
Section 08: Solutions
Solution:

Section Plan

• Neural Network walkthrough (slides) [10 min]

• Have students work on Q1a [5 min]

• Walk through solutions for Q1a [1 min]

• Have students work on Q1b [7 min]

• Walk through solutions for Q1b [3 min]

• Have students work on Q2.1 - reveal answers for a-c early on; most of the time will be for part d [8 min]

• Walk through Q2.1d [6 min]

• Weight init interactive demo [10 min]

1. Neural Network Chain Rule Warm-Up

Consider the following equations:

v(a, b, c) = c(a− b)2

a(w, x, y) = (w + x+ y)2

b(x, y, z) = (x− y − z)2

The way variables are related to each other can be represented as the network:

(a) Using the multi-variate chain rule(part 1.b), write the derivatives of the output v with respect to each of the
input variables: c, w, x, y, z using only partial derivative symbols.

Solution:

1



∂v

∂c
=

∂v

∂c
∂v

∂w
=

∂v

∂a
· ∂a
∂w

∂v

∂x
=

∂v

∂a
· ∂a
∂x

+
∂v

∂b
· ∂b
∂x

∂v

∂y
=

∂v

∂a
· ∂a
∂y

+
∂v

∂b
· ∂b
∂y

∂v

∂z
=

∂v

∂b
· ∂b
∂z

(b) Compute the values of all the partial derivatives on the RHS of your results to the previous question. Then
use them to compute the values on the LHS.

Solution:

∂v

∂a
= 2c(a− b)

∂v

∂b
= −2c(a− b)

∂v

∂c
= (a− b)2

∂a

∂w
= 2(w + x+ y)

∂a

∂x
= 2(w + x+ y)

∂a

∂y
= 2(w + x+ y)

∂b

∂x
= 2(x− y − z)

∂b

∂y
= −2(x− y − z)

∂b

∂z
= −2(x− y − z)

∂v

∂c
= (a− b)2

∂v

∂w
=

∂v

∂a
· ∂a
∂w

= 4c(a− b)(w + x+ y)

∂v

∂x
=

∂v

∂a
· ∂a
∂x

+
∂v

∂b
· ∂b
∂x

= 4c(a− b)(w + x+ y)− 4c(a− b)(x− y − z) = 4c(a− b)(w + 2y + z)

∂v

∂y
=

∂v

∂a
· ∂a
∂y

+
∂v

∂b
· ∂b
∂y

= 4c(a− b)(w + x+ y) + 4c(a− b)(x− y − z) = 4c(a− b)(w + 2x− z)

∂v

∂z
=

∂v

∂b
· ∂b
∂z

= 4c(a− b)(x− y − z)

2. 1-Hidden-Layer Neural Network Gradients and Initialization

2.1. Forward and Backward pass

Consider a 1-hidden-layer neural network with a single output unit. Formally the network can be defined by the
parameters W (0) ∈ Rh×d, b(0) ∈ Rh; W (1) ∈ R1×h and b(1) ∈ R. The input is given by x ∈ Rd. We will use sigmoid
activation for the first hidden layer z and no activation for the output y. Below is a visualization of such a neural
network with d = 2 and h = 4.

2



(a) Write out the forward pass for the network using x,W (0), b(0), z,W (1), b(1), σ and y.

Hint: Write z = . . . and y = . . .

Solution:

z = σ
(
W (0)x+ b(0)

)
y = W (1)z + b(1)

(b) Find the partial derivatives of the output with respect W (1) and b(1), namely ∂y
∂W (1) and ∂y

∂b(1)
.

Solution:

∂y

∂W (1)
= z

∂y

∂b(1)
= 1

(c) Now find the partial derivative of the output with respect to the output of the hidden layer z, that is ∂y
∂z

Solution:

∂y

∂z
= W (1)

(d) Finally find the partial derivatives of the output with respect to W (0) and b(0), that is ∂y
∂W (0) and ∂y

∂b(0)
.

Hint: First find ∂zi
∂W

(0)
i

and ∂zi
∂b

(0)
i

, whereW (0)
i denotes the i-th row ofW (0). Then note that ∂y

∂W
(0)
i

=
∑h

j=1
∂y
∂zj

∂zj

∂W
(0)
i

=

∂y
∂zi

∂zi
∂W

(0)
i

and ∂y

∂b
(0)
i

=
∑h

j=1
∂y
∂zj

∂zj

∂b
(0)
i

= ∂y
∂zi

∂zi
∂b

(0)
i

using the chain rule for multi-variate functions(1.b).

Solution:

3



∂zi

∂W
(0)
i

= zi(1− zi)x
> ∈ R1×d

∂y

∂W
(0)
i

=
∂y

∂zi

∂zi

∂W
(0)
i

= W
(1)
i · zi(1− zi)x

> ∈ R1×d

∂y

∂W (0)
=

[
W (1)> ◦ z ◦ (1− z)

]
x> ∈ Rh×d ,

∂zi

∂b
(0)
i

= zi(1− zi) ∈ R

∂y

∂b
(0)
i

=
∂y

∂zi

∂zi

∂b
(0)
i

= W
(1)
i · zi(1− zi) ∈ R

∂y

∂b(0)
= W (1)> ◦ z ◦ (1− z) ∈ Rh.

We have provided the shapes of the matrix representations of derivatives. Try to reason about why it is of
the given shape.

2.2. Weight initialization

Suppose we initialize all weights and biases in the network to 0 before performing gradient descent.

(a) For all x ∈ Rd, find z and y after the forward pass.

Solution:

zi = σ(W
(0)
i x+ b(0)i) = σ(0x+ 0) = σ(0) =

1

2

y = W (1)z + b(1) = 0 · 1
2
+ 0 = 0

(b) Now find the values of the gradients ∂y
∂W (1) ,

∂y
∂b(1)

, ∂y
∂W (0) and ∂y

∂b(0)
. Note that some of the gradients will be in

terms of x.

Solution:

∂y

∂W (1)
= z =

1
2

∂y

∂b(1)
= 1

∂y

∂W (0)
=

[
W (1) ◦ z ◦ (1− z)

]
x>

= (0 ◦ 1
2
◦ 1

2
)x> = 0

∂y

∂b(0)
= W (1) ◦ z ◦ (1− z)

= 0 ◦ 1
2
◦ 1

2
= 0 .

(c) Observe the values of each zi and observe each ∂y

∂W
(l)
i

and ∂y

∂b
(l)
i

. What do you notice? And what does this

imply for the expressiveness of the network? (Note that there is nothing special about the value 0 here, it just

4



simplifies the calculations. The same can be shown for initialization with any constant c)

Solution:

The key insight is that if we initialize the weights to all have the same value, all zi are the same. Similarly
all W (l)

i and b
(l)
i are the same too and so the output y could be expressed with just a single zi instead

of h. Thus the neural network boils down to just having a single hidden unit. The same holds for the
gradients, so during a step of gradient descent, W (l)

i and b
(l)
i are updated in the same way. Thus after a

step of gradient descent, allW (l)
i and b

(l)
i are still the same. By induction, the same holds after an arbitrary

number of steps of gradient descent.

3. Additional Resources on back propagation

(a) Slides 24-36 of Joseph Redmon’s Deep Learning

(b) Joseph Redmon’s Deep Learning Slide 02

(c) colah’s blog: Calculus on Computational Graphs: Backpropagation

(d) Colab Notebook from CSE 490 of Joseph Redmon: Tensor and its computations

(e) This resource from CS231n goes over the high-level intuition for transfer learning and practical tips for im-
plementation: CS231n: CNN

4. The Chain Rule (Optional)

(a) Let f : Rn → Rm, g : R` → Rn. Write the Jacobian of f ◦ g as a matrix in terms of the Jacobian matrix ∂f
∂y of

f and the Jacobian matrix ∂g
∂x of g. Make sure the matrix dimensions line up. What conditions must hold in

order for this formula to make sense?

Solution:

The Chain Rule theorem states that:

∂(f ◦ g)
∂x

(x) =
∂f

∂y

(
g(x)

)
· ∂g
∂x

(
x
)

In order for the dimensions to line up for matrix multiplication, we must have ∂f
∂y ∈ Rm×n and ∂g

∂x ∈ Rn×`,
since f ◦ g : R` → Rm. Note that by this convention, the gradient of a vector-valued function is:

∂f

∂y
(y) =


∂f1
∂y1

(y) · · · ∂f1
∂yn

(y)
...

...
∂fm
∂y1

(y) · · · ∂fm
∂yn

(y)

 .

In order to apply the chain rule, f must be differentiable at g(x) and g must be differentiable at x.

(b) Let f : Rn → R and g : R → Rn. Write the derivative of f ◦ g as a summation between the partial derivatives
∂f
∂yi

of f and the partial derivatives ∂gi
∂x of g.

Solution:

∂f ◦ g
∂x

=

n∑
i=1

∂f

∂yi
(g(x)) · ∂gi

∂x
(x).

5

https://docs.google.com/presentation/d/1TW0oO7msvZqRZEGm7XkPcvr4CCTm8EHotYRm85cn08M/edit#slide=id.g435fffc3de_0_5
https://docs.google.com/presentation/d/178I5I_3AK4Z6hZbDQ0R3nD2Roj2ZUJwyef97R3tkBlo/edit#slide=id.g435fffc3de_0_406
https://colah.github.io/posts/2015-08-Backprop/
https://colab.research.google.com/drive/1ica1ZwMTLug_Qveoh68sGCptTfUaQerb?usp=sharing
https://cs231n.github.io/transfer-learning


(c) What if instead the input of g is a matrixW ∈ Rp×q? Can we still represent the derivative ∂g
∂W of g as a matrix?

Solution:

No, we cannot. The derivative of g : Rp×q → Rn would be represented as a three-dimensional n × p × q
tensor. In practice, people often flatten the input matrix W to a vector vec(W ) ∈ Rpq. Then we can write
the derivative of g as a Jacobian matrix, ∂g

∂ vec(W ) ∈ Rn×pq. Then we must remember to un-flatten the
derivative later when we update the matrix W .

6


	Neural Network Chain Rule Warm-Up
	1-Hidden-Layer Neural Network Gradients and Initialization
	Forward and Backward pass
	Weight initialization

	Additional Resources on back propagation
	The Chain Rule (Optional)

