446 Section 08

TA: Varun Ananth

Plans for today!

- 1. This
- 2. Reminders
- 3. Neural Networks
 - a. Forward/backward passes
 - b. Weight initializations

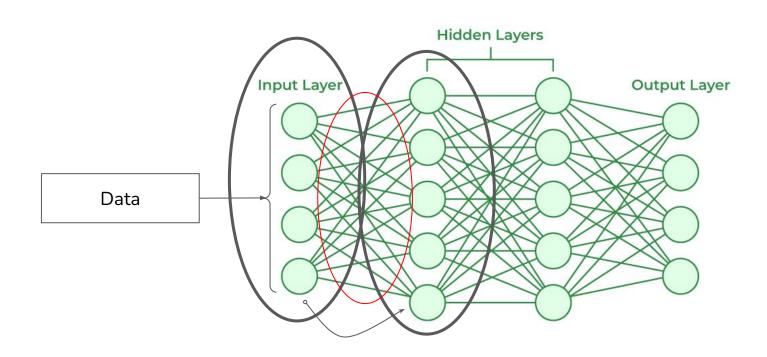
Reminders

- HW3 due Nov 19 @ 11:59 PM
 - Double check your late days!

Nothing else to say... How's life?

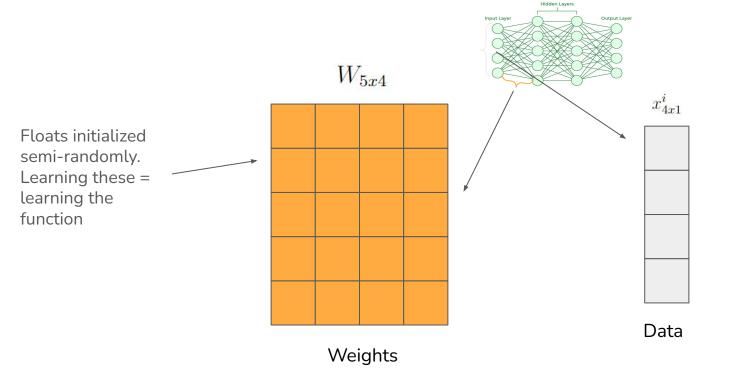
Forward Pass

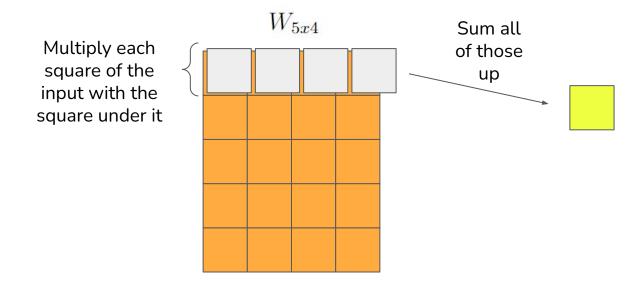
Passing Data Through the Network

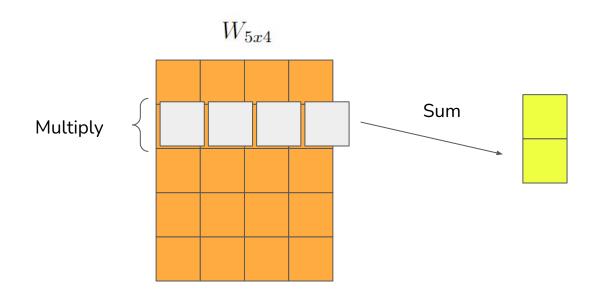


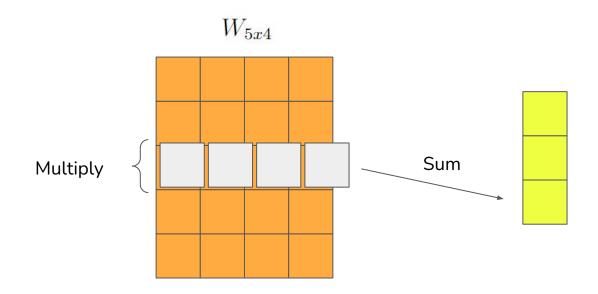
Goal:

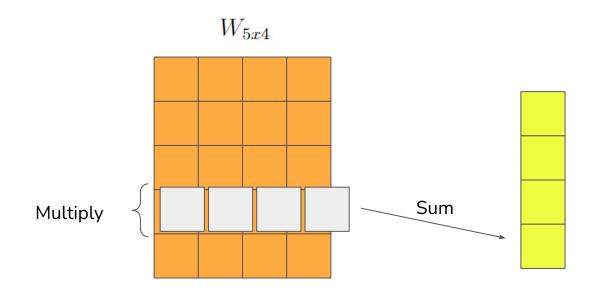
 x_{5x1}^{i+1}

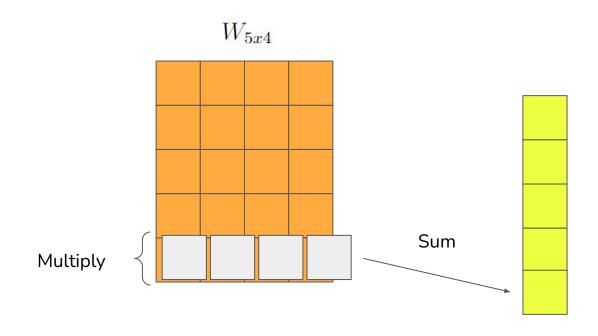








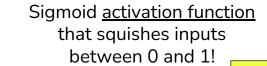


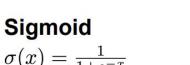


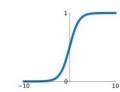
Sigmoid Activation Function

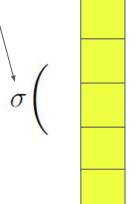
Goal:

 x_{5x}^{i+}



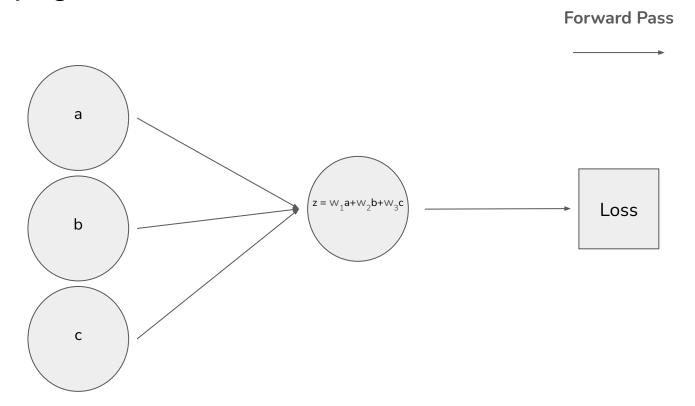


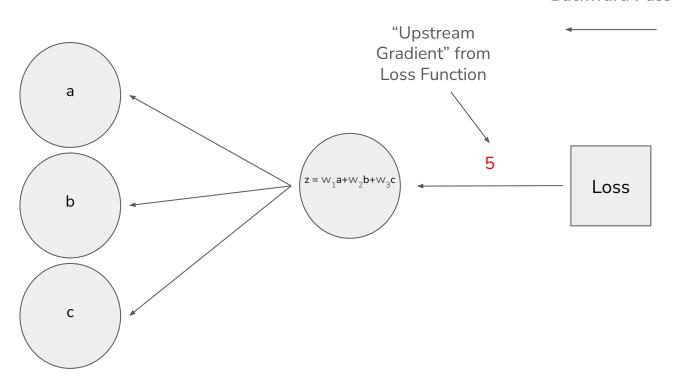


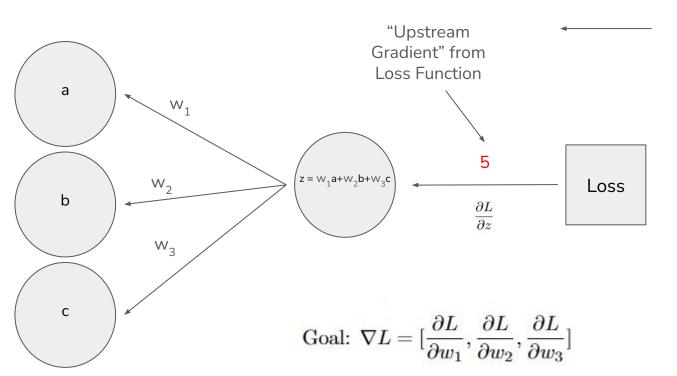


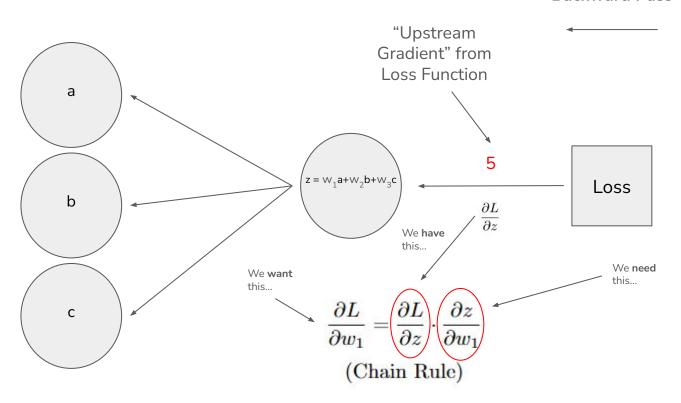
Sigmoid does have some problems though...

Backpropagation









$$egin{aligned} rac{\partial}{\partial w_1}z &= rac{\partial}{\partial w_1}(w_1a + w_2b + w_3c) \ rac{\partial z}{\partial w_1} &= a \ rac{\partial L}{\partial z} &= 5 \ rac{\partial L}{\partial w_1} &= 5*a \end{aligned}$$

$$\frac{\partial}{\partial w_1}z = \frac{\partial}{\partial w_1}(w_1a + w_2b + w_3c) \qquad \qquad \frac{\partial}{\partial w_2}z = \frac{\partial}{\partial w_2}(w_1a + w_2b + w_3c) \qquad \qquad \frac{\partial}{\partial w_3}z = \frac{\partial}{\partial w_3}(w_1a + w_2b + w_3c)$$

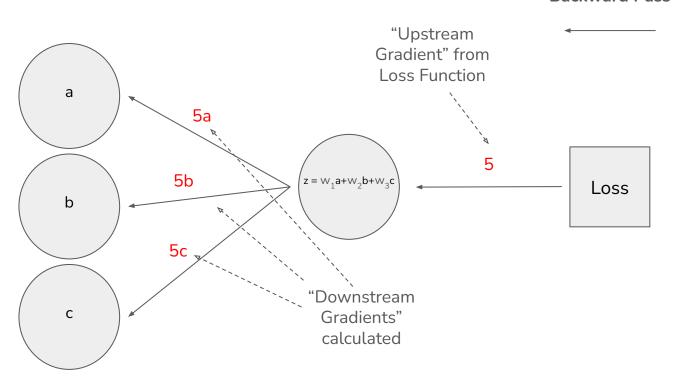
$$\frac{\partial z}{\partial w_1} = a \qquad \qquad \frac{\partial z}{\partial w_2} = b \qquad \qquad \frac{\partial z}{\partial w_3} = b$$

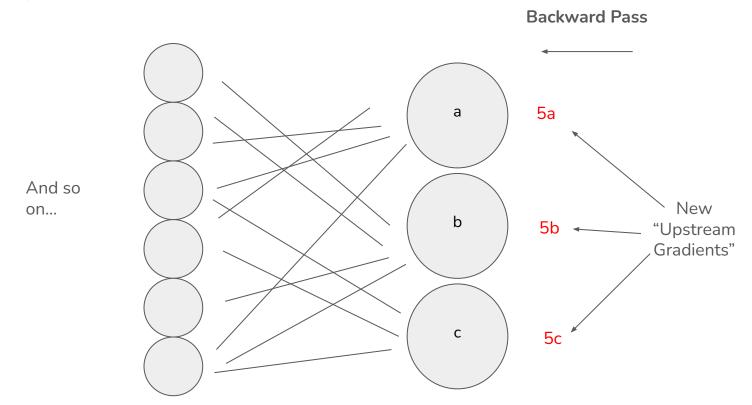
$$\frac{\partial L}{\partial z} = 5 \qquad \qquad \frac{\partial L}{\partial z} = 5$$

$$\frac{\partial L}{\partial w_1} = 5 * a \qquad \qquad \frac{\partial L}{\partial w_2} = 5 * b \qquad \qquad \frac{\partial L}{\partial w_3} = 5 * c$$

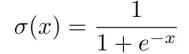
$$\frac{\partial}{\partial w_3} z = \frac{\partial}{\partial w_3} (w_1 a + w_2 b + w_3 c)$$
$$\frac{\partial z}{\partial w_3} = b$$
$$\frac{\partial L}{\partial z} = 5$$
$$\frac{\partial L}{\partial w_3} = 5 * c$$

Goal:
$$\nabla L = \left[\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, \frac{\partial L}{\partial w_3}\right]$$





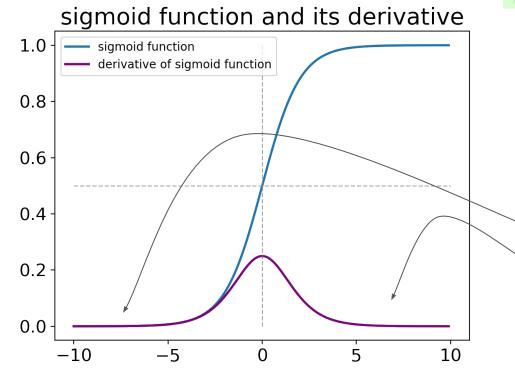
Issue with Sigmoid from earlier



$$\frac{d}{dx}\sigma(x) = \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

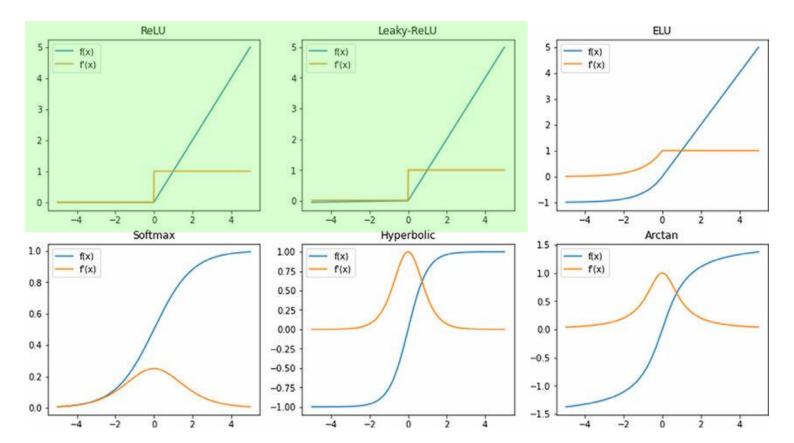
The derivative of the sigmoid function is what upstream gradients must pass through to get to layers further back

The sigmoid function has these "dead zones" that can kill information flowing backwards!



Issue with Sigmoid from earlier

ReLU is usually the best default activation function - this is partially why



1. Neural Network Chain Rule Warm-Up

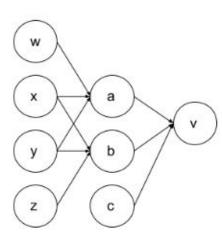
Consider the following equations:

$$v(a, b, c) = c(a - b)^{2}$$

$$a(w, x, y) = (w + x + y)^{2}$$

$$b(x, y, z) = (x - y - z)^{2}$$

The way variables are related to each other can be represented as the network:



(a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the input variables: c, w, x, y, z using only partial derivative symbols.

$$(x) = c(a-b)^2$$

$$(x) = c(a-b)^2$$

$$(x) = a(w,x,y) = (w+x+y)^2$$

$$(x) = b(x,y,z) = (x-y-z)^2$$

Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the input variables: c, w, x, y, z using only partial derivative symbols.

Solution:

Solution:
$$\frac{\partial v}{\partial c} = \frac{\partial v}{\partial c}$$

$$\frac{\partial v}{\partial w} = \frac{\partial v}{\partial a} \cdot \frac{\partial a}{\partial w}$$

$$\frac{\partial v}{\partial x} = \frac{\partial v}{\partial a} \cdot \frac{\partial a}{\partial x} + \frac{\partial v}{\partial b} \cdot \frac{\partial b}{\partial x}$$

$$\frac{\partial v}{\partial y} = \frac{\partial v}{\partial a} \cdot \frac{\partial a}{\partial y} + \frac{\partial v}{\partial b} \cdot \frac{\partial b}{\partial y}$$

$$\frac{\partial v}{\partial z} = \frac{\partial v}{\partial b} \cdot \frac{\partial b}{\partial z}$$

(b) Compute the values of all the partial derivatives on the RHS of your results to the previous question. Then use them to compute the values on the LHS.

$$\frac{\partial v}{\partial a} = 2c(a-b) \quad \frac{\partial v}{\partial b} = -2c(a-b) \quad \frac{\partial v}{\partial c} = (a-b)^2$$

$$\frac{\partial a}{\partial w} = 2(w+x+y) \quad \frac{\partial a}{\partial x} = 2(w+x+y) \quad \frac{\partial a}{\partial y} = 2(w+x+y)$$

$$\frac{\partial b}{\partial x} = 2(x-y-z) \quad \frac{\partial b}{\partial y} = -2(x-y-z) \quad \frac{\partial b}{\partial z} = -2(x-y-z)$$

$$\frac{\partial v}{\partial c} = (a - b)^{2}$$

$$\frac{\partial v}{\partial w} = \frac{\partial v}{\partial a} \cdot \frac{\partial a}{\partial w} = 4c(a - b)(w + x + y)$$

$$\frac{\partial v}{\partial x} = \frac{\partial v}{\partial a} \cdot \frac{\partial a}{\partial x} + \frac{\partial v}{\partial b} \cdot \frac{\partial b}{\partial x} = 4c(a - b)(w + x + y) - 4c(a - b)(x - y - z) = 4c(a - b)(w + 2y + z)$$

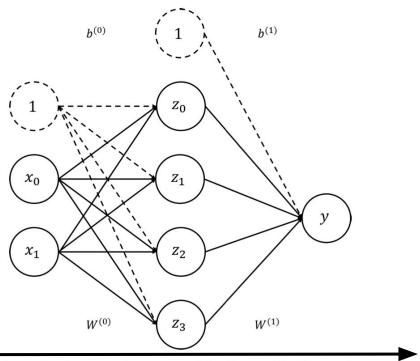
$$\frac{\partial v}{\partial y} = \frac{\partial v}{\partial a} \cdot \frac{\partial a}{\partial y} + \frac{\partial v}{\partial b} \cdot \frac{\partial b}{\partial y} = 4c(a - b)(w + x + y) + 4c(a - b)(x - y - z) = 4c(a - b)(w + 2x - z)$$

$$\frac{\partial v}{\partial z} = \frac{\partial v}{\partial b} \cdot \frac{\partial b}{\partial z} = 4c(a - b)(x - y - z)$$

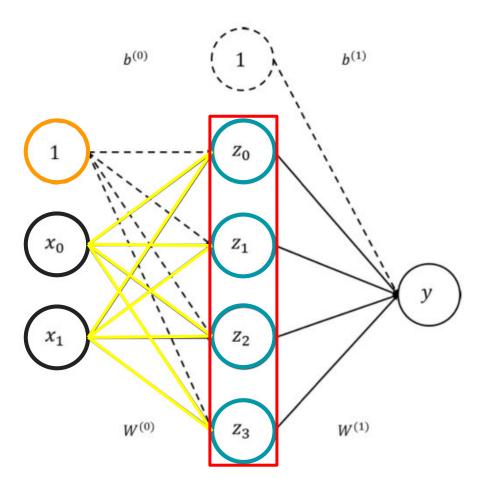
2. 1-Hidden-Layer Neural Network Gradients and Initialization

2.1. Forward and Backward pass

Consider a 1-hidden-layer neural network with a single output unit. Formally the network can be defined by the parameters $W^{(0)} \in \mathbb{R}^{h \times d}$, $b^{(0)} \in \mathbb{R}^h$; $W^{(1)} \in \mathbb{R}^{1 \times h}$ and $b^{(1)} \in \mathbb{R}$. The input is given by $x \in \mathbb{R}^d$. We will use sigmoid activation for the first hidden layer z and no activation for the output y. Below is a visualization of such a neural network with d=2 and h=4.

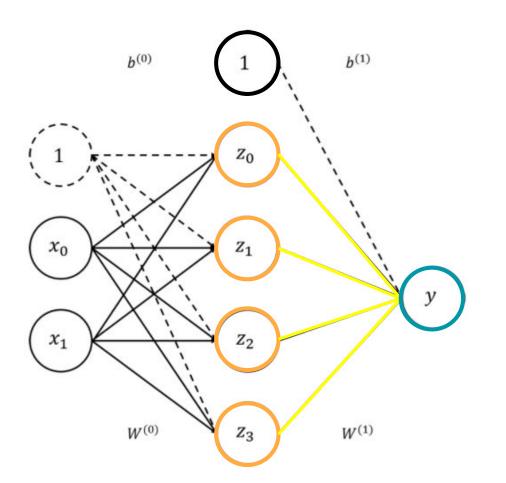


(a) Write out the forward pass for the network using $x, W^{(0)}, b^{(0)}, z, W^{(1)}, b^{(1)}, \sigma$ and y.

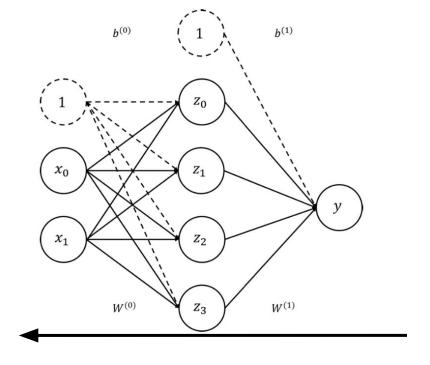


Apply sigmoid activation on z

 $z = \sigma(W^{(0)}x + b^{(0)})$



 $y = W^{(1)}z + b^{(1)}$



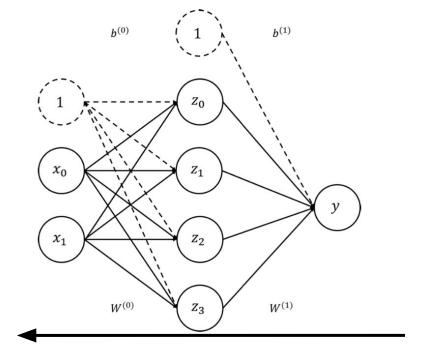
$$z = \sigma(W^{(0)}x + b^{(0)})$$

 $y = W^{(1)}z + b^{(1)}$

Scala	Scalar derivative			Vector derivative		
f(x)	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$f(\mathbf{x})$	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$	
bx	\rightarrow	b	$\mathbf{x}^T \mathbf{B}$	\rightarrow	В	
bx	\rightarrow	\boldsymbol{b}	$\mathbf{x}^T\mathbf{b}$	\rightarrow	b	
x^2	\rightarrow	2x	$\mathbf{x}^T\mathbf{x}$	\rightarrow	$2\mathbf{x}$	
bx^2	\rightarrow	2bx	$\mathbf{x}^T \mathbf{B} \mathbf{x}$	\rightarrow	$2\mathbf{B}\mathbf{x}$	

(b) Find the partial derivatives of the output with respect $W^{(1)}$ and $b^{(1)}$, namely $\frac{\partial y}{\partial W^{(1)}}$ and $\frac{\partial y}{\partial b^{(1)}}$.

$$rac{\partial y}{\partial W^{(1)}} = z \qquad \qquad rac{\partial y}{\partial b^{(1)}} = 0$$



$$z = \sigma(W^{(0)}x + b^{(0)})$$

 $y = W^{(1)}z + b^{(1)}$

Scalar derivative			Vector derivative		
f(x)	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$f(\mathbf{x})$	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$
bx	\rightarrow	b	$\mathbf{x}^T \mathbf{B}$	\rightarrow	В
bx	\rightarrow	\boldsymbol{b}	$\mathbf{x}^T\mathbf{b}$	\rightarrow	b
x^2	\rightarrow	2x	$\mathbf{x}^T\mathbf{x}$	\rightarrow	$2\mathbf{x}$
bx^2	\rightarrow	2bx	$\mathbf{x}^T \mathbf{B} \mathbf{x}$	\rightarrow	$2\mathbf{B}\mathbf{x}$

(c) Now find the partial derivative of the output with respect to the output of the hidden layer z, that is $\frac{\partial y}{\partial z}$

$$\frac{\partial y}{\partial z} = W^{(1)}$$

(d) Finally find the partial derivatives of the output with respect to $W^{(0)}$ and $b^{(0)}$, that is $\frac{\partial y}{\partial W^{(0)}}$ and $\frac{\partial y}{\partial b^{(0)}}$.

$$\sigma'(a) = \sigma(a) * (1 - \sigma(a))$$

(d) Finally find the partial derivatives of the output with respect to $W^{(0)}$ and $b^{(0)}$, that is $\frac{\partial y}{\partial W^{(0)}}$ and $\frac{\partial y}{\partial b^{(0)}}$.

$$\sigma'(a) = \sigma(a) * (1 - \sigma(a))$$

Repeat same steps for bias...

$$\mathbf{z}_{\mathbf{i}} = \mathbf{\sigma}(\mathbf{W}_{\mathbf{i}}^{(0)} \mathbf{x} + \mathbf{b}_{\mathbf{i}}^{(0)}) \longrightarrow \frac{\partial z_{i}}{\partial b_{i}^{(0)}} = z_{i}(1 - z_{i})$$

$$\mathbf{y} = \mathbf{W}^{(1)} \mathbf{z} + \mathbf{b}^{(1)} \longrightarrow \frac{\partial y}{\partial z_{i}} = W_{i}^{(1)}$$

$$\frac{\partial y}{\partial b_{i}^{(0)}} = \frac{\partial y}{\partial z_{i}} \frac{\partial z_{i}}{\partial b_{i}^{(0)}} = W_{i}^{(1)} \cdot z_{i}(1 - z_{i}) \in \mathbb{R}$$

$$\downarrow \quad \text{Generalizing for all h rows...}$$

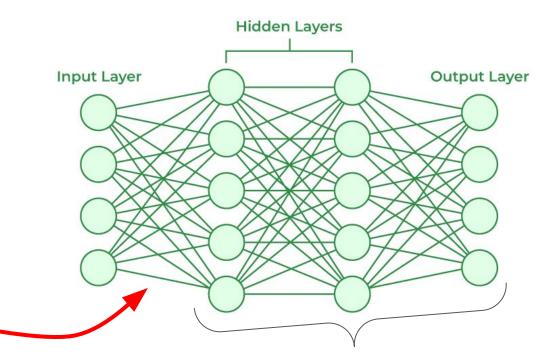
$$\frac{\partial y}{\partial b_{i}^{(0)}} = W^{(1)}^{\top} \circ z \circ (1 - z) \in \mathbb{R}^{h}$$

Initializations

Initializations are incredibly important

What happens if we set all weights to 0 initially in a neural network?

No matter the input, all outputs - will be the same...



Everything stays the same here too, no learning!

Interactive Initialization Example

Sensitive dependence in initializations

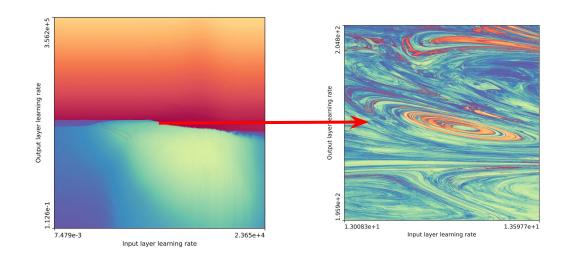
I'm not an expert in fractals or chaos theory, but thought this was super cool:

(video links in paper)

The boundary of neural network trainability is fractal

input layer: 16 neurons, hidden layer: 16 neurons,

output layer: 1 neuron, tanh activation



Blue-green = convergence Red-yellow = failure

Questions/Chat Time!