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Reminders

e HW4 due March 12th!
e Final is Wednesday March 19th!
o < 2 weeks from today



SVD



Say Misrankr

Singular Value
Decomposition

.....................

Fact: Any matrix M can : i :
be decomposed into T
three separate matrices. M U > V*

e | will not be

) : How | like to think of rank: How
discussing how to

solve SVD. rather Alternative explanation: much space is actually taken
: o Rank is how much up by the vectors in the matrix?
what its solution space the matrix “fills”.
means. Linearly dependent B
(BTW: This is equivalent to thinking vectors don't contribute P. 0wt
of M as a rotation, scaling, and more to this *filling e

another rotation).

0 0
\:m.depend!m_/jy pe h



Rank-r
approximations

Say that M is “bloated”. It

has many linearly
dependent vectors which
increase its size by a lot
for no reason.

The information of M is
confined to the subspace
spanned by its linearly
independent vectors

Basically minimizing
MSE for the matrix
reconstruction

minimize; cfk

subject torank(L) = r

e The optimal rank-r approximation is L = Ul S1.r 1 rVT

TL:DR: SVD is useful because it lets us
approximately describe M with much less data
(especially if M is “bloated”)

What does this look like in terms of
U, S, and V?




Rank-r
approximations

Shaded areas are what is
“‘enough” to reconstruct
M.

For compression using
SVD, we pick r to be
small to save us lots of
space!

e The optimal rank-r approximationis L = U1:r51:r,1:rvir;r




Sorted in

Understanding the a descending
g >
decomposition ry/ﬁ . ;. order =
‘ 3)_m O
Consider what actually o e 7
happens during the 'ng
matrix multiplication. | .
\/\

Give names to the > Indexes
diagonal values of X. - refer to

columns

a summation.

r
Write the multiplication as M = UZVT — E uiaz-vz—T
13—



Understanding the
decomposition

M 6 R'ran

Make sure the

shapes check u; € R™: o; € R; v; € R" -,

out in your "
head: u;ov; € R™*™

M=UIV' = Z w;ov;
i=1

Rank-r approximation
Rank-2 approximation

A

Rank-1 approximation

Uxv' = ulalv;— + ’LLQO’Q’U;_ + ... + w0,V

N

T

&



M c Ran

Make sure the

Understanding the shapes check  u; € R™; 0; € R; v; € R™ .
decomposition out in your .
head: U;0;v; € | i

Note: The u. and v,

vectors are called Ieft
and right singular vectors Q: Which singular vectors affect the
respectively. reconstruction of M the most and least. WWhy?

A:01 > 09 > ... > Op

UZVT = U101V + UQO'QUQ T s T U TV



PCA



PCA: Dimensionality
reduction

Dealing with
high-dimensional data
can lead to problems
(curse of dimensionality)

Visualization is very hard
for d > 2

Goal: Find a lower-dimensional representation
of your data X with the least loss of
information.

We need to find a subspace of the original
data span to project down to. The Principal
Components of our data can help us do this

10 principal components give a pretty good
reconstruction of a face

average face x+a[llu; X+ a[llu; +al2]u,
X r=2 r=3 r=4
r=7 r=8 r=9

x r=1
Ground truths real face

r=10 T R



Variance v, is the best line to project to
maximization

v, is the worst line to project to

One way to think about
“information” in data is its
spread, or variance.

Projection data down to one
single point = loss of all
information.

So what is the opposite?




Our goal is to find a projection matrix V, € R%*? that minimizes the reconstruction error of our
demeaned data. Mathematically, we want to find:

N
min Z ||(x; — Z) — VqV;(:I:i —I)

[’ .
1 =1

2
2

Turns out, the V, that minimizes this equation is the first ¢ eigenvectors of X X. There is a
proof in the lecture notes, but here is the inuition:

e Eigenvalues/eigenvectors tell you the “direction and magnitude of greatest stretch” when a
matrix M is applied as a transformation.

e If X is our data, make X the demeaned data. This makes X "X proportional to the sample
covariance matrix of X. Essentially, a matrix which holds information about the variance

of X.

e The cigenvectors of XX will tell us the directions of greatest variance. Intuitively, finding
the eigenvectors of this should give us principal components to project onto!



From lecture notes:

Re|ating PCA & SVD Theorem [SVD]: Let A € R"" with rank r < min{m, n}. Then A = USV”

where § € R"™" is diagonal with non-negative entries, U'U = I, and VIV = I.

So how do we find the V are the first r eigenvectors of AT A with eigenvalues diag(S?)
. T U are the first r eigenvectors of AAT with eigenvalues diag(S?)
eigenvectors of XTX ?

SVD(X) = UBVT . (definition of SVD)
V contains the first r eigenvectors of XX, .. (fact from lecture notes)
the principal components of X exist in V from the SVD of X (PCs of X = eigenvectors of XTX

Remember Selecting the first g vectors

this?: g1 > 09 > ... > 0Oy from V gives us the
h directions with the
& GREATEST variance...

principal components!



CNNs



ourput

[] ] ] S]]

input

This video shows a convolutional pass being done. The kernel

they use here is a “sharpening kernel”



Shape of a convolutional layer / maxpooling output: For a n x n input, f x f filter, padding p and stride s, the
output size is o x o where:

n—f+2p
e R
S

1

An equation worth memorizing...



Convolutional Neural
Networks

| find it most effective to
just answer questions
about these.

Ask away!

Convolution Neural Network (CNN)
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Questions/Chat Time!



