446 Section 09

TA: Varun Ananth

Plans for today!

- 1. This
- 2. Reminders
- 3. SVD
- 4. PCA
- 5. CNNs

Reminders

- HW4 due March 12th!
- Final is Wednesday March 19th!
 - < 2 weeks from today</p>

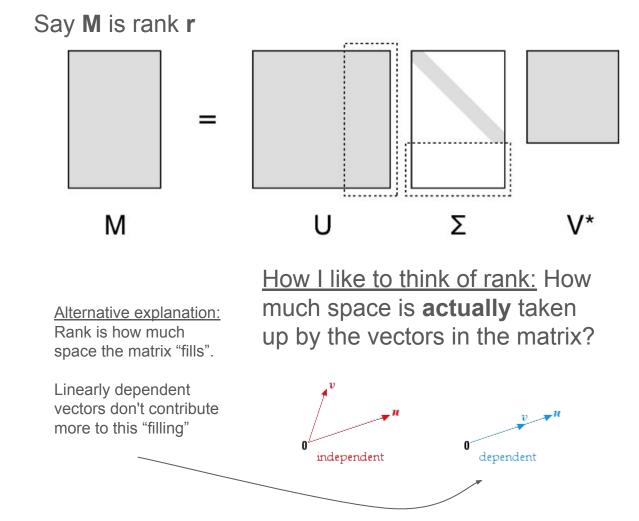
SVD

Singular Value Decomposition

Fact: Any matrix **M** can be decomposed into three separate matrices.

 I will not be discussing how to solve SVD, rather what its solution means.

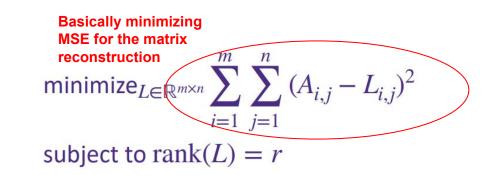
(BTW: This is equivalent to thinking of **M** as a rotation, scaling, and another rotation).



Rank-r approximations

Say that **M** is "bloated". It has many linearly dependent vectors which increase its size by a lot for no reason.

The information of **M** is confined to the subspace spanned by its linearly independent vectors



ullet The optimal rank-r approximation is $L = U_{1:r} S_{1:r,1:r} V_{1:r}^T$

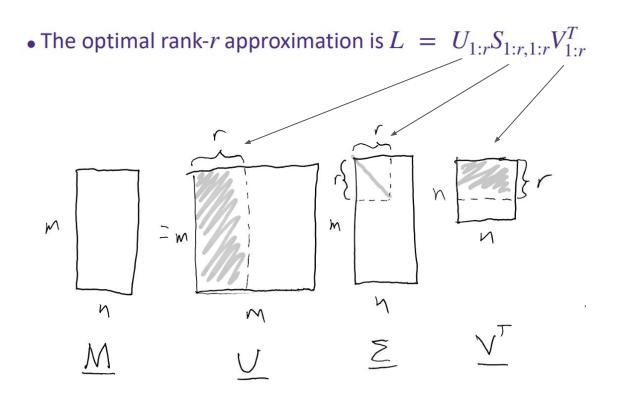
<u>TL;DR:</u> SVD is useful because it lets us approximately describe **M** with much less data (especially if **M** is "bloated")

What does this look like in terms of U, S, and V?

Rank-r approximations

Shaded areas are what is "enough" to reconstruct **M**.

For compression using SVD, we pick **r** to be small to save us lots of space!

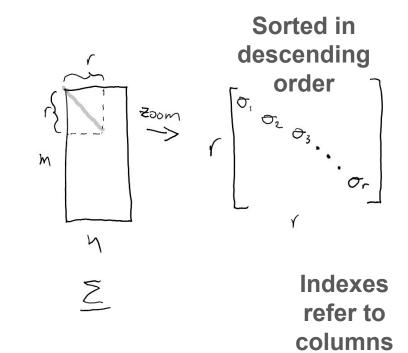


Understanding the decomposition

Consider what <u>actually</u> <u>happens</u> during the matrix multiplication.

Give names to the diagonal values of Σ.

Write the multiplication as a summation.



$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} = \sum_{i=1} u_i \sigma_i v_i^{\top}$$

$$\mathbf{M} \in \mathbb{R}^{m \times n}$$

Understanding the decomposition

Make sure the shapes check out in your head:

$$u_i \in \mathbb{R}^m; \ \sigma_i \in \mathbb{R}; \ v_i \in \mathbb{R}^n : ...$$

$$u_i \sigma_i v_i^\top \in \mathbb{R}^{m \times n}$$

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} = \sum_{i=1}^{r} u_i \sigma_i v_i^{\top}$$

$$\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = u_1\sigma_1v_1^{\mathsf{T}} + u_2\sigma_2v_2^{\mathsf{T}} + \dots + u_r\sigma_rv_r^{\mathsf{T}}$$

$\mathbf{M} \in \mathbb{R}^{m \times n}$

Understanding the decomposition

Note: The u_i and v_j vectors are called <u>left</u> and <u>right</u> singular vectors respectively.

Make sure the shapes check out in your head:

$$u_i \in \mathbb{R}^m; \ \sigma_i \in \mathbb{R}; \ v_i \in \mathbb{R}^n : ...$$

$$u_i \sigma_i v_i^{\top} \in \mathbb{R}^{m \times n}$$

Q: Which singular vectors affect the reconstruction of **M** the <u>most</u> and <u>least</u>. Why?

A:
$$\sigma_1 > \sigma_2 > \dots > \sigma_r$$

$$\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} = u_1 \sigma_1 v_1^{\top} + u_2 \sigma_2 v_2^{\top} + \dots + u_r \sigma_r v_r^{\top}$$

PCA

PCA: Dimensionality reduction

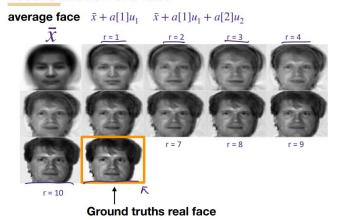
Dealing with high-dimensional data can lead to problems (curse of dimensionality)

Visualization is very hard for d > 2

Goal: Find a lower-dimensional representation of your data **X** with the least loss of information.

We need to find a subspace of the original data span to project down to. The **Principal Components** of our data can help us do this

10 principal components give a pretty good reconstruction of a face

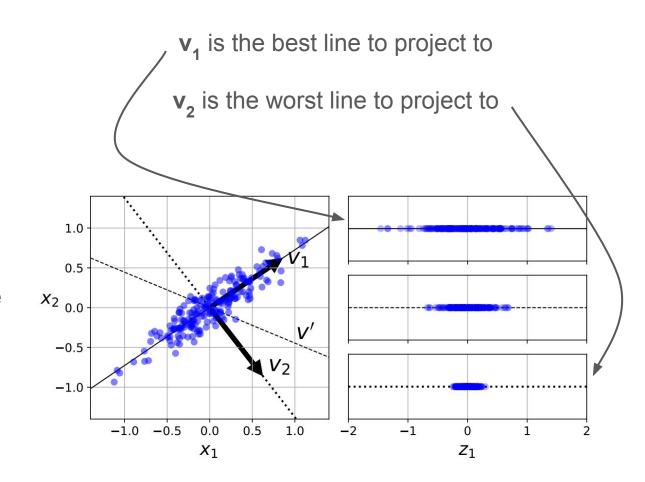


Variance maximization

One way to think about "information" in data is its spread, or variance.

Projection data down to one single point = loss of all information.

So what is the opposite?



Our goal is to find a projection matrix $\mathbf{V}_q \in \mathbb{R}^{d \times q}$ that minimizes the reconstruction error of our demeaned data. Mathematically, we want to find:

$$\min_{\mathbf{V}_q} \sum_{i=1}^N ||(x_i - \bar{x}) - \mathbf{V}_q \mathbf{V}_q^{\top} (x_i - \bar{x})||_2^2$$

Turns out, the V_q that minimizes this equation is the first q eigenvectors of $\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}$. There is a proof in the lecture notes, but here is the inuition:

- Eigenvalues/eigenvectors tell you the "direction and magnitude of greatest stretch" when a matrix **M** is applied as a transformation.
- If **X** is our data, make $\tilde{\mathbf{X}}$ the demeaned data. This makes $\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}$ proportional to the **sample** covariance matrix of **X**. Essentially, a matrix which holds information about the variance of **X**.
- The eigenvectors of $\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}$ will tell us the directions of greatest variance. Intuitively, finding the eigenvectors of this should give us **principal components** to project onto!

From lecture notes:

Relating PCA & SVD

Theorem [SVD]: Let $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then $A = USV^T$ where $S \in \mathbb{R}^{r \times r}$ is diagonal with non-negative entries, $U^TU = I$, and $V^TV = I$.

So how do we find the eigenvectors of $\tilde{\mathbf{X}}^{\mathsf{T}}\tilde{\mathbf{X}}$?

 \mathbf{V} are the first r eigenvectors of $\mathbf{A}^T \mathbf{A}$ with eigenvalues diag(\mathbf{S}^2) \mathbf{U} are the first r eigenvectors of $\mathbf{A}\mathbf{A}^T$ with eigenvalues diag(\mathbf{S}^2)

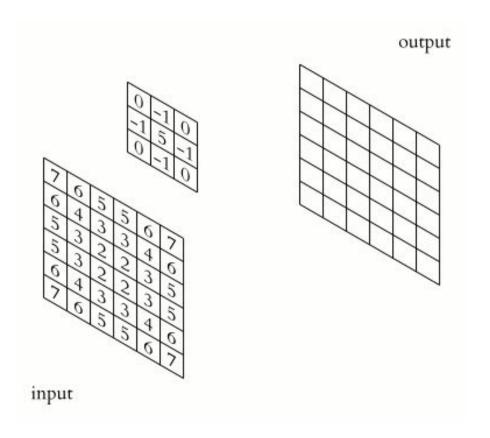
$$SVD(\mathbf{X}) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} : (definition \ of \ SVD)$$

V contains the first r eigenvectors of $\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}$, \therefore (fact from lecture notes) the principal components of \mathbf{X} exist in \mathbf{V} from the SVD of $\tilde{\mathbf{X}}$ (PCs of \mathbf{X} = eigenvectors of $\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}$)

$$\sigma_1 > \sigma_2 > \dots > \sigma_r$$

Selecting the first *q* vectors from **V** gives us the directions with the GREATEST variance... **principal components!**

CNNs



This video shows a convolutional pass being done. The kernel they use here is a "sharpening kernel"

Shape of a convolutional layer / maxpooling output: For a $n \times n$ input, $f \times f$ filter, padding p and stride s, the output size is $o \times o$ where:

$$o = \frac{n - f + 2p}{s} + 1$$

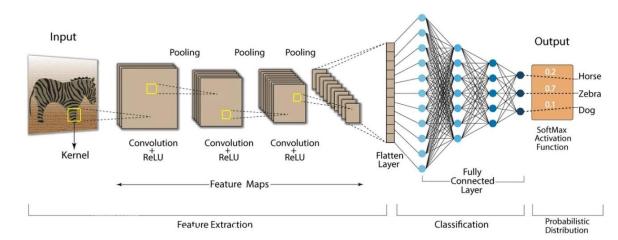
An equation worth memorizing...

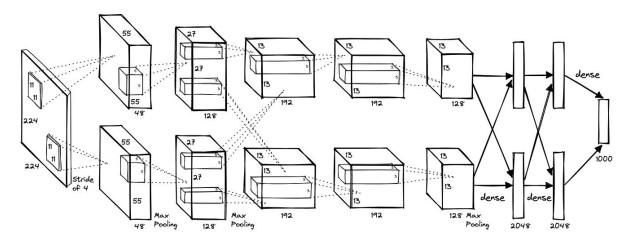
Convolution Neural Network (CNN)

Convolutional Neural Networks

I find it most effective to just answer questions about these.

Ask away!





Questions/Chat Time!