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Plans for today!

1. This
2. Reminders
3. SVD
4. PCA
5. CNNs



Reminders

● HW4 due March 12th!
● Final is Wednesday March 19th!

○ < 2 weeks from today



SVD



Singular Value 
Decomposition

Fact: Any matrix M can 
be decomposed into 
three separate matrices.

● I will not be 
discussing how to 
solve SVD, rather 
what its solution 
means.

(BTW: This is equivalent to thinking 
of M as a rotation, scaling, and 
another rotation).

Say M is rank r

How I like to think of rank: How 
much space is actually taken 
up by the vectors in the matrix?

Alternative explanation: 
Rank is how much 
space the matrix “fills”. 

Linearly dependent 
vectors don't contribute 
more to this “filling”



Rank-r 
approximations

Say that M is “bloated”. It 
has many linearly 
dependent vectors which 
increase its size by a lot 
for no reason.

The information of M is 
confined to the subspace 
spanned by its linearly 
independent vectors

TL;DR: SVD is useful because it lets us 
approximately describe M with much less data 
(especially if M is “bloated”)

Basically minimizing 
MSE for the matrix 
reconstruction

What does this look like in terms of 
U, S, and V?



Rank-r 
approximations

Shaded areas are what is 
“enough” to reconstruct 
M.

For compression using 
SVD, we pick r to be 
small to save us lots of 
space!



Understanding the 
decomposition

Consider what actually 
happens during the 
matrix multiplication.

Give names to the 
diagonal values of Σ.

Write the multiplication as 
a summation.

Sorted in 
descending 

order

Indexes 
refer to 

columns



Understanding the 
decomposition

Make sure the 
shapes check 
out in your 
head:

Rank-1 approximation
Rank-2 approximation
Rank-r approximation



Understanding the 
decomposition

Make sure the 
shapes check 
out in your 
head:

Note: The ui and vi 
vectors are called left 
and right singular vectors 
respectively.

Q: Which singular vectors affect the 
reconstruction of M the most and least. Why?

A:



PCA



PCA: Dimensionality 
reduction

Dealing with 
high-dimensional data 
can lead to problems 
(curse of dimensionality)

Visualization is very hard 
for d > 2

Goal: Find a lower-dimensional representation 
of your data X with the least loss of 

information.

We need to find a subspace of the original 
data span to project down to. The Principal 
Components of our data can help us do this



Variance 
maximization

One way to think about 
“information” in data is its 
spread, or variance.

Projection data down to one 
single point = loss of all 
information.

So what is the opposite?

v1 is the best line to project to

v2 is the worst line to project to





Relating PCA & SVD

So how do we find the 
eigenvectors of           ? 

From lecture notes:

Remember 
this?:

Selecting the first q vectors 
from V gives us the 
directions with the 
GREATEST variance… 
principal components!



CNNs



This video shows a convolutional pass being done. The kernel 
they use here is a “sharpening kernel”



An equation worth memorizing…



I find it most effective to 
just answer questions 
about these.

Ask away!

Convolutional Neural 
Networks



Questions/Chat Time!


