
Homework #3
CSE 446: Machine Learning

Professor Natasha Jaques
Due: Wednesday, May 21, 2025 11:59pm

82 Points

Please review all homework guidance posted on the website before submitting to Gradescope. Reminders:

• All code must be written in Python and all written work must be typeset (e.g. LATEX).

• Make sure to read the “What to Submit” section following each question and include all items.

• Please provide succinct answers and supporting reasoning for each question. Similarly, when discussing
experimental results, concisely create tables and/or figures when appropriate to organize the experimental
results. All explanations, tables, and figures for any particular part of a question must be grouped together.

• For every problem involving generating plots, please include the plots as part of your PDF submission.

• When submitting to Gradescope, please link each question from the homework in Gradescope to the
location of its answer in your homework PDF. Failure to do so may result in deductions of up to 10% of
the value of each question not properly linked. For instructions, see https://www.gradescope.com/get_
started#student-submission.

Not adhering to these reminders may result in point deductions.

Important: By turning in this assignment (and all that follow), you acknowledge that you have read and
understood the collaboration policy with humans and AI assistants alike: https://courses.cs.washington.
edu/courses/cse446/25sp/assignments/. Any questions about the policy should be raised at least 24 hours
before the assignment is due. There are no warnings or second chances. If we suspect you have violated the
collaboration policy, we will report it to the college of engineering who will complete an investigation.

1

https://www.gradescope.com/get_started#student-submission
https://www.gradescope.com/get_started#student-submission
https://courses.cs.washington.edu/courses/cse446/25sp/assignments/
https://courses.cs.washington.edu/courses/cse446/25sp/assignments/


Conceptual Questions

A1. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] True or False: Training deep neural networks requires minimizing a convex loss function, and
therefore gradient descent will provide the best result.

b. [2 points] True or False: It is a good practice to initialize all weights to zero when training a deep neural
network.

c. [2 points] True or False: We use non-linear activation functions in a neural network’s hidden layers so that
the network learns non-linear decision boundaries.

d. [2 points] True or False: Given a neural network, the time complexity of the backward pass step in the
backpropagation algorithm can be prohibitively larger compared to the relatively low time complexity of
the forward pass step.

e. [2 points] True or False: Neural Networks are the most extensible model and therefore the best choice for
any circumstance.

What to Submit:
• Parts a-e: 1-2 sentence explanation containing your answer.

Kernels

A2. [5 points] Suppose that our inputs x are one-dimensional and that our feature map is infinite-dimensional:
φ(x) is a vector whose ith component is:

1√
i!
e−x2/2xi ,

for all nonnegative integers i. (Thus, φ is an infinite-dimensional vector.) Show that K(x, x′) = e−
(x−x′)2

2 is a
kernel function for this feature map, i.e.,

φ(x) · φ(x′) = e−
(x−x′)2

2 .

Hint: Use the Taylor expansion of z 7→ ez. (This is the one dimensional version of the Gaussian (RBF) kernel).

What to Submit:
• Proof.

A3. This problem will get you familiar with kernel ridge regression using the polynomial and RBF kernels.
First, let’s generate some data. Let n = 30 and f∗(x) = 6 sin(πx) cos(4πx2). For i = 1, . . . , n let each xi be
drawn uniformly at random from [0, 1], and let yi = f∗(xi)+ εi where εi ∼ N (0, 1). For any function f , the true
error and the train error are respectively defined as:

Etrue(f) = EX,Y

[
(f(X)− Y )2

]
, Êtrain(f) =

1

n

n∑
i=1

(f(xi)− yi)
2
.

Now, our goal is, using kernel ridge regression, to construct a predictor:

α̂ = argmin
α

‖Kα− y‖22 + λα>Kα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

where K ∈ Rn×n is the kernel matrix such that Ki,j = k(xi, xj), and λ ≥ 0 is the regularization constant.

2



a. [12 points] Using leave-one-out cross validation, find a good λ and hyperparameter settings for the following
kernels:

• kpoly(x, z) = (1 + x>z)d where d ∈ N is a hyperparameter,

• krbf(x, z) = exp(−γ‖x− z‖22) where γ > 0 is a hyperparameter1.

We strongly recommend implementing either grid search or random search. Do not use sklearn, but
actually implement of these algorithms. Reasonable values to look through in this problem are: λ ∈
10[−5,−1] and d ∈ [5, 25]. You do not need to search over γ (you can use the heuristic given in the
footnote), but if you would like to, a reasonable place to start would be to sample from a narrow gaussian
distribution centered at the value described in the footnote.
Report the values of d, λ, and γ for both kernels.

b. [10 points] Let f̂poly(x) and f̂rbf(x) be the functions learned using the hyperparameters you found in part
a. For a single plot per function f̂ ∈

{
f̂poly(x), f̂rbf(x)

}
, plot the original data {(xi, yi)}ni=1, the true f(x),

and f̂(x) (i.e., define a fine grid on [0, 1] to plot the functions).

What to Submit:
• Part a: Report the values of d, γ and the value of λ for both kernels as described.

• Part b: Two plots. One plot for each function.

• Code on Gradescope through coding submission.

Introduction to PyTorch
Resources
For questions A.4 and A.5, you will use PyTorch. In Section materials (Week 6) there is a notebook that you
might find useful. Additionally make use of PyTorch Documentation, when needed.

A4. PyTorch is a great tool for developing, deploying and researching neural networks and other gradient-
based algorithms. In this problem we will explore how this package is built, and re-implement some of its core
components. Firstly start by reading README.md file provided in intro_pytorch subfolder. A lot of problem
statements will overlap between here, readme’s and comments in functions.

a. [10 points] You will start by implementing components of our own PyTorch modules. You can find these
in folders: layers, losses and optimizers. Almost each file there should contain at least one problem
function, including exact directions for what to achieve in this problem. Lastly, you should implement
functions in train.py file.

b. [5 points] Next we will use the above module to perform hyper-parameter search2. Here we will also treat
loss function as a hyper-parameter. However, because cross-entropy and MSE require different shapes we
are going to use two different files: crossentropy_search.py and mean_squared_error_search.py. For
each you will need to build and train (in provided order) 6 models:

• Linear neural network (Single layer, no activation function)
• NN with one hidden layer (2 units) and sigmoid activation function after the hidden layer
• NN with one hidden layer (2 units) and ReLU activation function after the hidden layer
• NN with two hidden layer (each with 2 units) and Sigmoid, ReLU activation functions after first and

second hidden layers, respectively
1Given a dataset x1, . . . , xn ∈ Rd, a heuristic for choosing a range of γ in the right ballpark is the inverse of the median of all(n

2

)
squared distances ‖xi − xj‖22.

2In this problem, the hyper-parameters required to search are (1) model architectures and (2) loss functions. Classic hyper-
parameters like batch size and learning rates are not required to be searched over as long as the loss curve converges.

3

https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Random_search
https://courses.cs.washington.edu/courses/cse446/24wi/sections/
https://pytorch.org/docs/stable/index.html


• NN with two hidden layer (each with 2 units) and ReLU, Sigmoid activation functions after first and
second hidden layers, respectively

• NN with two hidden layer (each with 2 units) and ReLu activation functions after first and second
hidden layers.

For each loss function, submit a plot of losses from training and validation sets. All models should be on
the same plot (12 lines per plot), with two plots total (1 for MSE, 1 for cross-entropy).

c. [5 points] For each loss function, report the best performing architecture (best performing is defined here
as achieving the lowest validation loss at any point during the training), and plot its guesses on test set.
You should use function plot_model_guesses from train.py file. Lastly, report accuracy of that model
on a test set.

The Softmax function

One of the activation functions we ask you to implement is softmax. For a prediction ŷ ∈ Rk corresponding to
single datapoint (in a problem with k classes):

softmax(ŷi) =
exp(ŷi)∑
j exp(ŷj)

What to Submit:

• Part b: 2 plots (one per loss function), with 12 lines each, showing both training and validation loss of
each model. Make sure plots are titled, and have proper legends.

• Part c: Names of best performing models (i.e. descriptions of their architectures), and their accuracy on
test set.

• Part c: 2 scatter plots (one per loss function), with predictions of best performing models on test set.

• Code on Gradescope through coding submission

Neural Networks for MNIST

A5. In Homework 1, we used ridge regression to train a classifier for the MNIST dataset. In Homework 2, we
used logistic regression to distinguish between the digits 2 and 7. Now, in this problem, we will use PyTorch to
build a simple neural network classifier for MNIST to further improve our accuracy.

We will implement two different architectures: a shallow but wide network, and a narrow but deeper net-
work. For both architectures, we use d to refer to the number of input features (in MNIST, d = 282 = 784), hi

to refer to the dimension of the i-th hidden layer and k for the number of target classes (in MNIST, k = 10).
For the non-linear activation, use ReLU. Recall from lecture that

ReLU(x) =

{
x, x ≥ 0

0, x < 0 .

Weight Initialization

Consider a weight matrix W ∈ Rn×m and b ∈ Rn. Note that here m refers to the input dimension and n to the
output dimension of the transformation x 7→ Wx + b. Define α = 1√

m
. Initialize all your weight matrices and

biases according to Unif(−α, α).

4



Training

For this assignment, use the Adam optimizer from torch.optim. Adam is a more advanced form of gradient
descent that combines momentum and learning rate scaling. It often converges faster than regular gradient
descent in practice. You can use either Gradient Descent or any form of Stochastic Gradient Descent. Note
that you are still using Adam, but might pass either the full data, a single datapoint or a batch of data to it.
Use cross entropy for the loss function and ReLU for the non-linearity.

Implementing the Neural Networks

a. [10 points] Let W0 ∈ Rh×d, b0 ∈ Rh, W1 ∈ Rk×h, b1 ∈ Rk and σ(z) : R → R some non-linear activation
function applied element-wise. Given some x ∈ Rd, the forward pass of the wide, shallow network can be
formulated as:

F1(x) := W1σ(W0x+ b0) + b1

Use h = 64 for the number of hidden units and choose an appropriate learning rate. Train the network
until it reaches 99% accuracy on the training data and provide a training plot (loss vs. epoch). Finally
evaluate the model on the test data and report both the accuracy and the loss.

b. [10 points] Let W0 ∈ Rh0×d, b0 ∈ Rh0 , W1 ∈ Rh1×h0 , b1 ∈ Rh1 , W2 ∈ Rk×h1 , b2 ∈ Rk and σ(z) : R → R
some non-linear activation function. Given some x ∈ Rd, the forward pass of the network can be formulated
as:

F2(x) := W2σ(W1σ(W0x+ b0) + b1) + b2

Use h0 = h1 = 32 and perform the same steps as in part a.

c. [5 points] Compute the total number of parameters of each network and report them. Then compare the
number of parameters as well as the test accuracies the networks achieved. Is one of the approaches (wide,
shallow vs. narrow, deeper) better than the other? Give an intuition for why or why not.

Using PyTorch: For your solution, you may not use any functionality from the torch.nn module except for
torch.nn.functional.relu and torch.nn.functional.cross_entropy. You must implement the networks
F1 and F2 from scratch. For starter code and a tutorial on PyTorch refer to the sections 6 and 7 material.

What to Submit:
• Parts a-b: Provide a plot of the training loss versus epoch. In addition, evaluate the trained model on

the test data and report the accuracy and loss.

• Part c: Report the number of parameters for the network trained in part (a) and for the network trained
in part (b). Provide a comparison of the two networks as described in part (c) in 1-2 sentences.

• Code on Gradescope through coding submission.

5


