446 Section L-2 Norm

TA: Yufei Zhang



Plans for today!

1. This
2. Reminders
3. Problems

a. P1a

b. Review Linear Regression
c. P1b

d. P2 (if time)



Reminders

e HW1 due Wed, Jan 28
Some tips:

- Use office hours to your advantage

- Student TA OH for homework questions
- Professor OH for conceptual questions

- Skim the homeworks the day they are assigned and try one problem
- Motivates you to get things done on time, starting an untouched assignment can be daunting

- Keep a tab open with the lecture slides while you do the homework for
reference



Problem 1



Problem 1a

We consider the linear measurement model (parameterized by w), y; = ] w + v; fori = 1,2,...,m. The noise
v; for different measurements (z;,y;) are all independent and identically distributed. Under our assumption of a
linear model, v; = y; — = w. Note Per the principle of maximum likelihood estimation, we seek to maximize

log pu((1,31),*+ , (Tm, ym)) = log [ [ p(yi — =] w).

1=1

(a) Show that when the noise measurements follow a Gaussian distribution (v; ~ N (0, 02)), the maximum like-
lihood estimate of w is the solution to min,, || Xw — Y||§. Here each row in X corresponds to a z;, and each

row in Y to y;.



Problem 1a

Linear model with noise: ¢, = T

® X: features
e W: weights
° vi:noise Y: XW"‘é
d: # featwnres

N: § SampleS

; W+ v;

nxi

X, - X.a
Xz
"m Xnd




Problem 1a

Linear model with noise: 1y, = «

® X! features
e Ww: weights
® V..noise

Noise (v) is i.i.d from the
Gaussian Distribution: ~ P(V) =

T

()

w + v;

W, %
1
+
X Xnd n
nxd w| x|
AX |




Problem 1a

Linear model with noise: vy, = vl w + V;

Rewrite as: Vi = Yi — .’L';r w
Noise has density p(v): p(v) = \/21728—’02/202
ives
Then: m
logpw((xla y1)7 Ty (l’m, ym)) - long(yz - x;‘,w)

=1

ie. the probability of observing the data

We will use MLE to maximize the likelihood of
seeing the data by finding w,,;; 5

Xy - Xall [W

nx\ nxd w,

<_0,..‘n-(x)




WMLE = argmaxlogpw((wl,yl),“' ,(a:m,ym))

w

= argmaxlog [ [ p(y: — 2] w) simplify

=1

= arg maxz logp(y; — ;] w) [log(ab) = loga + log b] &

s =1

[ 1 substitute

= —(y;—z.) w)? /202
=argmaleog Tt (vi—z; w)°/2

w i=1



WMLE = argmaxlogpw((wl,yl),“' ,(a:m,ym))

w

= argmaxlog [ [ p(y: — 2] w) simplify

=1

= arg maxz logp(y; — ;] w) [log(ab) = loga + log b] &

s =1

[ 1 substitute

= —(y;—z.) w)? /202
=argmaleog Tt (vi—z; w)°/2

w i=1



WMLE = argmaxlogpw((wl,yl),“' ,(a:m,ym))

w

= argmaxlog [ [ p(y: — 2] w) simplify

i=1
= arg maxZ logp(y; — ;] w) [log(ab) = loga + log b] &
Y=

substitute

= arg max

= 1
lo
w o & [ V2mo?

- =

e -



Wy e = argmaxlogp, ((z1,y1), - ,(-Tmym))

= argmaxlog [ [ p(y: — z; w) simplify

i=1
= arg rnaxZ logp(y; — z; w) [log(ab) = loga + log b] &
" =1

substitute

= arg max

— 1
lo
w o & [ V2mo?

- =

-
e -

Fact (Constant offsets do not affect the optimizer).
Example:

f2) = -2 g(z) = —a® +10.

Both functions are maximized at the same value of x (namely z = 0).



WMLE = argmaxlogpw((wl,yl),“' ,(a:m,ym))

w

= argmaxlog [ [ p(y: — z; w) simplify
w i=1
= arg maxz logp(ys — z; w) [log(ab) = loga + logb]
Yo =1
e l ] e_(yi_m:w)'z/za?] substitute
% i=1 _ % Ly2mo?
/7 1 = i — x; w)?
= argma)(zn log (\/272))4_ Z _ (y = )
YN _NVATMTYS i remove scalar offset
UL i BN
= arg maxz - ﬁﬁyi — 2, w)? (constant offset doesn’t affect results)
¥ =) " :
m == remove positive scaling

(constant scalar doesn’t affect results)



WMLE = argmaX10gpw((:1:1,y1), ce ,(a:m,ym))

w

= argmaxlog [[p: —zw) simplify
i=1
§ &
= arg maxz logp(ys — z; w) [log(ab) = loga + logb]
=1
" substitute

= argmaleog [\/;7 (yi—z; w)*/20 ]

- 1 o = i — ;] w)?
= argma){znlog (\/272))+ Z _ = )

- mo/ = remove scalar offset

e -

-1
= arg maxz, ;(yz — 2, w)? (constant offset doesn’t affect results)
\

1=1 N /

m =7 remove positive scaling
=argmax » —(y; — z; w)?> (constant scalar doesn't affect results)
w

=1

- argminf:(yi — z] w)? max likelihood = min —(likelihood)
Y i=1



WMLE = argmaxlogpw((wl,yl),“' ,(a:m,ym))

w

= argmaxlog [ [ p(y: — 2] w) simplify
w i=1
m . &
= arg maxz logp(ys — z; w) [log(ab) = loga + logb]
" =1
S m log[ ] e_(yi_m:w)'z/za?] substitute
wo oy _v_2_7ra2
// - = N, m _ . 2
_ argmasim log 1 ;_l_z_(yz a:; w)
w N V2mo? : 20
So_ REE -7 =l remove scalar offset
= arg maxz ,ilg(yi — 2, w)? (constant offset doesn’t affect results)
w i= \ 0“1 g .
m = remove positive scaling

(constant scalar doesn’t affect results)

= argmin Z(yi — 2] w)? = argmin || Xw — Y||3 ﬁ yay!!



"DMLE — argmaXIngw((ml’ yl)a e ?(xm’ym))

w

= argmaxlog [ [ p(y: — 2] w) simplify
w i=1
= arg maxz logp(yi — z; w) [log(ab) = loga + log b
R
m 1 I substitute
=argmax y lo gy W) /28 ]
g‘” i=1 ,%[!gmﬂ
// 1 b m (y . wTw)z
= 1 : — = L remove scalar offset
argzlun ax(\nz \Og (\/ 27rc’r2/)’+ zz_:l 202
AL :'1—\—
= arg maxz - ﬁﬁyi — 2, w)? (constant offset doesn’t affect results)
¥ =) " :
m == remove positive scaling

(constant scalar doesn’t affect results)

m now let’s solve for the
. A 2 . 2
= ar rnmE ; —x; w)° =argmin [Xw —-Y ﬁ
8 (v ) | I2 closed form!



MLE — Linear Regression Closed Form

We got here
from MLE!

TL

W = argmin E (55— ?}i)z

w 3
=1

T

Find w that minimizes the SSE. This is w.

= argmin Z(yi — (x;w+b))? Pligin ¢; = x/w + b.

w 5
=1

T
= argmain Z(yi = (X,T w))?
s i=1

Disregard b, since an intercept can be rep-
resented by appending a 1 to x.




MLE — Linear Regression Closed Form

T

W = argmin E (yi — 9:)° Find w that minimizes the SSE. This is W.
g i=1

T

e B . 3§ 7 S| DO S (I -

=argmin Y (y; — (x; w+b))* Plugin g; = x, w + b.

w

i=1
T 2 = .
We got here o L Disregard b, since an intercept can be rep-
from MLE! = argmin Yy (y; — (x; w)) . Lo
A 1 resented by appending a 1 to x.
1=
T - A - - . -
0— 0 Z R Find w by taking the partial derivative of
T Ow 4 1 % ' the argmin term and setting it equal to 0.
1=
;.
- E aT(?h — (x] W))? Property of derivatives.
)
i=1
T
Let's complete the T A g
proof = Y 2y —x; W)(—x:) Derive.

=1



MLE — Linear Regression Closed Form

T

= _S_ (3 — x| W)(x:) Divide by -2
i=1
m

= E (%) (y; — x; W) The term y; — x; W is a scalar. ¢x = xc
i=1
T

= E (X1 — xix;r\?v) Distribute
i=1
n TL

= E X;Y; — E xix;rv"v Distribute
i=1 i=1

TL T
( E xixiT)\if = E Xili Move second term to LHS.
i=1 j=1



MLE — Linear Regression Closed Form

" Convert from veector summation form to
(X" X)W=XTy v ‘
matrix form

(X" X)X X =X TX)Y X Ty Left multiply by (XTX)™
w=(XTX)X"y Cancel

| would try and understand this well! It's really cool.

This is mostly in summation form until the very end. The lecture notes have it in
matrix form. Look and study the one that makes most sense to you.



Problem 1b: Try it!

T

Linear model: ¥; = ; w + v;

Noise (v) is i.i.d from the
Laplacian Distributio

. 7] — /'TI
So: vi=y;i—x; w

We wish to maximize:

logpw((xl,yl), B (:L'ma ym)) — logHP(yt )
=i

% p(z) = (1/2a) exp(—|z|/a)

0.25

£ 0.15

Q0

©

QO

o

o 0.1
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|
|
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N\
/1 \

!
| |
J 1 1 1
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Wy e = argmaxlogp, ((z1,v1),+ , (Tm, Ym))

w
m

= arg max log Hp(yi — ] w)

= i=1
_ T _

= arg maleogp -, w) log(ab) = loga + log b]
= e .
T What do we plug in
here?

Let’s look at the steps before considering the distribution:



m 1 —Iyi—r'-rwl
argmaleog (—2— e~ @ )
u g a

? =1

w i1 2a a
Z’" lyi — z7 w|
arg max -
w P a

T

1 T
-~ -argmax »  —|y; — z; w|
a w -
=1
T

r argmaxZ —|yi — 2T w|
w .

=1
m

~argmin}_ |y; — 27w| = argmin | Xw — Y|,

w w

1=1

Therefore the maximum likelihood estimate of w is w -

R S R W
argmaleog(_) |y — =5 vl

constant offset doesn’t affect optimization

constant offset doesn’t affect optimization

arg min,, || Xw — Y|;.



0.25
Cool Connection ol
Laplace
£ 0.15
Visual similarities exist E
between the L1 norm vs. the & m

Laplacian, and the L2 norm \ Gaussian
\

vs. the Gaussian 005 / | |
2.00 ‘

L1 derivative: 1.0 i
L2 derivative: 0.0 0 1 |
1.75 1

-30 —-20 -0 0 o 20 30

Using Laplacian (sharp) as noise results in the
L1 norm (sharp) in the optimization equation

Using Gaussian (smooth) as noise results in
the 12 norm (smooth) in the optimization
Ls equation

0.00



Problem 2



What is the difference?

Standardization

(4) _
7; ) = xi

Task/Model Type

Neural Networks

KNN, K-Means

Linear Models (LR, SVM)

PCA/LDA

Prefer...

Normalization

Normalization

Standardization

Standardization

Why?

Helps convergence, bounded inputs

Distance-based, scale matters

Assumes normally distributed features

Sensitive to variance

S

Normalization

(J) _

(7)

f o

(]

— P

main
7

max
L

()

main
—

7




When do we use which?

Task/Model Type

Neural Networks

KNN, K-Means

Linear Models (LR, SVM)

PCA /LDA

Prefer...

Normalization

Normalization

Standardization

Standardization

Why?

Helps convergence, bounded inputs

Distance-based, scale matters

Assumes normally distributed features

Sensitive to variance

@
L]
° L
@
Actual Data

v

After normalizing

A

After standardization



2.1. Data Standardization
Data standardization is the task of transforming each feature in our dataset to have mean 0 and variance 1. The

typical way to do this is using the Z-Score, which is defined as below:

(7)
fi(j) _ 5T
a;
Where p; is the mean of each feature and o; is the standard deviation of each feature, which are empirically calcu-
lated from the data.

Question: what should you do when o; = 0 for some i?

Solution:

Having o; = 0 for some feature means that the value for that feature is constant in our dataset. If we leave it
as 0, we will encounter a divide by O error. Since the feature is constant, once we subtract the mean, the new
value for the feature will be 0, so we can divide by anything except 0 to avoid this error.

Having o; = 0 is rare, and may be a sign something is wrong with your data or code. One specific case to watch
out for is appending your bias column of ones before standardizing.




2.2. Data Normalization

Data normalization refers to the task of rescaling each feature in our dataset to have range [0, 1].

One such method to achieve this is min-max scaling:

() min
e ot I
gk pMaT _ pmin

g’ 2

Where 2" 7% are the minimum and maximum values of feature i in our dataset, respectively.

When training and evaluating your model, you should calculate the parameters for your normalization or standard-
ization function on the training set ONLY!

Question 1: Should we always choose "™ and x™%* based on train data? Can we sometimes do better? Think
about cases when we have some underlying information about data.

Solution:

Consider RGB images. These are typically encoded as arrays of shape (3, height, width), with each value being
an integer in range [0, 255]. In this case we should just use z%* = 255 and ™" = () to normalize the data.

In general there can be many cases in which we will know max and/or min values of distribution. Always
examine and visualize data before transforming it.




Question 2: When can values outside of [0, 1] range in test set cause issues?

Solution:

This might lead to an issue if our model performs any transformations on data that have a limited domain.

Consider a model f(z) = log(z)Tw. In this case if test datapoint have a value below 0, this code will fail, as log
has domain [0, c0).

In general, after you visualize the data, think about what transforms are needed for it to be well behaved. Always
pay attention to domains and ranges of each transform since these may lead to NaNs.

2.1 and 2.2 will be important in HW1!



Questions/Chat Time!



