = \begin{bmatrix} \frac{\partial(\nabla_x f)_1(x)}{\partial x_1} & \frac{\partial(\nabla_x f)_1(x)}{\partial x_2} \\ \frac{\partial(\nabla_x f)_2(x)}{\partial x_1} & \frac{\partial(\nabla_x f)_2(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2 + x_2^2 e^{x_1 x_2} & e^{x_1 x_2} + x_1 x_2 e^{x_1 x_2} \\ e^{x_1 x_2} + x_1 x_2 e^{x_1 x_2} & x_1^2 e^{x_1 x_2} - \frac{2}{x_2^2} \end{bmatrix} = \nabla_x^2 f(x)$$

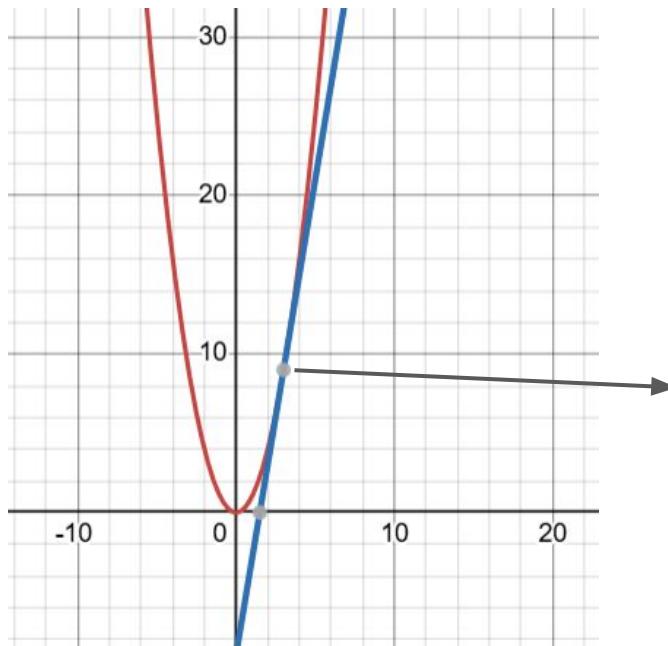
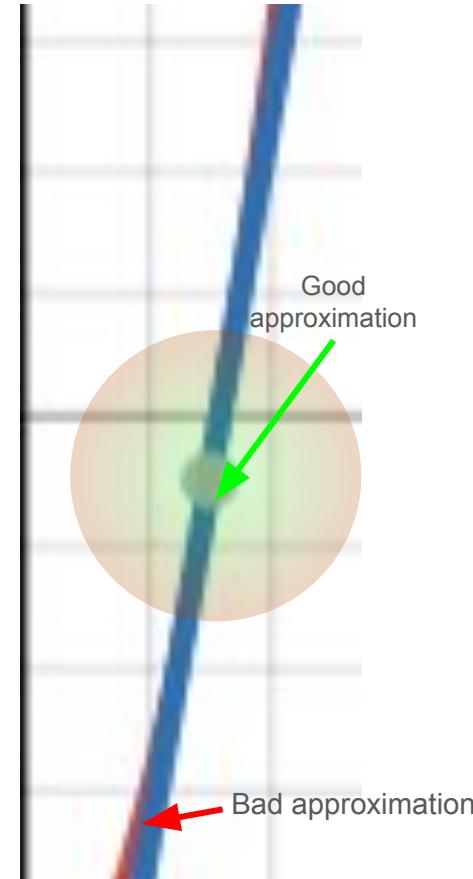
Approximations

Linear Approximation

The derivative of $f(x)$ at some (x, y) can be used to linearly approximate $f(x \pm \epsilon)$

Where ϵ is very tiny!

This extends to multivariate functions... proof in your notes



Linear Approximation

For a “many-to-one” function, the gradient gives us a vector we can use to linearly approximate a small area around some \mathbf{x}

$$f : \mathbb{R}^n \rightarrow \mathbb{R}$$

Let $\epsilon = [\epsilon_1, \dots, \epsilon_n]^T$ and $x = [x_1, \dots, x_n]^T$

$$f(x + \epsilon) \approx f(x) + \nabla_x f(x)^T \epsilon$$

What about a “many-to-many” function?

$$g : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

?

?

?

?

?

Problem 1.2 c

Remember that the Jacobian is just the gradient of a “many-to-many” function.

Also remember: *For a “many-to-one” function, the gradient gives us a vector we can use to linearly approximate a small area around some x*

(c) The gradient $\nabla_x f(x)$ offers the best linear approximation of f around the point x . What does the Jacobian of a function $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$ offer?

Answer

(c) The gradient $\nabla_x f(x)$ offers the best linear approximation of f around the point x . What does the Jacobian of a function $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$ offer?

Solution:

The Jacobian also offers the best linear approximation of g around a point x , but now it approximates a vector, instead of a scalar,

$$g(x + \epsilon) \approx g(x) + \nabla_x g(x)\epsilon$$

where $\nabla_x g(x)\epsilon$ is a matrix multiplication instead of a dot product.

Problem 1.2 d

(d) If we use the gradient and the Hessian of $f : \mathbb{R}^n \rightarrow \mathbb{R}$, what type of an approximation for the function f around a point x can we create.

Remember Taylor expansion?

↳ To approximate a function around a point a

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 \dots$$

Exact at a , close around a

Better and better approximations

Remember Taylor expansion?

↳ To approximate a function around a point a

$$f(x) \approx f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 \dots$$

↑

Better and better approximations

Exact at a , close around a

Set $a = x$, we want to estimate $x + \epsilon$

$$f(x+\epsilon) \approx f(x) + \frac{f'(x)}{1!} (x+\epsilon-x) + \frac{f''(x)}{2!} (x+\epsilon-x)^2 + \dots$$

↓

$$f(x+\epsilon) \approx f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2 + \dots$$

Generalizing to vectors: $f: \mathbb{R}^n \rightarrow \mathbb{R}$, $x \in \mathbb{R}^n$, $\epsilon \in \mathbb{R}^n$

$$f(x + \epsilon) \approx f(x) + \underbrace{(\nabla_x f(x))^T \epsilon}$$

Gradient = first order derivative of $f(x)$

So what is the second order derivative?

$$\text{Second order derivative} = \nabla_x (\nabla_x f(x)) = \underline{\underline{\text{Hessian}}}$$

\hookrightarrow gives us a Quadratic Approximation

2nd order Taylor expansion around x generalized to vectors

$$f(x + \epsilon) \approx f(x) + (\nabla_x f(x))^T \epsilon + \frac{1}{2} \epsilon^T (\nabla_x^2 f(x))^T \epsilon$$

Answer!

Problem 1.2 g (IMPORTANT!)

(g) Draw the gradient on the picture. Describe what happens to the values of the approximation of f if we move from x in directions d_1, d_2, d_3 for which $\nabla_x f(x)^T d_1 > 0, \nabla_x f(x)^T d_2 < 0, \nabla_x f(x)^T d_3 = 0$? Can the same conclusions be drawn about the function of f ?

$$(\nabla_x f(x))^T d_1 > 0$$

↳ direction d_1 points generally toward the gradient

$$(\nabla_x f(x))^T d_2 < 0$$

↳ direction d_2 points generally away from the gradient

$$(\nabla_x f(x))^T d_3 = 0$$

↳ direction d_3 points orthogonal to the gradient

Answer

(g) Draw the gradient on the picture. Describe what happens to the values of the approximation of f if we move from x in directions d_1, d_2, d_3 for which $\nabla_x f(x)^T d_1 > 0, \nabla_x f(x)^T d_2 < 0, \nabla_x f(x)^T d_3 = 0$? Can the same conclusions be drawn about the function of f ?

Solution:

- d_1 : Value of approximation goes up.
- d_2 : Value of approximation goes down.
- d_3 : Value of approximation stays the same.

The same can be said for f , but only in the immediate vicinity of the point x .

Intuition used here will be useful on the exam