
Section 09: Solutions

1. Principal Component

Consider the following dataset, which is represented as three points in R2. Note that in this problem we will not
demean the dataset.  1 2

1.5 3
6 12



(a) What is the first principal component vector, v1?

Solution:

Each point has second coordinate twice the first, so every point is on the line y = 2x, or equivalently is a
multiple of the vector [1, 2].

That direction, normalized, is the first principal component, so v1 = [1/
√
5, 2/

√
5] ≈ [0.45, 0.89].

(b) What is the second principal component, v2?

Solution:

1

Since every data is in the span of the first principal component, any unit norm vector perpendicular to v1
is an acceptable choice. One such vector is [−2

√
5, 1/

√
5] ≈ [−0.89, 0.45].

(c) If we use only the first principal component to compress the dataset, what will the representation of each
point be?

Solution:

The first point is
√
5v1, the second one is 1.5 ·

√
5v1, and the third one is 6 ·

√
5v1.

(d) Will this representation be lossy, or perfectly preserve the dataset?

Solution:

In this particular dataset, we perfectly preserve this dataset (the points are all multiples of v1).

Answer the same questions for the following, slightly larger dataset:
1 1
1.5 1.5
−2 2
4 −4
6 −6
2 2



2

(a) What is the first principal component vector, v1?

Solution:

Notice that every point is either a multiple of [1, 1] or [1,−1], so some of those must be our principal
component. The norms of the multiples of [1,−1] are much larger, so [1/

√
2,−1/

√
2] is v1.

(b) What is the second principal component, v2?

Solution:

We need a vector perpendicular to v1, which can best describe our remaining data. Since we’re in two
dimensions, we don’t have choices after we chose the first principal component. Therefore, the second
principal component is [1/

√
2, 1/

√
2].

(c) If we use only the first principal component to compress the dataset, what will the representation of each
point be?

Solution:

Data points 1, 2, and 6 are all perpendicular to v1, so are represented as [0, 0] (i.e. 0 · v1). The other points
are multiples of v1, which are −2

√
2v1, 4

√
2v1, and 6

√
2v1, respectively.

(d) Will this representation be lossy, or perfectly preserve the data?

3

Solution:

The data representation is lossy. Points 1, 2, and 6 have lost information.

2. Using the Eigenbasis

It’s a very useful fact that for any symmetric n×n matrix A you can find a set of eigenvectors u1, ..., un for A such
that:

• ‖ui‖2 = 1

• uT
i uj = 0,∀i 6= j

• u1, . . . , un form a basis of Rn

One of the reasons this fact is useful is that facts about these matrices are easier to prove if you think about the
vectors in terms of their “eigenbasis” components, instead of their components in the standard basis. As a trivial
example, we’ll show that you can calculate Ax for a vector x without having to do the matrix multiplication.

(a) Consider the matrix A =

[
4 −1
−1 4

]
. Verify that u1 =

[
1/

√
2

1/
√
2

]
and u2 =

[
−1/

√
2

1/
√
2

]
are eigenvectors

and meet the definitions. Find the eigenvalues associated with u1 and u2

Solution:

They are eigenvectors: Au1 =

[
4/

√
2− 1/

√
2

−1/
√
2 + 4/

√
2

]
= 3u1 and Au2 = 5u2 by a similar calculation.

They are unit norm: uT
1 u1 = (1/

√
2)2 + (1/

√
2)2 = 1/2 + 1/2 = 1. The calculation for u2 is similar.

They are orthogonal: uT
1 u2 = (1/

√
2)(−1/

√
2) + (1/

√
2)(1/

√
2) = −1/2 + 1/2 = 0

They form a basis (since they’re 2 linearly independent vectors in R2)

(b) since {u1, u2} are a basis, we can write any vector as a linear combination of them. Write x =

[
−1/

√
2

3/
√
2

]
in

this basis.

Solution:

xTu1 = −1/2 + 3/2 = 1.xTu2 = 1/2 + 3/2 = 2. So x = u1 + 2u2

(c) Based on the eigenvectors and eigenvalues your found in part a, diagonalize A, i.e, find matrix U and D such
that UDUT = A where all entries of D are 0 except for the ones on the diagonal.

Solution:

U =

[
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

]
D =

[
3 0
0 5

]

(d) Use the decomposition and the eigenvalues you calculated in the previous parts to calculate Ax without doing
matrix-vector multiplication.

4

Solution:

Ax = A (u1 + 2u2) = Au1 + 2Au2 = 3u1 + 10u2 =

[
−7/

√
2

13/
√
2

]

This method of calculating a matrix vector product won’t actually be more computationally efficient – but it’s what’s
“really” happening when you do the multiplication, so this will be useful intuition under certain circumstances.
Expressing vectors in an eigenbasis is also a useful proof technique, as we’ll see in some later problems.

3. Singular Value Decomposition - Proofs

Recall that if we have a symmetric, square matrix A ∈ Rn×n, we can eigen-decompose it in the form of A = USUT ,
where the columns of U are eigenvectors of A with lengths of 1, and the diagonal of S is the list of eigenvalues
corresponding to those eigenvectors.
Now, for a more general case, where A is a data matrix with the dimension of Rn×d, there is still a way to decompose
it: A = USV T , where U ∈ Rn×n, S is a rectangular diagonal matrix and S ∈ Rn×d, and V ∈ Rd×d.
It is called Singular Value Decomposition (SVD).

(a) Let A have SVD USV T . Show AAT has the columns of U as eigenvectors with associated eigenvalues S2.

Solution:

We have A = USV T then:

AAT = USV T (USV T)T

= USV T ((V T)TSTUT)

= USV TV SUT

= USISUT

= US2UT

Since we can diagonalize AAT into US2UT , it has eigenvectors that are columns of U and associated
eigenvalues S2.

(b) Let A have SVD USV T . Show ATA has the columns of V as eigenvectors with associated eigenvalues S2.

Solution:

We have A = USV T then:

ATA = (USV T)TUSV T

= V SUTUSV T

= V SISV T

= V S2V T

Since we can diagonalize ATA into V S2V T , it has eigenvectors that are columns of V and associated
eigenvalues S2.

5

(c) For the matrix A, suppose we are given that AAT = US2UT and ATA = V S2V T . Show that A = USV T . I.e.,
show that for any vector x ∈ Rd, we have Ax = USV Tx

Solution:

Let {v1, v2, . . . , vn} be the rows of V T . They are orthogonal to each other and unit norm. For any x ∈ Rd

we can write x =
∑d

i=1 αivi. Then we have:

USV Tx = USV T
d∑

i=1

αivi

=

d∑
i=1

αiUSV T vi

=

d∑
i=1

αiUSei

=

d∑
i=1

αiUλiei

=

d∑
i=1

αiλiui

In the meantime, since vi is an eigenvector of ATA, we have ATAvi = λ2
i vi (1)

Multiply A on both sides of (1), we get (AAT)Avi = λ2
iAvi

Therefore, Avi is an eigenvector of AAT

If we multiply vTi on both sides of (1), we get vTi A
TAvi = λ2

i v
T
i vi, which is equivalent to ||Avi||2 = λ2

i ||vi||2
Therefore, we know that the length of vector Avi is λi

Normalize the vector: Avi

λi
= ui

Hence, λiui = Avi
Plug it back into the formula:

USV Tx =

d∑
i=1

αiλiui

=

d∑
i=1

αiAvi

= A

d∑
i=1

αivi

= Ax

4. Convolutional Neural Networks

(a) Discuss the advantages of a convolutional layer compared to a fully connected one. Solution:

Convolutional layers are more flexible than fully connected ones since not all input neurons affect all
output neurons. In addition, the number of weights per layer is smaller than that of linear layers, which
would ease computation with high-dimensional data.

(b) Discuss the advantages of maxpooling in CNN. Solution:

6

Pooling layers are used to downsample feature maps, which make processing more efficient by reducing
the number of parameters to learn.

5. Shapes in Convolutional Neural Networks

When designing a convolutional neural network, it’s important to think about the shape of the data flowing through
the network. In this problem you will get gain experience with thinking about the shapes in a neural network and
a better intuition for why convolutional neural networks require so few parameters compared to fully connected
layers.

Shape of a convolutional layer / maxpooling output: For a n× n input, f × f filter, padding p and stride s, the
output size is o× o where:

o =
n− f + 2p

s
+ 1

We will use Pytorch Conv2d to represent a 2D convolution, and Pytorch MaxPool2d to represent a 2D max pooling.
Take a look at the documentation on Conv2d and MaxPool2d.

(a) Assume your input is a batch of N 64 × 64 RGB images. The input tensor your neural network receives will
have shape (N, 3, 64, 64). For each of the following operations, determine the new shape of the tensor as it
flows through the network. Note that activations are omitted since they don’t change the shape of the data as
they act coordinate-wise.

1. Conv2D(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)

Solution:

(N, 16, 64, 64)

2. MaxPool2d(kernel_size=2, stride=2, padding=0)

Solution:

(N, 16, 32, 32)

3. Conv2D(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=0)

Solution:

(N, 32, 30, 30)

4. MaxPool2d(kernel_size=2, stride=2, padding=1)

Solution:

(N, 32, 16, 16)

5. Conv2D(in_channels=32, out_channels=8, kernel_size=1, stride=1, padding=0)

7

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

Solution:

(N, 8, 16, 16)

6. Conv2D(in_channels=8, out_channels=4, kernel_size=5, stride=1, padding=0)

Solution:

(N, 4, 12, 12)

7. Flatten

Solution:

(N, 576)

8. Linear(in_features=576, out_features=10)

Solution:

(N, 10)

(b) Again assume your input is a batch of N 64 × 64 RGB images. Now compute the number of parameters that
each layers has. For the convolutional layers, also compute the number of parameters a fully connected layer
mapping from the flattened input channels to the flattened output channels would have. It is okay to leave
the number of parameters as products and additions such as 64 · 32 + 16.

1. Conv2D(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)

Solution:

Conv: 3 · 16 · 3 · 3 + 16 = 448

Fully connected: 3 · 64 · 64 · 16 · 64 · 64 + 16 · 64 · 64 = 805306512

2. MaxPool2d(kernel_size=2, stride=2, padding=0)

Solution:

0

3. Conv2D(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=0)

Solution:

Conv: 16 · 32 · 3 · 3 + 32 = 4640

Fully connected: 16 · 32 · 32 · 32 · 30 · 30 + 32 · 30 · 30 = 471888000

4. MaxPool2d(kernel_size=2, stride=2, padding=1)

8

Solution:

0

5. Conv2D(in_channels=32, out_channels=8, kernel_size=1, stride=1, padding=0)

Solution:

Conv: 32 · 8 + 8 = 264

Fully connected: 32 · 16 · 16 · 8 · 16 · 16 + 8 · 16 · 16 = 16779264

6. Conv2D(in_channels=8, out_channels=4, kernel_size=5, stride=1, padding=0)

Solution:

Conv: 8 · 4 · 5 · 5 + 4 = 804

Fully connected: 8 · 16 · 16 · 4 · 12 · 12 + 4 · 12 · 12 = 1180224

7. Flatten

Solution:

0

8. Linear(in_features=576, out_features=10)

Solution:

576 · 10 + 10 = 5770

9

	Principal Component
	Using the Eigenbasis
	Singular Value Decomposition - Proofs
	Convolutional Neural Networks
	Shapes in Convolutional Neural Networks

