Section 08: Neural Networks

1. Neural Network Chain Rule Warm-Up

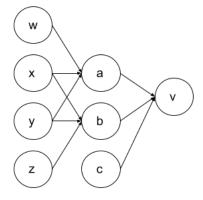
Consider the following equations:

$$v(a, b, c) = c(a - b)^{2}$$

$$a(w, x, y) = (w + x + y)^{2}$$

$$b(x, y, z) = (x - y - z)^{2}$$

The way variables are related to each other can be represented as the network:



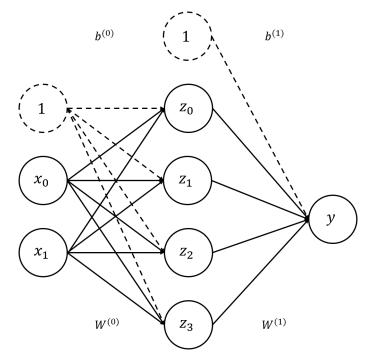
- (a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the input variables: c, w, x, y, z using only partial derivative symbols.
- (b) Compute the values of all the partial derivatives on the RHS of your results to the previous question. Then use them to compute the values on the LHS.

2. 1-Hidden-Layer Neural Network Gradients and Initialization

2.1. Forward and Backward pass

Consider a 1-hidden-layer neural network with a single output unit. Formally the network can be defined by the parameters $W^{(0)} \in \mathbb{R}^{h \times d}$, $b^{(0)} \in \mathbb{R}^h$; $W^{(1)} \in \mathbb{R}^{1 \times h}$ and $b^{(1)} \in \mathbb{R}$. The input is given by $x \in \mathbb{R}^d$. We will use sigmoid activation for the first hidden layer z and no activation for the output y. Below is a visualization of such a neural network with d=2 and h=4.

1



(a) Write out the forward pass for the network using $x,W^{(0)},b^{(0)},z,W^{(1)},b^{(1)},\sigma$ and y.

Hint: Write $z = \dots$ and $y = \dots$

- (b) Find the partial derivatives of the output with respect $W^{(1)}$ and $b^{(1)}$, namely $\frac{\partial y}{\partial W^{(1)}}$ and $\frac{\partial y}{\partial b^{(1)}}$.
- (c) Now find the partial derivative of the output with respect to the output of the hidden layer z, that is $\frac{\partial y}{\partial z}$
- (d) Finally find the partial derivatives of the output with respect to $W^{(0)}$ and $b^{(0)}$, that is $\frac{\partial y}{\partial W^{(0)}}$ and $\frac{\partial y}{\partial b^{(0)}}$.

 $\begin{array}{l} \textit{Hint: First find } \frac{\partial z_i}{\partial W_i^{(0)}} \text{ and } \frac{\partial z_i}{\partial b_i^{(0)}}, \text{ where } W_i^{(0)} \text{ denotes the } i\text{-th row of } W^{(0)}. \text{ Then note that } \frac{\partial y}{\partial W_i^{(0)}} = \sum_{j=1}^h \frac{\partial y}{\partial z_j} \frac{\partial z_j}{\partial W_i^{(0)}} = \\ \frac{\partial y}{\partial z_i} \frac{\partial z_i}{\partial W_i^{(0)}} \text{ and } \frac{\partial y}{\partial b_i^{(0)}} = \sum_{j=1}^h \frac{\partial y}{\partial z_j} \frac{\partial z_j}{\partial b_i^{(0)}} = \frac{\partial y}{\partial z_i} \frac{\partial z_i}{\partial b_i^{(0)}} \text{ using the chain rule for multi-variate functions(1.b).} \end{array}$

2.2. Weight initialization

Suppose we initialize all weights and biases in the network to 0 before performing gradient descent.

- (a) For all $x \in \mathbb{R}^d$, find z and y after the forward pass.
- (b) Now find the values of the gradients $\frac{\partial y}{\partial W^{(1)}}$, $\frac{\partial y}{\partial b^{(1)}}$, $\frac{\partial y}{\partial W^{(0)}}$ and $\frac{\partial y}{\partial b^{(0)}}$. Note that some of the gradients will be in terms of x.
- (c) Observe the values of each z_i and observe each $\frac{\partial y}{\partial W_i^{(l)}}$ and $\frac{\partial y}{\partial b_i^{(l)}}$. What do you notice? And what does this imply for the expressiveness of the network? (Note that there is nothing special about the value 0 here, it just simplifies the calculations. The same can be shown for initialization with any constant c)

3. Additional Resources on back propagation

- (a) Slides 24-36 of Joseph Redmon's Deep Learning
- (b) Joseph Redmon's Deep Learning Slide 02
- (c) colah's blog: Calculus on Computational Graphs: Backpropagation
- (d) Colab Notebook from CSE 490 of Joseph Redmon: Tensor and its computations
- (e) This resource from CS231n goes over the high-level intuition for transfer learning and practical tips for implementation: CS231n: CNN

4. The Chain Rule (Optional)

(a) Let $f: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^\ell \to \mathbb{R}^n$. Write the Jacobian of $f \circ g$ as a matrix in terms of the Jacobian matrix $\frac{\partial f}{\partial y}$ of f and the Jacobian matrix $\frac{\partial g}{\partial x}$ of g. Make sure the matrix dimensions line up. What conditions must hold in order for this formula to make sense?

(b) Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}^n$. Write the derivative of $f \circ g$ as a summation between the partial derivatives $\frac{\partial f}{\partial y_i}$ of f and the partial derivatives $\frac{\partial g_i}{\partial x}$ of g.

(c) What if instead the input of g is a matrix $W \in \mathbb{R}^{p \times q}$? Can we still represent the derivative $\frac{\partial g}{\partial W}$ of g as a matrix?