
Section 08: Neural Networks

1. Neural Network Chain Rule Warm-Up

Consider the following equations:

v(a, b, c) = c(a− b)2

a(w, x, y) = (w + x+ y)2

b(x, y, z) = (x− y − z)2

The way variables are related to each other can be represented as the network:

(a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the
input variables: c, w, x, y, z using only partial derivative symbols.

(b) Compute the values of all the partial derivatives on the RHS of your results to the previous question. Then
use them to compute the values on the LHS.

2. 1-Hidden-Layer Neural Network Gradients and Initialization

2.1. Forward and Backward pass

Consider a 1-hidden-layer neural network with a single output unit. Formally the network can be defined by the
parameters W (0) ∈ Rh×d, b(0) ∈ Rh; W (1) ∈ R1×h and b(1) ∈ R. The input is given by x ∈ Rd. We will use sigmoid
activation for the first hidden layer z and no activation for the output y. Below is a visualization of such a neural
network with d = 2 and h = 4.
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(a) Write out the forward pass for the network using x,W (0), b(0), z,W (1), b(1), σ and y.

Hint: Write z = . . . and y = . . .

(b) Find the partial derivatives of the output with respect W (1) and b(1), namely ∂y
∂W (1) and ∂y

∂b(1)
.

(c) Now find the partial derivative of the output with respect to the output of the hidden layer z, that is ∂y
∂z

(d) Finally find the partial derivatives of the output with respect to W (0) and b(0), that is ∂y
∂W (0) and ∂y

∂b(0)
.

Hint: First find ∂zi
∂W

(0)
i

and ∂zi
∂b

(0)
i

, whereW (0)
i denotes the i-th row ofW (0). Then note that ∂y

∂W
(0)
i

=
∑h

j=1
∂y
∂zj

∂zj

∂W
(0)
i

=

∂y
∂zi

∂zi
∂W

(0)
i

and ∂y

∂b
(0)
i

=
∑h

j=1
∂y
∂zj

∂zj

∂b
(0)
i

= ∂y
∂zi

∂zi
∂b

(0)
i

using the chain rule for multi-variate functions(1.b).
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2.2. Weight initialization

Suppose we initialize all weights and biases in the network to 0 before performing gradient descent.

(a) For all x ∈ Rd, find z and y after the forward pass.

(b) Now find the values of the gradients ∂y
∂W (1) ,

∂y
∂b(1)

, ∂y
∂W (0) and ∂y

∂b(0)
. Note that some of the gradients will be in

terms of x.

(c) Observe the values of each zi and observe each ∂y

∂W
(l)
i

and ∂y

∂b
(l)
i

. What do you notice? And what does this

imply for the expressiveness of the network? (Note that there is nothing special about the value 0 here, it just
simplifies the calculations. The same can be shown for initialization with any constant c)

3. Additional Resources on back propagation

(a) Slides 24-36 of Joseph Redmon’s Deep Learning

(b) Joseph Redmon’s Deep Learning Slide 02

(c) colah’s blog: Calculus on Computational Graphs: Backpropagation

(d) Colab Notebook from CSE 490 of Joseph Redmon: Tensor and its computations

(e) This resource from CS231n goes over the high-level intuition for transfer learning and practical tips for im-
plementation: CS231n: CNN

4. The Chain Rule (Optional)

(a) Let f : Rn → Rm, g : R` → Rn. Write the Jacobian of f ◦ g as a matrix in terms of the Jacobian matrix ∂f
∂y of

f and the Jacobian matrix ∂g
∂x of g. Make sure the matrix dimensions line up. What conditions must hold in

order for this formula to make sense?
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https://docs.google.com/presentation/d/1TW0oO7msvZqRZEGm7XkPcvr4CCTm8EHotYRm85cn08M/edit#slide=id.g435fffc3de_0_5
https://docs.google.com/presentation/d/178I5I_3AK4Z6hZbDQ0R3nD2Roj2ZUJwyef97R3tkBlo/edit#slide=id.g435fffc3de_0_406
https://colah.github.io/posts/2015-08-Backprop/
https://colab.research.google.com/drive/1ica1ZwMTLug_Qveoh68sGCptTfUaQerb?usp=sharing
https://cs231n.github.io/transfer-learning


(b) Let f : Rn → R and g : R → Rn. Write the derivative of f ◦ g as a summation between the partial derivatives
∂f
∂yi

of f and the partial derivatives ∂gi
∂x of g.

(c) What if instead the input of g is a matrixW ∈ Rp×q? Can we still represent the derivative ∂g
∂W of g as a matrix?
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