446 Section 0 £

TA: Varun Ananth



Plans for today!

1. This

2. Reminders

3. Neural Networks
a. Forward/backward passes
b. Weight initializations



Reminders

e HW3 due Nov 19 @ 11:59 PM
o Double check your late days!

Nothing else to say... How’s life?



Forward Pass



Passing Data Through the Network

Hidden Layers

Data




How is this done?

Floats initialized
semi-randomly.
Learning these =
learning the
function

/

Weights

Goal:

Data

i+l
L1



How is this done? Goal:

x5z1

Wsea Sum all
Multiply each of those
square of the { up
input with the \

square under it




How is this done?

Multiply {

Sum

Goal: I
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How is this done?

Multiply {

Goal: I
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How is this done?

Multiply {

Goal: I
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How is this done?

Multiply {

Sum

Goal: I

i+l
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Sigmoid Activation Function Goal:

5l

Sigmoid activation function
that squishes inputs it
between 0 and 1!

1

Sigmoid

o(z) =

1
1+e— =

-10 10

Sigmoid does have some problems
though...



Backpropagation



Backpropagation Intuition

Forward Pass
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Backpropagation Intuition

Backward Pass

“Upstream -
Gradient” from
Loss Function

N\
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Loss




Backpropagation Intuition

Backward Pass

“Upstream -
Gradient” from
Loss Function

N\
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Loss
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Goal: VL = | ]



Backpropagation Intuition

Backward Pass

“Upstream -
Gradient” from
Loss Function

N\
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Loss
oL
0z

We have
this...

We need

/ this...
oL
()wl

(Ch:un Rule)

We want
this...




Backpropagation Intuition
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Backpropagation Intuition

Backward Pass

“Upstream -
Gradient” from
Loss Function

Loss

>~.._ “Downstream
Gradients”
calculated



Backpropagation Intuition

Backward Pass

-—

5a
And so \
on... New
5b ~—— “Upstream
/Gradients”
5c
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o(x) = =
Issue with Sigmoid from earlier e
d /
S-0(@) =0'(z) = 0(z)(l —0(z))
sigmoid function and its derivative
107 : Ziegrrir\]/c:tcijvfeur;?tsi?gnmoid function The derivative Of the
sigmoid function is
0.8 what upstream
gradients must pass
0.61 through to get to layers
further back
0.4 1 \
\ The sigmoid function has
0.2° these “dead zones” that
00 can kill information

. . . . . flowing backwards!
~10 -5 0 5 10



Issue with Sigmoid from earlier

RelLU is usually the best
default activation function -

this is partially why
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1. Neural Network Chain Rule Warm-Up

Consider the following equations:

v(a,b,c) = c(a — b)*
a(w,z,y) = (w + z + y)°

b(z,y,z) = (x —y — 2)°

The way variables are related to each other can be represented as the network:

S
0 O

(a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output » with respect to each of the
input variables: ¢, w, x,y, z using only partial derivative symbols.



(a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the

v(a, b, c) = c(a — b)*
a(w,z,y) = (w+ z + y)*
b(ﬂ?,y, z) o (:IJ =% ke 2)2

input variables: ¢, w, .y, z using only partial derivative symbols.

Solution:

da
w

v

ab
Jdx
ab
dy




(b) Compute the values of all the partial derivatives on the RHS of your results to the previous question. Then
use them to compute the values on the LHS.
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2. 1-Hidden-Layer Neural Network Gradients and Initialization

2.1. Forward and Backward pass

Consider a 1-hidden-layer neural network with a single output unit. Formally the network can be defined by the
parameters W(©) ¢ R"*4, p(©) ¢ Rk; W) ¢ R*" and b(") € R. The input is given by z € R%. We will use sigmoid
activation for the first hidden layer z and no activation for the output y. Below is a visualization of such a neural
network with d =2 and h = 4.

b(® 1 b
\

(a) Write out the forward pass for the network using z, W(®,5© 2 W® »(1) & and y.



b 11 b
\

z = o(WOx + b))

Apply sigmoid activation on z



b(®
p)

y= Wz 4pl
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o(WOx + b(0)
y= WOz 4 p

Scalar derivative | Vector derivative

f@) - & | fx®» - 4

br — b xXB —- B
bx — b x'b = b
2 = 2z xT'x = 2x
br? — 2z | xTBx — 2Bx

(b) Find the partial derivatives of the output with respect W) and v, namely %% and 2% .
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Scalar derivative | Vector derivative
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bx — b x'b = b
2 = 2z xT'x = 2x
br? — 2z | xTBx — 2Bx

(c) Now find the partial derivative of the output with respect to the output of the hidden layer z, that is g—z



(d) Finally find the partial derivatives of the output with respect to W(® and b, that is ;2% and 524

o'(a) =a(a) * (1 -a(a))
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l Generalizing for all h rows...
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(d) Finally find the partial derivatives of the output with respect to W(® and (), that is 67?,% and 8—?(%.

o'(a) =a(a) * (1 -a(a))

Repeat same steps for bias...
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Initializations



Initializations are
incredibly important

What happens if we set
all weights to 0 initially in
a neural network?

No matter the

input, all outputs e
will be the same...

Hidden Layers

Input Layer

—1
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Output Layer

Everything stays the same
here too, no learning!



Interactive Initialization
Example


https://www.deeplearning.ai/ai-notes/initialization/index.html#:~:text=What%20do%20you%20notice%20about,scheme%20will%20perform%20very%20poorly.
https://www.deeplearning.ai/ai-notes/initialization/index.html#:~:text=What%20do%20you%20notice%20about,scheme%20will%20perform%20very%20poorly.

IF THIS DOES NOT MAKE SENSE JUST
IGNORE IT, THIS IS NOT REQUIRED

Sensitive _ input layer: 16 neurons,
dependence in hidden layer: 16 neurons,
initializations output layer: 1 neuron, tanh activation

I’'m not an expert in
fractals or chaos theory,
but thought this was
super cool:

3.562e+5

rate

9

Output layer learnini

(video links in paper)

The boundary of neural | -
network trainability is , k e
fractal

1.126e-1

Blue-green = convergence
Red-yellow = failure


https://arxiv.org/pdf/2402.06184
https://arxiv.org/pdf/2402.06184
https://arxiv.org/pdf/2402.06184

Questions/Chat Time!



