
CSE 446/546 Autumn 2024 Midterm Exam

October 30, 2024

Name UW NetID

Please wait to open the exam until you are instructed to begin, and please take out your Husky
Card and have it accessible when you turn in your exam.

Instructions: This exam consists of a set of short questions (True/False, multiple choice, short
answer).

• For each multiple choice and True/False question, clearly indicate your answer by filling in
the letter(s) associated with your choice.

• Multiple choice questions marked with One Answer should only be marked with one answer.

All other multiple choice questions are Select All That Apply , in which case any number of
answers may be selected (including none, one, or more).

• For each short answer question, please write your answer in the provided space.

• If you need to change an answer or run out of space, please very clearly indicate what your
final answer is and what you would like graded. Responses where we cannot determine the
selected option will be marked as incorrect.

• Please remain in your seats for the last 10 minutes of the exam. If you complete the exam
before the last 10 minutes, you may turn in your exam to a TA.
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1. 4 points Select All That Apply

If X and Y are independent random variables, which of the following are true?

a Cov(X,Y ) = 0

b E[XY ] = E[X]E[Y ]

c Var(XY ) = Var(X)Var(Y )

d P (X,Y ) = P (Y |X)P (X|Y )

Correct answers: (a), (b), (d)

Explanation: • (a) Cov(X,Y ) = 0: True. If X and Y are independent, their covariance is zero because
independence implies there is no linear relationship between X and Y .

• (b) E[XY ] = E[X]E[Y ]: True. For independent random variables, the expectation of their product is
the product of their expectations.

• (c) Var(XY ) = Var(X)Var(Y ): False. The variance of the product of two independent variables is
generally not equal to the product of their variances; it’s more complex and requires additional terms.

• (d) P (X,Y ) = P (Y |X)P (X|Y ): True. For independent random variables, P (X,Y ) = P (X)P (Y ),
which is equivalent to P (Y |X) = P (Y ) and P (X|Y ) = P (X).

2. 4 points One Answer

A certain disease affects 2% of the population. A diagnostic test for this disease has the
following characteristics:

• Sensitivity (True Positive Rate): If a person has the disease, the test returns
a positive result with probability 0.90.

• False Positive Rate: If a person does not have the disease, the test returns a
positive result with probability 0.10.

If a randomly selected person tests positive, what is the probability that they actually
have the disease?

a 11
58

b 9
58

c 9
50

d 49
58

Correct answers: (b)

Explanation: Let D be the event that the person has the disease and T be the event that the test result is
positive. To find P (D|T ), the probability that a person has the disease given a positive test result, we use
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Bayes’ Theorem:

P (D|T ) =
P (T |D) · P (D)

P (T |D) · P (D) + P (T |¬D) · P (¬D)

=
0.90× 0.02

(0.90× 0.02) + (0.10× 0.98)

=
0.018

0.018 + 0.098

=
0.018

0.116

=
9

58

Thus, the answer is 9
58

, which matches option (b).

3. 10 points
The probability mass function of a geometric distribution with unknown parameter 0 <
p ≤ 1 is

P (X = k|p) = (1− p)k−1p,

where k = 1, 2, 3, . . .. The interpretation of X is that it is the number of independent
Bernoulli trials needed to get one success, if each trial has success probability p.

Given a set of n observations {x1, x2, . . . , xn} from a geometric distribution, derive the
Maximum Likelihood Estimate (MLE) p̂MLE for the parameter p.

Hint: don’t forget about the chain rule: for h(x) = f(g(x)), h′(x) = f ′(g(x))g′(x).

Answer:

Explanation:

Ln(p) =
n∏

i=1

(1− p)xi−1p

log(Ln(p)) =
n∑

i=1

log

(
(1− p)xi−1p

)

=
n∑

i=1

[(xi − 1) log(1− p) + log(p)]

d

dp
log(Ln(p)) =

n∑
i=1

[
(1− xi)

1

1− p
+

1

p

]

0 =
n∑

i=1

[
(1− xi)

1

1− p̂
+

1

p̂

]
p̂ =

n∑n
i=1 xi
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4. 5 points Select All That Apply

Which of the following is true about maximum likelihood estimation, in general?

a It always produces unbiased parameter estimates.

b It can be used for continuous probability distributions.

c It can be used for discrete probability distributions.

d It maximizes the likelihood of the data given the model parameters.

e It maximizes the likelihood of the model parameters given the data.

Correct answers: (b), (c), (d)

Explanation: A is false: For example, as we covered in the class, the MLE for the variance is biased. B and C
are true: MLE can be applied to continuous probability distributions (like we did in linear regression) and
to discrete probability distributions (like we did for logistic regression). D is true: MLE finds the model
parameters that maximize the likelihood of the data. E is false: we do not define a probability distribution
over the model parameters, so we cannot maximize its likelihood in the MLE framework. However, due to
ambiguity in the option wording, we have decided to give everyone two points for D and E regardless of their
answers.

5. 4 points Select All That Apply

Suppose A ∈ Rn×n is a positive semi-definite (PSD) matrix. Which of the following is
always true about A?

a All eigenvalues of A are non-negative.

b All elements of A are non-negative.

c A is invertible.

d xTAx ≤ 0 for all x.

Correct answers: (a)

Explanation: Choice A is the only correct answer. By definition, A is PSD implies that x>Ax ≥ 0 ∀x. We
showed in lecture 5 (ridge regression, in the context of A = X>X) that this is equivalent to saying that all
eigenvalues of A are non-negative. Choice B is incorrect–PSD is not a property of the inidivdual elements of
A, but rather a property of the entire matrix. Choice C is incorrect because if any eigenvalues of A are equal
to zero, A is rank deficient and cannot be inverted. Choice D is incorrect because the inequality is written in
the wrong direction (see choice A above).
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6. 4 points
Assume we have X ∈ Rn×p representing n data points with p features each and Y ∈ Rn

representing the corresponding outcomes. Using linear regression with no offset/intercept,
provide an expression to predict the outcome for a new data point xnew ∈ Rp in terms of
X and Y .

Answer: ŷnew =

Explanation: ŷnew = xT
new(X

TX)−1XTY

7. 4 points

Suppose you want to use linear regression to fit a weight vector w ∈ Rd and an offset/in-
tercept term b ∈ R using data points xi ∈ Rd. What is the minimum number of data
points n required in your training set such that there will be a single unique solution?

Answer:

Explanation: Correct answer: n = d + 1. Since we are including an offset term, we build a data matrix
X ∈ Rn×(d+1), where each row i is [x>

i 1] ∈ R1×(d+1). The solution to the regression requires computing
(X>X)−1. That inverse only exists if X>X is full rank, which requires n ≥ d+ 1.

8. 2 points One Answer

In a regression model, what is the primary purpose of using general basis functions?

a Transform nonlinear relationships between features and the target variable into a
linear form.

b Regularize the model to prevent overfitting.

c Reduce the number of data samples needed for model training.

d Simplify the model by reducing the number of features.

Correct answers: (a)

Explanation: (a) is correct because the primary purpose of using general basis functions in regression is to
transform nonlinear relationships into a form that allows linear modeling techniques to be applied. By
mapping features into a higher-dimensional space, basis functions can capture nonlinear patterns in the data.
(b) is false because general basis functions alone do not perform regularization. (c) is false because using
general basis functions typically does not reduce the number of samples required. In fact, using more complex
basis functions often requires more data to fit the model accurately. (d) is false because general basis functions
often increase the number of features by expanding the feature space (for example, by adding polynomials or
interaction terms). This does not simplify the model; rather, it increases its complexity.
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9. 2 points One Answer

In regression, when our prediction model is linear-Gaussian, i.e., yi ∼ N(x>
i w, σ

2) for
target output yi ∈ R and feature vectors xi ∈ Rd, finding the w that maximizes the data
likelihood is equivalent to minimizing the average absolute difference between the target
output and predicted output.

a True

b False

Correct answers: (b)

Explanation: False because it would be minimizing the sum of squared differences, not absolute differences for
linear-Gaussian.

10. 6 points Select All That Apply

In ridge regression, we obtain ŵridge = (XTX + λI)−1XT y for λ ≥ 0. Which of the
following is true?

a XTX is always invertible.

b XTX + λI is always invertible.

c Increasing λ typically adds bias to the model.

d Increasing λ typically adds variance to the model.

e When λ = 0, ridge regression reduces to ordinary (unregularized) linear regression.

f As λ → ∞, ŵridge → 0.

Correct answers: (c), (e), (f)

Explanation: (a) is incorrect because XTX is positive semi-definite, which is not always invertible if X has a non-
empty null space. (b) is incorrect because when λ is 0, it can be reduced to (a). (c) is correct since increasing
λ results in an increase to λ2/(n + λ)2(wT x)2 in the biased square term when n is large. Conceptually,
the model penalizes large weights, pulling them closer to zero. This constraint often reduces the model’s
flexibility, which adds bias. (d) is incorrect since increasing λ results in a decrease to σ2n/(n + λ)2‖x‖22.
Conceptually, it makes the model it less sensitive to fluctuations in the training data, which lowers variance
at the cost of potentially increasing bias. (e) is correct by definition of OLS. (f) is correct because the
regularization term dominates, causing the ridge regression to shrink toward zero.
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11. 2 points One Answer

You have a dataset with many features. You know a priori that only a small portion of
those features are relevant to your prediction problem, but you don’t know which are
the relevant features. Is it better to use Ridge regression or Lasso regression?

a Ridge regression

b Lasso regression

Correct answers: (b)

Explanation: The correct answer is (b), Lasso regression, because Lasso uses L1 regularization while Ridge uses
L2. L1 penalizes all weights at the same rate unlike L2, so it encourages higher sparsity in the weights. We
want higher sparsity in the weights because we know beforehand that only a small portion of the features
are actually relevant. So, we want only a small portion of features to have weight that is not 0. If we used
L2 regularization, then more features would have non-zero weight and we would assign meaning to many
features that should not have any based on our a priori knowledge.

12. 2 points One Answer

Which of the following best explains the effect of Lasso regression on the bias-variance
tradeoff?

a Lasso regression reduces both bias and variance simultaneously, leading to a more
accurate model.

b Lasso regression reduces bias by shrinking coefficients, often at the expense of in-
creasing variance.

c Lasso regression reduces variance by shrinking coefficients and can increase bias,
especially when some features are dropped entirely from the learned predictor.

d Lasso regression increases both bias and variance as it enforces sparsity in the
learned predictor.

Correct answers: (c)

Explanation: The correct answer is (c) because Lasso regression penalizes the `1 norm of the weight vector,
which shrinks coefficients (often to 0). This reduces the complexity of our model. A less complex model
has higher bias and less variance. (a), (b), (d) are all incorrect because a less complex model has decreased
variance.
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13. 2 points One Answer

In prediction, the total expected prediction error can be decomposed into three compo-
nents: bias squared, variance, and irreducible error. By optimizing the model complexity
and increasing the size of the dataset, it is possible to reduce all three components.

a True

b False

Correct answers: (b)

Explanation: The correct answer is (b), False, because irreducible error is irreducible.

14. 2 points One Answer

Which strategy is most effective for reducing variance in a high-variance, low-bias model?

a Increasing the number of training examples.

b Increasing the model complexity.

c Decreasing regularization.

d Removing the features that exhibit high variance across training examples.

Correct answers: (a)

Explanation: The correct answer is (a). (b) is incorrect because increasing model complexity usually increases
variance. (c) is incorrect because decreasing regularization will usually increase variance. (d) is incorrect
because the variance of features is a difference concept than variance of a model—removing the high-variance
features could increase or decrease the model variance and there is no way knowing a priori.

15. 2 points One Answer

If your model has high validation loss and high training loss, which action is most
appropriate to improve the model?

a Increase the model complexity.

b Increase k in k-fold cross-validation.

c Increase the number of training examples.

d Apply regularization to reduce overfitting.

Correct answers: (a)

Explanation: If the validation and training losses are both high, it suggests that the model is underfitting (high
bias), meaning it is too simple to capture the underlying patterns in the data. Increasing the model complexity
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should reduce bias.

16. 4 points
In a project using a customer purchase history dataset with a 60/20/20 train, valida-
tion, and test split, the validation accuracy remains consistently lower than the training
accuracy. What could be a reason for this?

Answer:

Explanation: The validation accuracy is likely lower due to overfitting (the model is complex, variance is high).
Overfitting happens when a model learns too much detail and noise from the training data, capturing specific
patterns that don’t apply to new, unseen data. This makes the model perform well on the training set but
poorly on the validation or test sets, as it fails to generalize.

17. 2 points One Answer

A consortium of 10 hospitals have pooled together their Electronic Health Records
data and want to build a machine learning model to predict patient prognosis based on
patient records in their hospitals. They want to maximize the accuracy of their model
across all 10 hospitals and do not plan to deploy their model in other hospitals. How
should they split the data into train / validation / test sets?

a Leave out data from 1 hospital for the validation set, data from another hospital
for the test set, and use the rest for train set.

b Leave out data from 1 hospital for the validation set, data from another hospital
for the test set, and use the rest for train set. After training, add the validation
data to the train set and re-train the model on the combined data.

c Use data from 8 hospitals with the most number of records for training, and use
data from the other 2 hospitals for validation and test sets.

d Mix data from all hospitals, randomly shuffle all the records, and then do the
80/10/10 train/validation/test split.

Correct answers: (d)

Explanation: D is the correct answer, as it is the only approach that avoids overfitting hyperparameters to data
from only one or two hospitals. Each hospital may have a different distribution of patients, doctors, outcomes,
etc. So we should not expect all data to be IID.
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18. 2 points
Given the task of determining loan approval for applicants using a predictive model
given applicant features such as race, salary, education, etc., is it always best practice to
allow the model to use all of the given features? Why or why not?

Answer:
Explanation: No, we should not ALWAYS use all the features. In addition to building an accurate model, we

also want to build ethically-informed models and this requires us to be thoughtful about what features go into
our analyses. For any feature we choose to include, our model may find correlations that are not necessarily
causations, that are either coincidental or the result of pre-existing biases. Depending on the most informed
choice to make, the best practice may or may not be to include all available features.

19. 2 points One Answer

You are building a predictive model about users of a website. Suppose that after you
train your model on historical user data, the distribution of users shifts dramatically.
What can happen if you deploy your machine learning system without addressing this
distribution shift?

a The model will automatically adapt to new data distributions.

b The model will generate more diverse predictions, increasing its overall accuracy.

c The model will maintain its original performance indefinitely regardless of data
changes.

d The model’s predictions may become unreliable or biased.

Correct answers: (d)

Explanation: Machine learning models can only reliably generalize to data from the same distribution they were
trained on; when faced with different distributions, their predictions may become unreliable or biased due to
this domain shift, rather than becoming more diverse or accurate.

20. 2 points One Answer

For a possibly non-convex optimization problem, gradient descent on the full dataset
always finds a better solution than stochastic gradient descent.

a True

b False

Correct answers: (b)

Explanation: Gradient descent is not always better than stochastic gradient descent. The variability of SGD can
escape local minima more effectively than deterministic gradient descent.
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21. 4 points Select All That Apply

Given the gradient descent algorithm, wt+1 = wt − η df(w)
dw

∣∣∣∣
w=wt

, which of the following

statement is correct regarding the hyperparameter η?

a η controls the magnitude of each step.

b η determines the initial value of w.

c A larger η guarantees faster convergence to the global minimum.

d A smaller η guarantees faster convergence to the global minimum.

Correct answers: (a)

Explanation: η controls the step size in the gradient descent algorithm. η and w are independently set. A larger
η may cause model update to overshoot the global minimum. A smaller η may cause model to get stuck in
local minimum.

22. 4 points Select All That Apply

Which of the following functions are convex?

a f(x) = x3

b f(x) = 3x(x−1)
2

c f(x) = sinx, for x ∈ [π, 2π]

d f(x) = log10(x)

Correct answers: (b), (c)

Explanation: To determine which functions are convex, we need to examine the second derivative of each
function. A function f(x) is convex on an interval if f ′′(x) ≥ 0 for all x in that interval. (b) and (c) are the
functions satisfy the definition. You can also plot the functions for an informal check of the convexity.
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23. 4 points Select All That Apply

Which of the following are true about a convex function f(x) : Rd → R?

a f(x) must be differentiable across its entire domain.

b f(x) has a unique global minimum.

c g(x) = −f(x) is also convex.

d If f(x) is twice differentiable, then z>∇2f(x)z ≥ 0 for all z ∈ Rd.

Correct answers: (d)

Explanation: The correct answer(s) are: D. A is incorrect–consider the function f(x) = |x|. This is convex but
is not differentiable at x=0. B is incorrect because a convex function may have multiple connected global
minima (e.g., the ”half-pipes” we discussed when building up ridge regression) or no global minima (e.g., a
hyperplane with non-zero slope). C is only true when f(x) is a linear or affine function, but is not true in
general (e.g., a bowl is convex, but when you flip it upside down it becomes concave).

24. 5 points Select All That Apply

Which of the following have convex objective functions?

a Linear regression

b Linear regression with arbitrary nonlinear basis functions

c Ridge regression

d Lasso regression

e Logistic regression

Correct answers: (a), (b), (c), (d), (e)

Explanation: All the aforementioned models use a linear function to map inputs to outputs, and their objective
function is linear.
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25. 5 points Select All That Apply

Which of the following scenarios are better suited for a logistic regression model over a
linear regression model?

a Forecasting the price of stocks for the next year, given the price of stocks for the
past year.

b Diagnosing the presence or absence of a rare disease, given a medical x-ray.

c Predicting what the average global temperature will be in the next year, given
historical climate data.

d Predicting how likely a student is to successfully complete a 4-year college degree,
given their high school grades.

e Predicting the hardness of a material on a scale of 1-10 given the molecular structure
of the material.

Correct answers: (b), (d)

Explanation: (b) and (d) are classification problems; the others are more suited to regression problems.

26. 4 points Select All That Apply

Which of the following statements about classification are true?

Recall that the softmax function σ : Rk → (0, 1)k takes a vector z ∈ Rk and returns a
vector σ(z) ∈ (0, 1)k with

σ(z)i =
exp(zi)∑k
j=1 exp(zj)

.

a Consider a binary classification setting. If the data is linearly separable, we can use
a logistic regression model with quadratic features to avoid overfitting.

b Because binary logistic regression is a convex optimization problem, it has a closed
form solution.

c The softmax function is used when we are classifying k > 2 classes. When we
are classifying only k = 2 classes, softmax regression will overfit, so we use binary
logistic regression instead.

d We can use linear regression to solve classification problems, though the model we
learn might not be as accurate compared to using logistic/softmax regression.

Correct answers: (d)

Explanation: Quadratic features can still lead to overfitting, and while some convex optimization problems (like
linear regression) have closed-form solutions, others like logistic regression require iterative methods. Softmax
regression’s complexity depends on implementation, and linear regression can perform basic classification tasks
despite not being optimized for this purpose.
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