
Homework #4
CSE 446: Machine Learning

Prof. Natasha Jaques
Due: Wednesday June 04, 2025 11:59pm

96 Points

Please review all homework guidance posted on the website before submitting to Gradescope. Reminders:

• All code must be written in Python and all written work must be typeset (e.g. LATEX).

• Make sure to read the “What to Submit” section following each question and include all items.

• Please provide succinct answers and supporting reasoning for each question. Similarly, when discussing
experimental results, concisely create tables and/or figures when appropriate to organize the experimental
results. All explanations, tables, and figures for any particular part of a question must be grouped together.

• For every problem involving generating plots, please include the plots as part of your PDF submission.

• When submitting to Gradescope, please link each question from the homework in Gradescope to the
location of its answer in your homework PDF. Failure to do so may result in deductions of up to 10% of
the value of each question not properly linked. For instructions, see https://www.gradescope.com/get_
started#student-submission.

Important: By turning in this assignment (and all that follow), you acknowledge that you have read and
understood the collaboration policy with humans and AI assistants alike: https://courses.cs.washington.
edu/courses/cse446/25wi/assignments/. Any questions about the policy should be raised at least 24 hours
before the assignment is due. There are no warnings or second chances. If we suspect you have violated the
collaboration policy, we will report it to the college of engineering who will complete an investigation. Not
adhering to these reminders may result in point deductions.

1

https://www.gradescope.com/get_started#student-submission
https://www.gradescope.com/get_started#student-submission
https://courses.cs.washington.edu/courses/cse446/25wi/assignments/
https://courses.cs.washington.edu/courses/cse446/25wi/assignments/

Conceptual Questions

A1. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] True or False: Given a data matrix X ∈ Rn×d where d is much smaller than n and k = rank(X), if
we project our data onto a k-dimensional subspace using PCA, our projection will have zero reconstruction
error (in other words, we find a perfect representation of our data, with no information loss).

b. [2 points] True or False: Suppose that an n× n matrix X has a singular value decomposition of USV >,
where S is a diagonal n× n matrix. Then, the rows of V are equal to the eigenvectors of X>X.

c. [2 points] True or False: choosing k to minimize the k-means objective (see Equation (4) below) is a good
way to find meaningful clusters.

d. [2 points] True or False: The singular value decomposition of a matrix is unique.

e. [2 points] True or False: The rank of a square matrix equals the number of its unique nonzero eigenvalues.

What to Submit:
• Parts a-e: 1-2 sentence explanation containing your answer.

2

Think before you train

A2. The first part of this problem (part a) explores how you would apply machine learning theory and
techniques to a real-world problem. There is one scenario detailing a setting, a dataset, and a specific result we
hope to achieve. Your job is to describe how you would handle the scenario with the tools we’ve learned in this
class. Your response should include:

(1) any pre-processing steps you would take (e.g. any data processing),
(2) the specific machine learning pipeline you would use (i.e., algorithms and techniques learned in this class),
(3) how your setup acknowledges the constraints and achieves the desired result.

You should also aim to leverage some of the theory we have covered in this class. Some things to consider may
be: the nature of the data (i.e., How hard is it to learn? Do we need more data? Are the data sources good?),
the effectiveness of the pipeline (i.e., How strong is the model when properly trained and tuned?), and the time
needed to effectively perform the pipeline.

a. [10 points] Scenario: Disease Susceptibility Predictor

• Setting: You are tasked by a research institute to create an algorithm that learns the factors that
contribute most to acquiring a specific disease.

• Dataset: A rich dataset of personal demographic information, location information, risk factors, and
whether a person has the disease or not.

• Result: The company wants a system that can determine how susceptible someone is to this disease
when they enter in their own personal information. The pipeline should take limited amount of
personal data from a new user and infer more detailed metrics about the person.

The second part of this problem (parts b, c) focuses on exploring possible shortcomings of machine
learning models, and what real-world implications might follow from ignoring these issues.

b. [5 points] Briefly describe (1) some potential shortcomings of your training process from the disease
susceptibility predictor scenario above that may result in your algorithm having different accuracy on
different populations, and (2) how you may modify your procedure to address these shortcomings.

c. [5 points] Recall in Homework 2 we trained models to predict crime rates using various features. It is
important to note that datasets describing crime have many shortcomings in describing the
entire landscape of illegal behavior in a city, and that these shortcomings often fall dispro-
portionately on minority communities. Some of these shortcomings include that crimes are reported
at different rates in different neighborhoods, that police respond differently to the same crime reported or
observed in different neighborhoods, and that police spend more time patrolling in some neighborhoods
than others. What real-world implications might follow from ignoring these issues?

What to Submit:
• For part (a): One clearly-written short paragraph (approximately 4-7 sentences).

• For part (b): Clearly-written and well-thought-out answers addressing (1) and (2) (as described in the
problem). Two short paragraphs or one medium paragraph suffice.

• For part (c): One clearly-written short paragraph on real-world implications that may follow from
ignoring dataset issues.

3

Image Classification on CIFAR-10

A3. In this problem we will explore different deep learning architectures for image classification on the CIFAR-
10 dataset. Make sure that you are familiar with torch.Tensors, two-dimensional convolutions (nn.Conv2d)
and fully-connected layers (nn.Linear), ReLU non-linearities (F.relu), pooling (nn.MaxPool2d), and tensor
reshaping (view).

A few preliminaries:

• Make sure to read the “Tips for HW4” EdStem post for additional tips about training your models.

• Each network f maps an image xin ∈ R32×32×3 (3 channels for RGB) to an output f(xin) = xout ∈ R10.
The class label is predicted as argmaxi=0,1,...,9 x

out
i . An error occurs if the predicted label differs from the

true label for a given image.

• The network is trained via multiclass cross-entropy loss.

• Create a validation dataset by appropriately partitioning the train dataset. Hint: look at the documenta-
tion for torch.utils.data.random_split. Make sure to tune hyperparameters like network architecture
and step size on the validation dataset. Do NOT validate your hyperparameters on the test dataset.

• At the end of each epoch (one pass over the training data), compute and print the training and validation
classification accuracy.

• While one could train a network for hundreds of epochs to reach convergence and maximize accuracy, this
can be prohibitively time-consuming, so feel free to train for just a dozen or so epochs.

For parts (a) and (b), apply a hyperparameter tuning method (e.g. random search, grid search, etc.) using
the validation set, report the hyperparameter configurations you evaluated and the best set of hyperparameters
from this set, and plot the training and validation classification accuracy as a function of epochs. Produce
a separate line or plot for each hyperparameter configuration evaluated (top 3 configurations is sufficient to
keep the plots clean). Finally, evaluate your best set of hyperparameters on the test data and report the test
accuracy.

Note 1: Please refer to the provided notebook with starter code for this problem, on the course website. That
notebook provides a complete end-to-end example of loading data, training a model using a simple network
with a fully-connected output and no hidden layers (this is equivalent to logistic regression), and performing
evaluation using canonical Pytorch. We recommend using this as a template for your implementations of the
models below.
Note 2: If you are attempting this problem and do not have access to GPU we highly recommend using Google
Colab. The provided notebook includes instructions on how to use GPU in Google Colab.

Here are the network architectures you will construct and compare.

a. [18 points] Fully-connected output, 1 fully-connected hidden layer: this network has one hidden
layer denoted as xhidden ∈ RM where M will be a hyperparameter you choose (M could be in the hundreds).
The nonlinearity applied to the hidden layer will be the relu (relu(x) = max{0, x}. This network can be
written as

xout = W2relu(W1(x
in) + b1) + b2

where W1 ∈ RM×3072, b1 ∈ RM , W2 ∈ R10×M , b2 ∈ R10. Tune the different hyperparameters and train for
a sufficient number of epochs to achieve a validation accuracy of at least 50%. Provide the hyperparameter
configuration used to achieve this performance.

b. [18 points] Convolutional layer with max-pool and fully-connected output: for a convolutional
layer W1 with filters of size k × k × 3, and M filters (reasonable choices are M = 100, k = 5), we have
that Conv2d(xin,W1) ∈ R(33−k)×(33−k)×M .

4

• Each convolution will have its own offset applied to each of the output pixels of the convolution; we
denote this as Conv2d(xin,W)+ b1 where b1 is parameterized in RM . Apply a relu activation to the
result of the convolutional layer.

• Next, use a max-pool of size N ×N (a reasonable choice is N = 14 to pool to 2× 2 with k = 5) we
have that MaxPool(relu(Conv2d(xin,W1) + b1)) ∈ Rb 33−k

N c×b 33−k
N c×M .

• We will then apply a fully-connected layer to the output to get a final network given as

xoutput = W2(MaxPool(relu(Conv2d(xinput,W1) + b1))) + b2

where W2 ∈ R10×M(b 33−k
N c)2 , b2 ∈ R10.

The parameters M,k,N (in addition to the step size and momentum) are all hyperparameters, but you
can choose a reasonable value. Tune the different hyperparameters (number of convolutional filters, filter
sizes, dimensionality of the fully-connected layers, step size, etc.) and train for a sufficient number of
epochs to achieve a validation accuracy of at least 65%. Provide the hyperparameter configuration used
to achieve this performance.
The number of hyperparameters to tune, combined with the slow training times, will hopefully give
you a taste of how difficult it is to construct networks with good generalization performance. State-of-
the-art networks can have dozens of layers, each with their own hyperparameters to tune. Additional
hyperparameters you are welcome to play with, if you are so inclined, include: changing the activation
function, replace max-pool with average-pool, adding more convolutional or fully connected layers, and
experimenting with batch normalization or dropout.

What to Submit:
• For parts (a)-(b): A single plot of the training and validation accuracy for the top 3 hyperparameter

configurations you evaluated (x-axis is training epoch; y-axis is accuracy; this plot should contain 6 lines
total). If it took fewer than 3 hyperparameter configurations to pass the performance threshold, plot
all hyperparameter configurations you evaluated. A horizontal line should be plotted at the targeted
threshold (50% or 65%). Validation lines should be dotted, and training lines should be solid.

• For parts (a)-(b): List the hyperparameter values you searched over and your search method (random,
grid, etc.). Provide the values of best performing hyperparameters, and accuracy of best models on test
data.

• For parts (a)-(b): Code. You should convert your code (the .ipynb notebook) into a Python (.py) file,
rename it to hw4-a3.py, and submit it to the corresponding Gradescope submission. To download the file
from Google Colab, you can go to File > Download > Download as .py.

5

Matrix Completion and Recommendation System

A4.

Note: Please refer to the provided notebook with starter code for this problem, on the course website. The
notebook provides a template for each part of the problem, and includes code to help load the data properly.
We recommend creating a copy of the starter notebook and completing the assignment by filling out the template.

You will build a personalized movie recommendation system. We will use the 100K MovieLens dataset available
at https://grouplens.org/datasets/movielens/100k/. There are m = 1682 movies and n = 943 users.
Each user rated at least 20 movies, but some watched many more. The total dataset contains 100, 000 total
ratings from all users. The goal is to recommend movies the users haven’t seen.

Consider a matrix R ∈ Rm×n where the entry Ri,j ∈ {1, . . . , 5} represents the jth user’s rating on movie i. A
higher value represents that the user is more satisfied with the movie.

We may think of our historical data as some observed entries of this matrix while many remain unknown, and
we wish to estimate the unknown ratings that each user would assign to each movie. We could use these ratings
to recommend the “best” movies for each user.

The dataset contains user and movie metadata which we will ignore. We strictly use the ratings contained in
the u.data file. Use this data file and the following python code to construct a training and test set:

import csv
import numpy as np
data = []
with open('u.data') as csvfile:

spamreader = csv.reader(csvfile, delimiter='\t')
for row in spamreader:

data.append([int(row[0])-1, int(row[1])-1, int(row[2])])
data = np.array(data)

num_observations = len(data) # num_observations = 100,000
num_users = max(data[:,0])+1 # num_users = 943, indexed 0,...,942
num_items = max(data[:,1])+1 # num_items = 1682 indexed 0,...,1681

np.random.seed(1)
num_train = int(0.8*num_observations)
perm = np.random.permutation(data.shape[0])
train = data[perm[0:num_train],:]
test = data[perm[num_train::],:]

The arrays train and test contain Rtrain and Rtest, respectively. Each line takes the form “j, i, s”, where j is
the user index, i is the movie index, and s is the user’s score.

Using train, you will train a model that can predict R̂ ∈ Rm×n, how every user would rate every movie. You
will evaluate your model based on the average squared error on test:

Etest(R̂) =
1

|test|
∑

(i,j,Ri,j)∈test

(R̂i,j −Ri,j)
2.

Low-rank matrix factorization is a baseline method for personalized recommendation. It learns a vector repre-
sentation ui ∈ Rd for each movie and a vector representation vj ∈ Rd for each user, such that the inner product
〈ui, vj〉 approximates the rating Ri,j . You will build a simple latent factor model.

6

https://grouplens.org/datasets/movielens/100k/

You will implement multiple estimators and use the inner product 〈ui, vj〉 to predict if user j likes movie i
in the test data. For simplicity, we will put aside best practices and choose hyperparameters by using those
that minimize the test error. You may use fundamental operators from numpy or pytorch in this problem
(numpy.linalg.lstsq, SVD, autograd, etc.) but not any precooked algorithm from a package like scikit-
learn. If there is a question whether some package is not allowed for use in this problem, it probably is not
appropriate.

a. [5 points] Our first estimator pools all users together and, for each movie, outputs as its prediction the
average user rating of that movie in train. That is, if µ ∈ Rm is a vector where µi is the average rating
of the users that rated the ith movie, write this estimator R̂ as a rank-one matrix.
Compute the estimate R̂. What is Etest(R̂) for this estimate?

b. [5 points] Allocate a matrix R̃i,j ∈ Rm×n and set its entries equal to the known values in the training set,
and 0 otherwise. Let R̂(d) be the best rank-d approximation (in terms of squared error) approximation to
R̃. This is equivalent to computing the singular value decomposition (SVD) and using the top d singular
values. This learns a lower-dimensional vector representation for users and movies, assuming that each
user would give a rating of 0 to any movie they have not reviewed.

• For each d = 1, 2, 5, 10, 20, 50, compute the estimator R̂(d). We recommend using an efficient solver
such as scipy.sparse.linalg.svds.

• Plot the average squared error of predictions on the training set and test set on a single plot, as a
function of d.

Note that, in most applications, we would not actually allocate a full m× n matrix. We do so here only
because our data is relatively small and it is instructive.

c. [10 points] Replacing all missing values by a constant may impose strong and potentially incorrect assump-
tions on the unobserved entries of R. A more reasonable choice is to minimize the MSE (mean squared
error) only on rated movies. Define a loss function:

L
(
{ui}mi=1, {vj}nj=1

)
:=

∑
(i,j,Ri,j)∈train

(〈ui, vj〉 −Ri,j)
2 + λ

m∑
i=1

‖ui‖22 + λ

n∑
j=1

‖vj‖22 (1)

where λ > 0 is the regularization coefficient. We will implement algorithms to learn vector representations
by minimizing (1). Note: we define the loss function here as the sum of squared errors; be careful to
calculate and plot the mean squared error for your results.

Since this is a non-convex optimization problem, the initial starting point and hyperparameters may affect
the quality of R̂. You may need to tune λ and σ to optimize the loss you see.

• Alternating minimization: First, randomly initialize {ui} and {vj}. Then, alternatate between (1)
minimizing the loss function with respect to {ui} by treating {vj} as fixed; and (2) minimizing the
loss function with respect to {vj} by treating {ui} as fixed. Repeat (1) and (2) until both {ui} and
{vj} converge. Note that when one of {ui} or {vj} is given, minimizing the loss function with respect
to the other part has a closed-form solution. Indeed, it can be shown that when minimizing with
respect to a single ui (with {vj} fixed), the gradient is given by:

∇uiL
(
{ui}mi=1, {vj}nj=1

)
= 2

 ∑
j∈r(i)

vjv
T
j + λI

ui − 2
∑

j∈r(i)

Ri,jvj (2)

where here r(i) is a shorthand for the set of users who have reviewed movie i in the training set, or
more formally, r(i) = {j : (j, i, Ri,j) ∈ train}. Setting the overall gradient to be equal to 0 gives us
that

7

argmin
ui

L
(
{ui}mi=1, {vj}nj=1

)
=

 ∑
j∈r(i)

vjv
T
j + λI

−1 ∑
j∈r(i)

Ri,jvj

 (3)

Note that this update rule is for a single vector ui, whereas you should update all of the {ui}mi=1 in
one round. When it comes to the alternate step which involves fixing {ui} and minimizing {vj}, an
analogous calculation will give you a very similar update rule.

• Try d ∈ {1, 2, 5, 10, 20, 50} and plot the mean squared error of train and test as a function of d.

Some hints:

• Common choices for initializing the vectors {ui}mi=1, {vj}nj=1 include: entries drawn from np.random.rand()
scaled by some scale factor σ > 0 (σ is an additional hyperparameter), or using one of the solutions from
part b or c.

• The only m× n matrix you need to allocate is probably for R̃.

• It is crucial that the squared error part of the loss is only defined w.r.t. Ri,j that actually exist in the
training set. Consider implementing some type of data structures that allow you to keep track of r(i) as
well as the reverse mapping r−1(j) from movies to relevant users.

• In computing Etest(R̂) from part a, feel free to use the average train rating as the prediction of movies
found in the test set but not in the training set.

What to Submit:
• For part a: A mathematical expression for R̂. Value for Etest(R̂).

• For part b: Plot of MSE on training and test set vs. d.

• For part c: Plot of MSE on training and test set vs. d.

• For parts a-c: Code. You should convert your code (the .ipynb notebook) into a Python (.py) file,
rename it to hw4-a4.py, and submit it to the corresponding Gradescope submission. To download the file
from Google Colab, you can go to File > Download > Download as .py.

8

k-means clustering

A5. Given a dataset x1, ...,xn ∈ Rd and an integer 1 ≤ k ≤ n, recall the following k-means objective function

min
π1,...,πk

k∑
i=1

∑
j∈πi

‖xj − µi‖22 , µi =
1

|πi|
∑
j∈πi

xj . (4)

Above, {πi}ki=1 is a partition of {1, 2, ..., n}. The objective (4) is NP-hard1 to find a global minimizer of.
Nevertheless, Lloyd’s algorithm (discussed in lecture) typically works well in practice.2

a. [5 points] Implement Lloyd’s algorithm for solving the k-means objective (4). Do not use any off-the-shelf
implementations, such as those found in scikit-learn.

b. [5 points] Run Lloyd’s algorithm on the training dataset of MNIST with k = 10. Show the image
representing the center of each cluster, as a set of k 28× 28 images.

Note on Time to Run — The runtime of a good implementation for this problem should be fairly fast
(a few minutes); if you find it taking upwards of one hour, please check your implementation! (Hint: For
loops are costly. Can you vectorize it or use Numpy operations to make it faster in some ways? If not,
is looping through data-points or through centers faster?)

What to Submit:
• For part (a): Nothing required in PDF submission.

• For part (b): 10 images of cluster centers.

• For parts (a)-(b): Code through corresponding Gradescope coding submission.

1To be more precise, it is both NP-hard in d when k = 2 and k when d = 2.
2See the references on the Wikipedia page for k-means and k-means++ for more details.

9

